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Damping analysis of beams submitted to passive 
and active control
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c Laboratoire Génie Mécanique et Matériaux, Rue de Saint Maudé, B.P. 92116, 56321, Lorient Cedex, France

In this paper an analyticalmethod is proposed for damping analysis of sandwich beamswith piezoelectric
and viscoelastic layers. Based on the classical zig-zag model and some assumptions about the electric
field, this method leads to an analytical expression of the modal loss factor and frequency. Considering
two feedback control laws, the obtained hybrid damping of the sandwich beam is characterized.
Numerical finite element applications are considered, in order to examine the efficiency and limitations
of the presented method.
1. Introduction

Vibration suppression of structures is a problem in engineering
science that has occupied researchers for awhile. Themethodology
used can be categorized into two groups, namely passive and
active controls. In passive control, the material properties of the
structure, such as damping and stiffness, are modified so as to
change the response of the structure. More than 40 years ago,
it was well established that an efficient way to increase passive
damping is the use of a sandwich construction with alternating
elastic and viscoelastic layers [1,2]. Therefore, many analytical
and numerical methods have been proposed to determine the
damping parameters (loss factor and frequency) [3–5]. So, these
modal parameters can be obtained in different ways, i.e., by the
direct frequency response method [6], the complex eigenvalue
method [7], the modal strain energy method [6,8], and the non-
linear complex eigenvalue techniques [9–11].
In active control, the structural response is controlled by

adding an external effort to the structure. For two decades many
researchers tried to gain benefit from coupling both control types
in the so-called ‘‘hybrid vibration control’’. A detailed review
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and assessment of hybrid damping treatments of structures, with
focus on smart structures with piezoelectric control actuation,
has been given by Rao [12]. Since the 1950′s, there have been
a lot of papers published on sandwich structures using passive
damping. Excellent reviews on the evolution of modeling passive
damping were given by Nakra [13–15], Torvik [16], Mead [17],
and Hu [5]. More recently, many researchers, as Lee [18],
Crawley [19], and Preumont [20], have provided governing
equations, reciprocal relationships and experimental verification
of the induced-strain actuation, for smart structures dealing with
piezoelectric laminates and active control. Nevertheless, a widely
made assumption is the use of a linearly varying electric field
[21–23]. Concerning hybrid control, a large part of studies have
highlighted structures with a hybrid arrangement called ACLD
(SCLD) for active (smart) constrained layer damping [24–27].
In many theoretical and experimental investigations the active
system increases the passive transverse shear deformation of
the viscoelastic constrained layer and appears to be an effective
means to control vibration [28]. From an analytical point of
view, two- and three-dimensional solutions, in the case of simply
supported sandwich beam and plates with piezoelectric layers,
have been given by Heyliger [29], Vel [30], Cupial [31], and Franco
Correia [32].
From this literature review there is no method for modal pa-

rameter calculations of structures with hybrid damping treat-
ments. Indeed, when the material properties are viscoelastic
and piezoelectric, the stiffness becomes complex and depends
1



Fig. 1. Notations used for the piezoelectric/elastic/viscoelastic/elastic/piezoelectric beam.
non-linearly on the vibration frequency and on the active con-
trol. This method is similar to the one developed for piezoelec-
tric/elastic/piezoelectric laminates by Duigou [33] in which the
electrode effect has not been taken into account. In this paper
an analytical analysis is proposed when the starting model is
a piezoelectric/elastic/viscoelastic/elastic/piezoelectric sandwich
beam. The structure is modeled with the zig-zag theory. Next
the electromechanical problem is reduced to a purely mechanical
problem using elastic and viscoelastic equivalent stiffness proper-
ties. The control strategy is based on a proportional direct feedback
law or a velocity derivative feedback law. The effect of viscoelastic
material damping and the effect of the piezoelectricmaterial prop-
erties on modal vibration reduction are studied. The results are
validated by comparison with a two-dimensional finite element
simulation using the code ABAQUS [34].

2. An electromechanical model for adaptive laminated beams

In this part, a model for a piezoelectric/elastic/viscoelastic/
elastic/piezoelectric beam is presented. The geometry of the
five-layer beam is depicted in Fig. 1. In view of analytical
studies, this model is designed to be as simple as possible,
including Euler–Bernoulli and Timoshenko kinematics and the
assumption of transverse electric field. More precisely, each pair
of elastic–piezoelectric layers is represented as an Euler–Bernoulli
beam and the whole structure by the zig-zag theory to account for
the shear in the central layer [4]. Various levels of approximations
are discussed, as well as the treatment of the electrostatic problem
in the sensor.

2.1. Kinematic models

To describe the properties of a sandwich piezoelectric/elastic/
viscoelastic/elastic/piezoelectric beam, Euler–Bernouilli assump-
tions are considered for the stiff layers and Timoshenko ones for
the central one. The five layers have the same deflectionw and the
stiff layers have the same rotations. So, the axial displacements in
the different layers can be written in the following form:{
Ui(x, z) = ui(x)− (z − zi)w′(x) i = s, e1, e2, a
Uv(x, z) = u(x)+ zβ(x).

