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H oo Delay-Scheduled Control of Linear
Systems With Time-Varying Delays

Corentin Briat, Olivier Sename, and Jean-Francois Lafay

Abstract—This paper deals with H .. delay-scheduled control of linear
systems with time-varying delays. First, a new model transformation is
given which allows to provide a unified approach to stability analysis and
state-feedback control synthesis for time-delay systems represented in
“linear fractional transformation (LFT)” form. A new type of controller
is then synthesized, where the state-feedback is scheduled by the value of
the delay (delay-scheduled controllers). The results are provided in terms
of linear matrix inequalities (LMIs) which are known to be efficiently
solvable.

Index Terms—Linear fractional transformation (LFT), linear parameter
varying (LPV) control, robust control, time-delay systems (TDS).

I. INTRODUCTION

Since several years, many papers have been devoted to the study
of time-delay systems (TDS) with constant delays (see for in-
stance [1]-[3] and references therein). More recently, systems with
time-varying delays arising for instance in network controlled systems,
have attracted more and more attention (See [5]-[7] and references
therein). Indeed, lags in communication channels may destabilize such
systems, or at least, deteriorate performance. Different approaches
devoted to the study of time-delay systems stability have been de-
veloped in the literature. Let us mention, among others, the use of
Lyapunov—Krasovskii functionals (or Lyapunov—Razumikhin func-
tions) [1], [4], [7], robust analysis [7], [8], well-posedness of feedback
systems [9], spectral approaches [7], [8] etc.

The approaches developed in this paper are mainly based on the no-
tions of robust stability, robust and LPV control of linear dynamical
systems. Some new results for the stability and control of such systems
are provided and suggest that the robust control approach can be used
to derive linear parameter varying (LPV) controllers for LTI time-delay
systems.

In the last two decades, LPV systems have been of growing interest
since they allow to approximate nonlinear and LTV systems [10]-[16].
Three main approaches are usually considered in the study and control
of LPV systems involving LMIs: the polytopic approach [17], the use of
parameter-dependent LMIs [18] or the linear fractional transformation
(LFT) approach [10]-[12].

While both first approaches have been recently extended to time-
delay systems [19]-[22], the latter has been very few used in the con-
text of time-delay systems and especially for bounded time-varying
delays. This is due to the fact that the LFT formulation for LPV/un-
certain time-delay systems is difficult to apply and may result in
untractable conditions. Indeed, by applying classical robust control
theorems (such as projection lemma) on bounded-real lemmas ob-
tained from Lyapunov—Krasovskii functionals yields, in many cases,
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nonlinear matrix inequalities (due to the supplementary decision
matrices) whose solving is known to be an NP-hard problem.

This paper proposes a new approach to study delay-dependent sta-
bility and control of LTI time-delay systems, within a unified frame-
work involving robust control theory for LPV systems. The contribu-
tions of the paper are the following:

* First, a new model transformation for TDS with time-varying de-
lays is introduced which turns a time-delay system into an uncer-
tain LPV system in “LFT” form. Using this formulation, a stability
test based on the scaled bounded real lemma allows to conclude
on asymptotic stability of the time-delay system. The interest of
such a reformulation resides in the fact that many classical robust
control tools are available and can be used in order to derive suf-
ficient conditions for the controller existence.

* A new kind of controller, which has been referred to as delay-
scheduled state-feedback controller, is developed when an approx-
imate value of the delay is known or estimated. The error on the
delay knowledge value is taken into account to ensure the robust-
ness of the closed-loop system with respect to this uncertainty.

The interest and advantage of the provided methodology rely on the
fact that, for the first time, a unique LFT formulation to design dif-
ferent types of controllers for different classes of time-delay systems
is proposed. Even if the present paper is devoted to (delay-scheduled)
state-feedback controllers only, the approach can be easily extended to
the case of (delay-scheduled) dynamic output feedback [11]. Moreover,
even if only the single-delay problem is addressed, the methodology
is also valid in the multiple-delay case and for LPV TDS. Finally, this
method describes a new original way to control time-delay systems and
the authors stress that this approach may be of great interest for systems
with large variation of the delay since a controller gain adaptation will
be provided accordingly.

