A Numerical Exploration of Compressed Sampling Recovery - Archive ouverte HAL
Article Dans Une Revue Linear Algebra and its Applications Année : 2010

A Numerical Exploration of Compressed Sampling Recovery

Charles H Dossal
  • Fonction : Auteur
  • PersonId : 1136514
Jalal M. Fadili

Résumé

This paper explores numerically the efficiency of L1 minimization for the recovery of sparse signals from compressed sampling measurements in the noiseless case. This numerical exploration is driven by a new greedy pursuit algorithm that computes sparse vectors that are difficult to recover by L1 minimization. The supports of these pathological vectors are also used to select sub-matrices that are ill-conditionned. This allows us to challenge theoretical identifiability criteria based on polytopes analysis and on restricted isometry conditions. We evaluate numerically the theoretical analysis without resorting to Monte-Carlo sampling, which tends to avoid worst case scenarios.
Fichier principal
Vignette du fichier
DossalPeyreFadili-LAA.pdf (240.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00402455 , version 1 (07-07-2009)
hal-00402455 , version 2 (27-11-2009)

Identifiants

Citer

Charles H Dossal, Gabriel Peyré, Jalal M. Fadili. A Numerical Exploration of Compressed Sampling Recovery. Linear Algebra and its Applications, 2010, 432 (7), pp.1663-1679. ⟨10.1016/j.laa.2009.11.022⟩. ⟨hal-00402455v2⟩
1496 Consultations
906 Téléchargements

Altmetric

Partager

More