(1)

The origin of z axis is the medium plane and zi indicates the
medium axis ordinate of each layer:

zs = −za = (hv + 2he + hp)/2, ze1 = −ze2 = (hv + he)/2. (2)

ui represents the axial displacement of the ith layer and u that of
the central viscoelastic layer. β is its rotation.
The displacement continuity conditions at the interfaces allow

us to obtain the axial displacement field in terms of the axial
2

displacement at the center u, of the rotation β and of the deflection
w. So, the axial strains of the different layers can be expressed:

ε1s = u′ +
hv
2
β ′ − Hw′′ − (z − zs)w′′

ε1e1 = u
′
+
hv
2
β ′ −

he
2
w′′ − (z − ze1)w

′′

ε1v = u′ + zβ ′

ε1e2 = u
′
−
hv
2
β ′ +

he
2
w′′ − (z − ze2)w

′′

ε1a = u′ −
hv
2
β ′ + Hw′′ − (z − za)w′′

(3)

where

H =
hp
2
+ he.

2.2. Layer generalized constitutive equations

Let us assume that the elastic and viscoelastic materials are
linear, homogenous and isotropic. Each layer is considered as an
Euler–Bernoulli beam, except the central layer, where Timoshenko
kinematics and constant shear stress assumption hold. According
to Hooke’s law and to the kinematical relations (Eqs. (1) and (2)),
one defines the axial forceN , the bendingmomentsM of the elastic
or viscoelastic layers, and the shear force T of the core, as follows:

Ne1 = EeSe

(
u′ +

hv
2
β ′ −

he
2
w′′
)
Me1 = EeIe1w

′′

Ne2 = EeSe

(
u′ −

hv
2
β ′ +

he
2
w′′
)
Me2 = EeIe2w

′′

Nv = SvY ∗ u̇′ Mv = IvY ∗ β̇ ′

T =
Sv

2(1+ νv)
Y ∗ (ẇ′ + β̇)

(4)

where ∗ denotes the convolution product, Y is the relaxation
function, Ei is the Young’s modulus, νi the Poisson ratio, Ii the
quadratic moment, and Si the cross-section area of the considered
ith layer.
Piezoelectric materials have the capacity to act or react to an

electric field or a strain. This property results in the following
constitutive equation:{
σ = cε− etE
D = eε+ εE (5)

where σ, ε, D, and E are the stress and strain tensors, electric
displacement vector, and field vector, respectively. c, e, and ε are
the elasticity matrix, the piezoelectric matrix and the dielectric
permittivity. The coefficients of the elasticity matrix are measured
at a constant electric field and the components of the permittivity
matrix are measured at constant strain.



The orthotropic piezoelectric materials are poled in the
thickness direction and the extension mechanism is considered.
The constitutive equations can be represented in terms of a
reduced number of components with respect to 1–2–3 axes of the
piezoelectricmaterial.We suppose that the piezoelectric layers are
thin, the stress tensor is uniaxial, and the electric fieldsD and E are
parallel to the transverse direction. So, the constitutive equations
are reduced as in De [35] to{
σ1
D3

}
=

[
c∗11 −e

∗

31
e∗31 ε∗33

]{
ε1
E3

}
(6)

where
ε∗33 = ε33 +

e233
c33

e∗31 = e31 −
c13
c33
e33

c∗11 = c11 −
c213
c33
.

The relation between the electric field and the electric potential
can be reduced to the following:

E3 = −
∂φ(x, z)
∂z

. (7)

In this analysis, we consider that the central layer is conductive
with a uniform potential, fixed to zero [36]. Often in the literature,
the electric field is assumed to be linearly varying across the
thickness, in accordance with the same variation about stress
and strain [21–23]. Here, we assume thin piezoelectric layers.
This yields a constant electric field through the thickness of each
piezoelectric layer:

E3 = −
φ(x)
h

(8)

where φ(x) is the superficial potential. h is the thickness of the
piezoelectric layer.
So, from the expression (Eq. (3)), one defines the axial forces N

and the bending momentsM in the piezoelastic layers as follows:

Ns = c∗11Sp

(
u′ +

hv
2
β ′ − Hw′′

)
+ e∗31

Sp
hp
φs(x)

Ms = c∗11Isw
′′

Na = c∗11Sp

(
u′ −

hv
2
β ′ + Hw′′

)
− e∗31

Sp
hp
φa(x)

Ma = c∗11Iaw
′′

with Ii =
∫
Si
(z − zi)2dS i = s, a

(9)

where Si is the section area of each ith layer.