The paper is structured as follows, Section II gives the paper ob-
jectives and preliminary results. Section III introduces the new model
transformation. In Section IV the new LPV based control method for
time-delay systems is exposed. Finally Section V concludes on the
paper and gives future works.

Along the paper, the notation is standard and Ker[A] stands for a
basis of the null-space of A.

II. PAPER OBJECTIVES AND PRELIMINARY RESULTS

Let us consider in this section LPV/uncertain linear systems repre-
sented in “LFT” form

0 A By B[ )
Z0 (t) = O(] D()() Dm wo (t)
z1(t) Cy Dy D wi (t)
B,
+ | Dou | u(t)
Dy,
wo(t) = O(z0()) (€]

where © € R, u € R™, w1 € R", z; € R® are respectively the state,
the control input, the exogenous inputs and the controlled outputs. The
signals wo/zo are ‘virtual’ signals describing the interconnection of
the LTI system and ©.

In this work, © will contain both linear operators and multiplicative
parameters. In consequence, it is chosen to have the following diagonal
structure:

_ [diag;[0i(t)1,,] 0

©: 0 diag,[£:( )L,

(@)

0018-9286/$26.00 © 2009 IEEE
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where p; and o; are respectively the number of occurrences of the ¢th
parameter 6; and operator £;( - ). The parameters 6,(t) are assumed
to belong to the interval [—1, 1] and the linear operators to have an
‘H oo norm (or £s-induced norm) less than 1. With such a formulation
it is possible to consider both polynomial and rational dependence on
parameters and operators.

The upcoming results in this section are developed for LPV systems
only (without time-delay) and will be used in Section III. Let us con-
sider now the general uncertain LPV system

{jc(t)] {A B B,,,] ”“((’;))
=| - = = w
2(t) C D D, alt)
wolt) = O(=0(1),)
wi(t) = A(z1(t),t) 3)
with z = col(zo, 21, 23), w = col(wo, wy,ws) and
Doy Do1 Dos 1:3 = [Bq, Blﬂ BZ], "
D= Do Dy1 D C = [Cé C‘ll 021] @)
D3y D21 Do D, = [DOTu DT, D§u] !

where wo /z0, w1 /21 and w3/ z3 are respectively the LPV channel, the
uncertain channel and the performance channel which has to be opti-
mized. © are scheduling parameters/operators defined in (2) and A the
uncertainties obeying to
A= {diag! A [|Ailjlee <1, i=1,...,n4}. 5)
Definition 2.1: The aim of the paper is to design a gain-scheduled
state-feedback (GSSF) control law of the form

{;1((3))] =K {1;6(2)] we(t) = f(h(t))z(t) (©6)

where f(-) is a scheduling function to be defined/determined, w./z.
the controller scheduling channel, such that the closed-loop LPV time-
delay system (3) is asymptotically stable and ||z5||z, < ~||ws||z,.

The following theorem gives a new sufficient condition for the ex-
istence of a gain-scheduling state-feedback controller (similar to the
sufficient condition for the existence of a dynamic output feedback pro-
vided in [11]).

Theorem 2.1: Consider the LPV system (3)—(4) of order n. If there
exist symmetric positive definite matrices X, L3, Js and a scalary > 0
such that

kT (Nl- i TiTMl-Ti) Ki<0, i=1,2

{LI“‘ JIJ >0 Ly Js € Lo @)
with
Ny = —diag(Ls, In,, v1w,)
AX +xA4T xcC7
|: * -V }
Vi = diag(Js, In,,vI:;)
=D K,=I1T,=[B" D"
My = diag(Js, In,, 7I.,)
Ks = Ker [BZ DZL]

ZVQ =

and Le is the set of positive definite matrices commuting with ©. Then
there exists a gain-scheduled state-feedback of the form (6) which sta-
bilizes (3)—(4) and ensures an Ho performance index lower than =,
according to Definition 2.1.