2.3. Electromechanical constitutive equations of the sandwich beam

In accordancewith zig-zag kinematics, the beam stresses can be
represented by a global normal forceN , by globalmomentsMβ and
Mw and by a shear force. Thus the virtual work of internal forces is
in the following form:

δWint =
∫ L

0
{Nδu′ +Mwδw′′ +Mβδβ ′ + T (δβ + δw′)}dx (10)

where N ,Mβ ,Mw and T are defined as

N = Ns + Ne1 + Nv + Ne2 + Na,

Mβ =
hv
2
(Ne1 − Ne2)+Mv +

hv
2
(Ns − Na),

Mw = Ms +Me1 +Me2 +Ma −
he
2
(Ne1 − Ne2)− H(Ns − Na)

T =
Sv

2(1+ νv)
Y ∗ (ẇ′ + β̇).

(11)
with

Ni =
∫
Si
σidS,

Mi =
∫
Si
(z − zi)σidS.

(12)

By neglecting the rotational inertia, the Principle of d’Alembert can
be written as in [37]∫ L

0

{
Nδu′ +Mwδw′′ +Mβδβ ′ + T (δβ + δw′)

+ (ρS)eq

(
∂2u
∂t2

δu+
∂2w

∂t2
δw

)}
dx = 0 ∀δu, δw, δβ (13)

where
(ρS)eq = ρsSs + ρe1Se1 + ρvSv + ρe2Se2 + ρaSa. (14)
ρi and Si are respectively the density and the section area of

layer i. We consider a viscoelastic core that is thin and soft. So,
Mv and Nv can be neglected [38]. By combining Eqs. (11), (4)
and (9), the global electromechanical constitutive equations of the
laminate are deduced:

N = (ES)mecu′ + e∗31
Sp
hp
(φs(x)− φa(x))

Mβ = (EI)ββ ′ + γww′′ + e∗31
hv
2
Sp
hp
(φs(x)+ φa(x))

Mw = γwβ ′ + (EI)mecw′′ − e∗31H
Sp
hp
(φs(x)+ φa(x))

T =
Sv

2(1+ νv)
Y ∗ (ẇ′ + β̇)

(15)

with

(ES)mec = 2EeSe + 2c∗11Sp

(EI)mec = Ee

(
Ie1 + Ie2 +

h2e
2
Se

)
+ c∗11(Ia + Is + 2H

2Sp)

γw = −
hv
2
(heSeEe + 2c∗11SpH)

(EI)β =
h2v
2
(EeSe + c∗11Sp).

(16)

Notice that there are no membrane/bending coupling terms
because of the symmetrical multi-layer construction.

2.4. Condensation of electric sensor potential

Wesuppose no electric displacement in the piezoelectric sensor
and the displacement is supposed constant through-the-thickness,
leading to

D3(zs) = e∗31 ∗ ε1s(zs)− ε
∗

33 ∗
φs(x)
hp
= 0. (17)

The sensor potentialφs(x) is obtained as a function of the kinematic
variables:

φs(x) =
e∗31
ε∗33
hp

(
u′ +

hv
2
β ′ − Hw′′

)
. (18)

Considering the relation (Eq. (18)) one eliminates the sensor
electric potential in Eq. (15). This leads to a modified constitutive
law:
N = (ES)equ′ + α

hv
2
β ′ − αHw′′ − e∗31

Sp
hp
φa(x)

Mβ = α
hv
2
u′ + (EI)βeqβ ′ + γweqw′′ + e∗31

hv
2
Sp
hp
φa(x)

Mw = −αHu′ + γweqβ ′ + (EI)eqw′′ − e∗31H
Sp
hp
φa(x)

(19)
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with

(ES)eq = (ES)mec + α
(EI)eq = (EI)mec + αH2

γweq = γw −
hv
2
Hα

(EI)βeq = (EI)β +
(
hv
2

)2
α

α =
e231∗
ε33∗

Sp. (20)

Two coupling terms appear in Eqs. (19) and (20). Theα term in γweq
represents the bending/rotation coupling term of electric origin.
The membrane/bending coupling term (−αH in N andMw) is due
to the condensation of the sensor electric potential.
Formulas (Eq. (19)) can be expressed in the following matrix

form:[ N
Mβ
Mw

]
= [C]

 u′β ′
w′′

+ e∗31 Sphp φa(x)[Va] (21)

with

[C] =


(ES)eq α

hv
2

−αH

α
hv
2

(EI)βeq γweq

−αH γweq (EI)eq

 and [Va] =

−1hv
2
−H

 . (22)

The [C] matrix is real and symmetric. It brings out the mem-
brane/bending coupling term due to the condensation of the elec-
trostatic equation in the sensor electric potential.

2.5. Accounting for electrode effect

We consider now a practical case which supposes that two
electrodes are bonded on the upper and lower piezoelectric
layers. These electrodes lead to an additional equipotentiality
boundary condition. Considering as formerly that there is no
electric displacement in the piezoelectric sensor, and using the
equipotentiality condition, one gets a new system of equations:∫ L

0
D3(zs)dx =

∫ L

0

(
e∗31 ∗ ε1s(zs)− ε

∗

33 ∗
φs(x)
hp

)
dx = 0

∂φs(x)
∂x
= 0.

(23)

The sensor potential φs(x) is obtained here as a mean of the
kinematic variables:

φs =
e∗31
ε∗33
hp

∫ L

0

(
u′ +

hv
2
β ′ − Hw′′

)
dx. (24)

Considering the relation (Eq. (24)), one eliminates the sensor
electric potential in Eq. (15). This leads to a modified constitutive
law:

N = (ES)mecu′ + α
∫ L

0

(
u′ +

hv
2
β ′ − Hw′′

)
dx− e∗31

Sp
hp
φa

Mβ = α
hv
2

∫ L

0

(
u′ +

hv
2
β ′ − Hw′′

)
dx+ (EI)ββ ′

+ γww
′′
+ e∗31

hv
2
Sp
hp
φa

Mw = −αH
∫ L

0

(
u′ +

hv
2
β ′ − Hw′′

)
dx+ γwβ ′

+ (EI)mecw′′ − e∗31H
Sp
hp
φa.

(25)
4

2.6. Accounting for feedback control

We will consider two different feedback control laws. The first
one is a direct proportional control law:

φa(x) = Gdφs(x) (26)

where Gd is the direct control gain value. Using this control law
leads to the following form for the constitutive law:[ N
Mβ
Mw

]
= ([C] + g[Va].[Vs]t)

 u′β ′
w′′

 (27)

with

[Vs] =

 1hv
2
−H

 and g = Gdα. (28)

The second feedback law is a negative velocity feedback control
law:

φa(x) = −Gv ˙φs(x) (29)

where Gv is the velocity control gain value. Considering (Eq. (18)),
the feedback control law leads to the following form for the
constitutive law (here g = Gvα):[ N
Mβ
Mw

]
= [C]

 u′β ′
w′′

− g[Va].[Vs]t
 u̇′β̇ ′
ẇ′′

 . (30)

Finally, equivalent beam constitutive models (Eqs. (27) and (30))
are derived, that account first for an analytical solution of the
electric problem in the sensor layer and then for the control law
in the actuator layer. The first equation (Eq. (21)) is a sort of
elastic law, but without any symmetry of the matrix since Va
is different from Vs. This lack of symmetry is due to the non-
conservative character of the control law (Eq. (26)). Eq. (30) is
similar to a Kelvin viscoelasticity law. Nevertheless, the damping
matrix g[Va][Vs]t does not have a definite sign. As an outcome, the
dynamical problem may be not well posed as in [33]. The latter
consequence does not constitute a shortcoming for law frequency
analysis.
Moreover, if one considers the practical case with an electrode

effect one gets a similar expression for the proportional control
law:[ N
Mβ
Mw

]
= [Celastic]

 u′β ′
w′′

+ α[Vequi] ∫ L

0

(
u′ +

hv
2
β ′ − Hw′′

)
dx

(31)

where

[Celastic] =

[
(ES)eq 0 0
0 (EI)β γw
0 γw (EI)mec

]

and [Vequi] =

[ 1− Gd
1+ Gd
−1− Gd

]
(32)

and for the velocity feedback control law[ N
Mβ
Mw

]
= [Celastic]

 u′β ′
w′′

+ [A] ∫ L

0

(
u′ +

hv
2
β ′ − Hw′′

)
dx

+ [Γ ]
∫ L

0

(
u̇′ +

hv
2
β̇ ′ − Hẇ′′

)
dx (33)



with

[A] = α

[ 1
1
−1

]
and [Γ ] = αGv

[
−1
1
−1

]
. (34)

3. An analytical analyses of damping properties

In order to define the damping properties of the sandwich beam
we consider free harmonic vibrations. The unknowns u, w, β , N ,
Mβ , Mw , and T are assumed in harmonic form (ω is the frequency
and can be complex):

u = ueiωt , w = weiωt , β = βeiωt

N = Neiωt , Mw = Mweiωt , Mβ = Mβeiωt ,

T = Teiωt .

(35)

In this case, the viscoelastic material constitutive equation can be
defined by a complex Young’s modulus Ev(ω), that is frequency
dependent. So, the shear force T is written in the following form:

T = Gv(ω)Sv(w′ + β) (36)

where Gv(ω) = Ev(ω)
2(1+νv)

is the complex shear modulus, which
depends onω. Themodal problem,which is defined from (Eq. (13)),
becomes∫ L

0

[
N Mβ Mw

] δu′δβ ′
δw′′

+ T (δβ + δw′)
− (ρS)eqω2(uδu+ wδw)dx = 0 ∀δu, δw, δβ.