Proof: A sketch of a proof is presented in Appendix A. |
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Since the conditions of theorem 2.1 are stabilizability conditions
which do not depend explicitly on the controller matrix, it is then com-
puted separately. The computing technique is described in [11] and re-
called in Appendix B for simplicity.

III. NEW MODEL TRANSFORMATION FOR DELAY-DEPENDENT
STABILITY ANALYSIS

This section introduces a new model transformation which turns
a time-delay system with time-varying delays into an uncertain LPV
system represented in an “LFT” form. This transformation allows to
use classical robust stability analysis and control synthesis on the trans-
formed system, in order to derive a delay-dependent stability test ob-
tained from the scaled-bounded real lemma. Similar approaches can
be found for instance in [23] where the maximal value of the delay ap-
pears explicitly in the comparison model. In this paper, the comparison
model is an uncertain parameter varying system which is then studied
in the robust/LPV framework. This is a real novelty in the analysis and
control of time-delay systems with time-varying delays.

A. Model Transformation

Let us consider the LTI time delay system

#(t) = Ax(t) + Apx(t — h(t)) + Bws(t) + Byu(t)
z3(t) = Ca(t) + Cra(t — h(t)) + Dws(t) + D3y u(t)
x(n) = o), 1 € [—hu,0] ®)

where x, ws, 23, u and ¢ are respectively the state, the exogenous in-
puts, the controlled outputs, the control input and the functional initial
condition. The delay h(#) is assumed to belong to the set

H:={h(t) € C' (R, [m, ha1]),0 < Iy < hpg < 00} (9)

where C' (.J1,.J2) is the set of differentiable functions mapping .J; to
Js. Let us consider next the operator
1

Dp s w(t) — (h(n) + hur — hm)flw(n)d//
Jt—h(t)

(10)

where h € H.
Lemma 3.1: The operator D;, enjoys the following properties:
1) Dp(-) is linear;
2) Dp(-) has an L3-induced norm less than 1.
Proof: The proof is similar to the one given in [7]. |
By the mean of this model transformation and the use of the scaled
bounded real lemma, it is possible to provide the first main result of the
paper.
Proposition 3.1: Assume v = 0, the LPV delay free system (11) is
a comparison system for the LTI time-delay system (8)

2(t) = (A4 An)z(t) — Apwi(t) + Bws(t)
21(t) = a(t) (A + Ap)x(t) — a(t) Apwi (t)
+ «a(t)Bws(t)
z3(t) = (C' + Cr)2(t) — Crwi(t) + Dws(t)
w(t) = D1 ()
xz(n) =v(n), n € [=2hu, 0]

alt) = h(t)+ ha — hm (11)

where 1) (#) is the new functional initial condition which coincides with
¢(8) over [—har, 0].

Proof: First note that the dynamical equation of system (8) can
be rewritten as

#(t) = (A4 Ap)a(t) — Apwi(t) + Bws(t) (12)

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on June 17,2010 at 06:54:32 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 9, SEPTEMBER 2009

where w1 = x — x5, Then defining

z1(t) = a(®[(A + Ap)a(t) — Apwi(t) + Bws(t))
= a(t)z(t)

with a(t) = h(t) + har — hy we have

ot t
/ a ()2 (r)dr :/ #(r)dr
t—h(t) t—h(t)
=a(t) — a(t — h(t))

= wi (t). (13)
Thus we obtain the first and second line of system (11). The third line
is obtained by the same way. |

Remark 3.1: Since (11) requires an initial functional condition on
[—2hu1, 0] then, under some particular conditions, unstable additional
dynamics may be created, making the comparison system unstable even
if the original one is stable. This will result in conservatism and indi-
cates that the stability of system (11) is only a sufficient condition for
the stability of (8); this fact is usual when model transformations are
used. However as emphasized in [7] the study of additional dynamics is
not easy in the time-varying delay case and remains an open problem.