(37)

The modal loss factor η and the frequency� can be obtained in
a classical way [38]:

ω2 = �2(1+ iη). (38)

To get an analytical solution, a simply supported beam is
considered (N = 0,w = 0,Mw = 0,Mβ = 0 at the extremities). In
this case the closed forms of the modes are

w = W sin(kx) β = B cos(kx) u = U cos(kx)

k =
nπ
L

(39)

whereW , B, and U are the complex amplitudes and k is the mode
number (n = 1, 2, . . .).

3.1. Analysis with the direct proportional control feedback

If one considers the direct proportional control law (Eq. (26)),
the constitutive law (Eq. (21)) becomes[ N
Mβ
Mw

]
=
(
[C] + g[Va].[Vs]t

) [ U
B
kW

]
(−k sin(kx)). (40)

3.1.1. Condensation of the axial displacement u and the rotation β
As is usual, the axial inertia effect is neglected in this analysis,

allowing us to reduce the number of generalized displacements
(u, β,w) to one w. From the virtual work principle, after
integrating by parts Eq. (37), themechanical conservation laws are
derived as{
M ′β − T = 0, (a)
M ′′w − T

′
− ω2w(ρS)eqẅ = 0. (b)

(41)
By inserting Eqs. (15) and (36) into Eqs. (41)(a) and (41)(b), the
following equations are obtained in which the unknowns are
reduced to U , B, andW .

[(ES)eq − g]U +
hv
2
(α − g)B = H(α − g)kW (a)

−
hv
2
(α + g)k2U −

{[
(EI)βeq + g

(
hv
2

)2]
k2 + Gv(ω)Sv

}
× B =

[
Gv(ω)Sv +

(
γweq − g

hv
2
H
)
k2
]
kW . (b)

(42)

From Eq. (42), the amplitudes U , B, and W can be expressed only
in terms ofW :[ U
B
kW

]
= [Rmode] kW (43)

with

[Rmode] =

[Umode
Bmode
1

]
(44)

where

Umode

=
2 Hhv

{[
(EI)βeq + g( hv2 )

2
]
k2 + Gv(ω)Sv

}
+ Gv(ω)Sv +

(
γweq − g hv2 H

)
k2

(ES)eq−g
hv
2 (α−g)

{[
(EI)βeq + g( hv2 )

2
]
k2 + Gv(ω)Sv

}
−
hv
2 (α + g)k

2

Bmode

=

Gv(ω)Sv +
[
γweq +

hv
2 H

(
α2−g2

(ES)eq−g
− g

)]
k2

−Gv(ω)Sv +
[( hv
2

)2 ( α2−g2
(ES)eq−g

− g
)
− (EI)βeq

]
k2
.

(45)

Since the shearmodulusGv(ω) appears in its expression, [Rmode]
is complex and depends on ω.

3.1.2. Complex eigenfrequency
To derive the eigenfrequency, the variational Eq. (37) is used, in

conjunctionwith the condensation ofu andβ . The following virtual
displacements are considered:

δu = u = U cos(kx), δw = w = W sin(kx),

δβ = β = B cos(kx) (46)

where X is the conjugate complex of X .
So, introducing Eqs. (43), (44), (36) and (46) into Eq. (37)

provides the following expression:

ω2 =
k4[Rmode]t

(
[C] + g[Va].[Vs]t

)
[Rmode] + k2SvGv(ω)|Bmode + 1|2

(ρS)eq
. (47)

3.1.3. Approximation of the complex frequency
The formula (Eq. (47)) does not provide an explicit expression

of the eigenfrequency since ω depends on the mode itself and the
shear modulus. For simplification and clarity, we assume that the
shear modulus of the central layer is constant. These assumptions,
often used in the open literature, are not realistic, but could be used
to derive the first estimation of the eigenfrequency.
Another approximation can be performed when neglecting the

influence of the material damping ηv in the vector [Rmode], i.e. by
replacing Gv(ω) by GvR in Eqs. (45) and (44) and then the mode is
real and one gets the following expression of the eigenfrequency
and of the loss factor:
�2 =

k4[Rmode]t
(
[C] + g[Va].[Vs]t

)
[Rmode] + k2SvGvR|Bmode + 1|2

(ρS)eq
η

ηv
=
k2SvGRv(1+ Bmode)

2

�2(ρS)eq
.

(48)
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Notice here that the modal damping is proportional to the
viscoelastic damping and that the control gain g can modify this
damping through the mode (Bmode) and the pulsation�.

3.1.4. Accounting for electrode effect
If one considers the electrode effectwith the direct proportional

control law (Eq. (26)), the constitutive law (Eq. (31)) becomes this
time[ N
Mβ
Mw

]
= [Celastic]

[ U
B
kW

]
(−k sin(kx))+ α[Vequi]Φ (49)

with

Φ =

(
U +

hv
2
B− HkW

)
((−1)n − 1). (50)

The condensation of the axial displacement u and the rotationβ
lead this time to a new form of the amplitude U , B, andW defined
by Eqs. (43) and (44) and with Umode, Bmode defined as
Umode =

bf − ec
ea− bd

Bmode =
af − dc
bd− ae

(51)

with

a =
1
2
Lk2(ES)mec +

(1− Gc)α((−1)n − 1)2

L

b =
hv(1− Gc)α((−1)n − 1)2

2L

c =
−H(1− Gc)α((−1)n − 1)2

L

d =
hv(1+ Gc)α((−1)n − 1)2

2L

e =
1
2
L(k2(EI)β + GrSv)+

h2v(1+ Gc)α((−1)
n
− 1)2

4L

f =
1
2
L(k2γw + GrSv)−

Hhv(1+ Gc)α((−1)n − 1)2

2L
.

(52)

Using a similar procedure as in Section 3.1.2, one can derive
the eigenfrequency by introducing Eqs. (43), (44), (36), (51) and
(46) into Eq. (37). One gets the following expression:

ω2 =
2k2 (gUmode + hBmode + i)

(ρS)eqL
(53)

where
g =
−H(1+ Gc)α((−1)n − 1)2

L

h =
1
2
L(k2γw + GrSv)−

Hhv(1+ Gc)α((−1)n − 1)2

2L

i =
1
2
L(k2(EI)mec + GrSv)+

H2(1+ Gc)α((−1)n − 1)2

L
.

(54)

3.2. Analysis with velocity feedback control

Considering the velocity derivative control law (Eq. (29)), the
constitutive law (Eq. (30)) becomes[ N
Mβ
Mw

]
=
(
[C] − iωg[Va].[Vs]t

) [ U
B
kW

]
(−k sin(kx)). (55)
6

3.2.1. Condensation of the axial displacement u and the rotation β
Considering the formerly defined constitutive law, and using a

similar procedure as defined in Section 3.1.1, one gets the new form
of amplitude U , B, andW defined by Eq. (44), (43) and with Umode,
Bmode defined by



Umode

=
2 Hhv

{[
(EI)βeq − iωg( hv2 )

2
]
k2 + Gv(ω)Sv

}
+ Gv(ω)Sv +

(
γweq + iωg hv2 H

)
k2

2 (ES)eqhvα

{[
(EI)βeq − iωg( hv2 )

2
]
k2 + Gv(ω)Sv

}
−
hv
2 (α − iωg)k

2

Bmode =
Gv(ω)Sv +

[
γweq +

hv
2 H

(
(α2−iωαg)
(ES)eq

+ iωg
)]
k2

−Gv(ω)Sv +
[( hv

2

)2 ( (α2−iωαg)
(ES)eq

+ iωg
)
− (EI)βeq

]
k2
.

(56)

3.2.2. Complex eigenfrequency
To derive the eigenfrequency, a similar procedure as defined in

Section 3.1.2 is used. So, introducing Eqs. (43), (44) and (46) into
Eq. (37), and replacing [N,Mβ ,Mw] by Eq. (55) and T by Eq. (36),
provides the following expression of ω. Umode, Bmode are defined by
Eq. (56):

ω2 =
k4[Rmode]t

(
[C] − iωg[Va].[Vs]t

)
[Rmode] + k2SvGv(ω)|Bmode + 1|2

(ρS)eq
. (57)

From this equation, three major structural effects are noticeable:

- The elastic effect is defined essentially by the term ‘‘[Rmode]t

([C]) [Rmode]’’
- The passive damping introduced by the viscoelastic layer is
expressed by the imaginary part of ‘‘SvGv(ω)|Bmode + 1|2’’.
- The active damping is expressed by the term ‘‘[Rmode]t(ωg[Va]
.[Vs]t)[Rmode]’’.

For small values of passive and active damping, the total
damping is the sum of active and passive damping.

3.2.3. Accounting for the electrode effect
If one considers the electrode effect with the velocity feedback

control law (Eq. (29)), the constitutive law (Eq. (33)) becomes this
time[ N
Mβ
Mw

]
= [Celastique]

[ U
B
kW

]
(−k sin(kx))+ [A]Φ + [Γ ] Φ̇ (58)

where [A] and [Γ ] are defined by Eq. (34) andΦ by Eq. (50).
The condensation of the axial displacement u and the rotation

β lead to a new form of the amplitude U , B, and W defined by
Eqs. (43), (44) and (51) with this time in the last equation

a =
1
2
Lk2(ES)mec +

(1+ iωGv)α((−1)n − 1)2

L

b =
hv(1+ iωGv)α((−1)n − 1)2

2L

c =
−H(1+ iωGv)α((−1)n − 1)2

L

d =
hv(1− iωGv)α((−1)n − 1)2

2L

e =
1
2
L(k2(EI)β + GrSv)+

h2v(1− iωGv)α((−1)
n
− 1)2

4L

f =
1
2
L(k2γw + GrSv)−

Hhv(1− iωGv)α((−1)n − 1)2

2L
.

(59)



Using a similar procedure as in Sections 3.1.2 and 3.1.4, one can
derive the eigenfrequency. Introducing Eqs. (43), (44), (36), (51)
and (46) into Eq. (37) provides the following expression:

ω2 =
2k2 (gUmode + hBmode + i)

(ρS)eqL
(60)

where
g =
−H(1− iωGv)α((−1)n − 1)2

L

h =
1
2
L(k2γw + GrSv)−

Hhv(1− iωGv)α((−1)n − 1)2

2L

i =
1
2
L(k2(EI)mec + GrSv)+

H2(1− iωGv)α((−1)n − 1)2

L
.

(61)

4. Results and discussion

For the numerical studies, the geometrical data of the sandwich
beam are fixed as follows: h = 10 mm, L = 50 h, he = 6 h15 ,
hv = hs = ha = h

15 .
The densities of materials are, for the elastic layers, ρe =

2040 kg/m3, for the viscoelastic core ρv = 1200 kg/m3, and for
the piezoelectric layers ρp = 7500 kg/m3.
The elastic shear modulus is fixed to Ge = 25 GPa. As for the

material properties of the viscoelastic layer, several values will
be considered. The constitutive equations of the PZT4 orthotropic
piezoelectric layers may be summarized as followed in classical
matrix form:

σ1
σ2
σ3
σ4
σ5
σ6
D1
D2
D3



=



C11 C12 C13 0 0 0 0 0 −e31
C12 C22 C23 0 0 0 0 0 −e32
C13 C23 C33 0 0 0 0 0 −e33
0 0 0 C44 0 0 0 −e24 0
0 0 0 0 C55 0 −e15 0 0
0 0 0 0 0 C66 0 0 0
0 0 0 0 e15 0 ε11 0 0
0 0 0 e24 0 0 0 ε22 0
e31 e32 e33 0 0 0 0 0 ε33



×



ε1
ε2
ε3
γ23
γ13
γ12
E1
E2
E3


(62)

where

C11 = C22 = 139.0 GPa; C33 = 115.3 GPa
C13 = C23 = 74.3 GPa; C12 = 77.8 GPa
C44 = C55 = 25.6 GPa; C66 = 30.6 GPa
e31 = e32 = −5.21 C/m2; e33 = 15.1 C/m2;
e15 = e24 = 12.7 C/m2

ε11 = ε22 = 1.31e−8 F/m; ε33 = 1.15e−8 F/m.

(63)
4.1. Numerical validation of the model

In order to validate the different assumptions of the present
analyticalmodel (Section 2), the direct frequency responsemethod
with a 2D finite element (FE) in ABAQUS Standard Code is applied
to obtain the first modal properties (flexural frequencies and
associated damping ratios) of the sandwich beam subjected to
a direct proportional feedback control law. Note that this kind
of control is the only one available in the ABAQUS code. The
sandwich, Fig. 2, is composed of 240 8-node plane strain elements
with a reduced integration. A steady-state linear dynamic analysis
procedure ABAQUS [34] to monitor the linear response of beam
structure subjected to continuous harmonic excitation has been
used.
Table 1 presents the values of frequency and loss factor obtained

from ABAQUS FE code and those from the present model using
the complex [Rmode] (Eq. (47)) for different values of g (gain) and
Gv (shear modulus of the core). In all presented situations, the
analytical results (Eq. (47)) are very close to the numerical ones.

4.2. Validity range of approximated frequency

In order to analyse the impact of considering [Rmode] real
(Eq. (48)) or complex (Eq. (47)) we compare the first eigenvalue,
using the software mathematic package Maple. The effects of
different viscoelastic cores (shear moduli) as well as different
direct control gains were analyzed.

4.2.1. Analysis with no control effect (g = 0)
In this part, the direct piezoelectric control gain is fixed (g = 0).

Results with three different viscoelastic shear modulus GRv and two
different viscoelastic material damping (ηv = 0.5 and ηv = 1 in
Table 3) are considered.
It appears clearly that ignoring the complex part of [Rmode]

leads to unsatisfactory results in some identified cases. The layer
discrepancies are obtained in the case of a relatively stiff core
(GRv/Ge = 10

−3) or of a large material damping (ηv = 1.0). These
differences concern the loss factor, while the eigenfrequencies
are not very sensitive to the assumption of a real mode. This
assumption of a real mode leads to a good approximation if
GRv/Ge ≤ 10

−4, ηv ≤ 0.5.

4.2.2. Analysis with various direct control gains
In this part, the viscoelastic shear modulus (Gv = 2.5 MPa) and

the elastic shear modulus (Ge = 25 GPa) are fixed. This value of
the viscoelastic shear modulus is more or less representative of
real materials. For the tested values of the material loss factors
(ηv = 0.1, 0.5, 1), the assumption of a real mode [Rmode] induces
at most an error less than 2%, in the range −20 ≤ g ≤ 50. Out of
this range, the system tends to be unstable.
From Fig. 4, one observes that the frequency � varies more

or less linearly, with respect to the control gain, in the range
−10 ≤ g ≤ 40. Indeed, this control law looks like an elastic law.
It modifies mainly the stiffness of the structure and therefore the
eigenfrequencies. The modal loss factors η depend on the control
only via the changes in the frequencies, and its variation becomes
significant only for large values of the control gain g , Fig. 5.
In a second part one considers the equipotentiality condition

imposed by an electrode. One can see for the tested values of the
material loss factors (ηv = 0.1, 0.5, 1) that the effect of the active
control is weak. Indeed if one considers value of the control gain
g in the range [−1, 1] the modal properties with and without
electrode are similar (Tables 1 and 2). Then one consider more
important values for the control gain g and we test for a fixed
value from the loss factor (ηv = 0.5) the importance of taking into
account the equipotentiality. In Fig. 3 one can clearly see that if |g|
is important the equipotentiality condition leads to smaller value
of the eigenfrequency.
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Fig. 2. Dimensions of the five-layer sandwich structure.
Fig. 3. Variation of the frequency with and without equipotentiality condition
η = 0.5 direct proportional control g varying. Gv = 2.5 MPa, Ge = 25 GPa.

Fig. 4. First eigenfrequency� as a function of the direct proportional control gain
g . Gv = 2.5 MPa, Ge = 25 GPa.

4.2.3. Analysis with various velocity feedback control gains
In this part, the same moduli (Gv = 2.5 MPa and Ge =

25 GPa) as in 4.2.2 are considered. From Figs. 6 and 7, one sees that
this control law has a strong influence on the structural damping
properties, but not on the eigenfrequencies. In the considered
range 0 ≤ g ≤ 0.025, the loss factor increases linearly with the
control gain.Moreover, the curves of Fig. 7 aremore or less parallel.
8

Table 1
Comparison of the beam model (analytical) with a 2D finite element analysis
(numerical)

g Gv (MPa) f (Hz) η

Analytical Numerical Analytical Numerical

2.5 67.2 67.2 0.171 0.171
1 25 86.4 86.5 0.038 0.038

2500 90.2 90.3 0.00043 0.00042
2.5 66.2 66.1 0.169 0.169

0 25 84.8 84.7 0.038 0.039
2500 88.2 88.1 0.00042 0.00045
2.5 65.1 65 0.167 0.168

−1 25 82.9 82.9 0.037 0.037
2500 86.2 86.2 0.00041 0.00043

ηv = 0.5. Direct proportional control law.

Table 2
Comparison of the beam model (analytical) with a 2D finite element analysis
(numerical)

g Gv (MPa) f (Hz) η

Analytical Numerical Analytical Numerical

2.5 66.9 66.8 0.170 0.176
1 25 85.9 85.9 0.038 0.038

2500 89.5 89.6 0.00043 0.00042
2.5 66.0 66.0 0.169 0.172

0 25 84.4 84.5 0.037 0.037
2500 87.9 87.8 0.00042 0.00045
2.5 65.1 65.1 0.167 0.168

−1 25 83.0 83.0 0.037 0.037
2500 86.3 86.2 0.00041 0.00042

ηv = 0.5. Direct proportional control law and equipotentiality condition.

This means that the contributions of active and passive damping
are nearly additive.
In a second part one considers the equipotentiality condition

imposed by an electrode.We tested different values of thematerial
loss factors (ηv = 0.1, 0.5, 1) andof the gain control g butwe could
not observe any stability range.

5. Conclusion

In this paper, simple models and analytical modal solutions for
piezoelectric/elastic/viscoelastic/elastic/piezoelectric beams have
been presented. Direct proportional feedback as well as a velocity
feedback control law have been considered, and constitutive
equations of the whole controlled sandwich beam have been
established. The eigenfrequencies and the loss factors have been
defined for this hybrid damped system. As expected, the direct
control law modifies the stiffness and the frequencies while the
second control law influences mainly the damping properties of
the system.



Table 3
Purely passive damping (g = 0)

ηv GRv (MPa) f (Hz) with f (Hz) with η with η with
[Rmode] real [Rmode] complex (%) [Rmode] real [Rmode] complex (%)

0.25 44.0 43.9 (0.2) 0.108 0.107 (0.9)
0.5 2.5 65.0 66.1 (1.7) 0.167 0.169 (1.2)

25 84.1 84.8 (0.8) 0.032 0.038 (15.8)
0.25 43.9 44.2 (0.7) 0.214 0.212 (0.9)

1.0 2.5 65.6 69.1 (5.1) 0.26 0.273 (4.8)
25 84.8 85.9 (1.3) 0.028 0.049 (42.9)

The influence of the real mode assumption on frequency and modal damping. First vibration mode.
Fig. 5. The damping η of the first mode as a function of the direct proportional
control gain g . Gv = 2.5 MPa, Ge = 25 GPa.

Fig. 6. First eigenfrequency� as a function of the velocity feedback control gain g .
Gv = 2.5 MPa, Ge = 25 GPa.
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