The interest of the new model transformation is to turn the LTI time-
delay system (8) into an uncertain linear parameter varying system (11)
where the operator Dy, ( - ) plays the role of a norm-bounded uncer-
tainty, and the delay h(#) the role of a time-varying parameter through
the term «(¢). Then LPV/robust control tools can be used in order to
study such system.

B. Delay-Dependent Stability Test

The comparison model (11) is used in this section to develop a delay-
dependent stability test with guaranteed £» performances. This test is
based on the application of the scaled-bounded real lemma [11] and is
useful to obtain stabilization results.

Theorem 3.1 (Delay Dependent Scaled-Bounded Real Lemma): The
system (11) with » € H is asymptotically stable with an £, perfor-
mance index on channel w3 — z3 lower than v if there exist symmetric
positive definite matrices X, X2 and a positive scalar v such that the
LMIs

ATX,+Xx,A -XxX,4, XuB «ATX, CT
* -X, 0 —wATX, —Cf
* * —~I, o;B"X, DT | <0
* * * -X5 0
* * * * —~1.
(14)

hold fori = 1,2 with &ty = has, a2 = 2has — hi, A = A+ A, and
C =C+Ch.

Proof: The proof is given in Appendix C. ]

The latter theorem concludes on the stability of system (11) for a

delay taking values in the separated interval 0 U [R..,, has]. Indeed, if

the LMIs (14) are satisfied then the left-upper term is negative definite

and finally the system with zero delay is asymptotically stable.

IV. DELAY-SCHEDULED CONTROLLER SYNTHESIS

In this section, a new way to control linear time-delay systems of
the form (8) is provided under the assumption that an approximate
delay value is known. This approach differs radically from the common
state-feedback with delayed state which consists in adding to the instan-
taneous state-feedback, a supplementary term involving the delayed
state (e.g., u(t) = Kax(t) + Kpa(t — h(t))). The implementation
of such a control law is difficult since it is generally difficult to know
the exact value of the delay in real time, and the robustness analysis
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with respect to delay uncertainties is also not an easy task. Moreover,
since past states need to be stored in memory, then the controller with
memory is more expensive from a memory space point of view.

This motivates the introduction of the delay-scheduled controller
which is midway between the instantaneous state-feedback and the
state-feedback with delayed state. Indeed, while the delay-scheduled
state-feedback depends only on the instantaneous state, it also depends
on the delay h(t) in a scheduling fashion

u(t) = K(h(t))z(t). (15)

This method does not need any dynamical model of the delay nor its
exact value but only an approximative measurement. Indeed, since in
the comparison model (11) the delay is viewed as a parameter, then the
robust analysis with respect to delay uncertainties on the implemented
delay is brought back to a perturbation on the parameters, which is
simple to deal with. Hence, using this approach it is possible to ensure
the robust stability of the closed-loop system in presence of delay un-
certainties.

To design these controllers, the role of the model transformation de-
fined in Section III is crucial since it turns a linear time-delay system
into an uncertain LPV system (11). Due to the structure of this system
(finite-dimensional), it is possible to use available tools in analysis and
control of LPV systems (and hence theorem 2.1).

A. Controller Existence

The time-delay is assumed to belong to the set H defined in (9). In
order to apply the scaled-small gain theorem, the first step is to nor-
malize the set of values of the parameters such that it coincides with
the closed unit ball. Note first that the system delay /(%) can be ex-
pressed as h(t) = hc(t) + he(t) where hc(t) is the measured delay
that will be used in the controller and k. (t) the bounded measurement
error satisfying |h. ()| < &.. Then denoting respectively / and &, the
mean value and the radius of the delay interval [h,,, has] defined as
h = (hp+har)/2 and 6, = has — h, the normalized delay parameter
hy (), which takes value in [— 1, 1], is defined by he(t) = & hn () +h.

The following proposition provides a comparison model for (8)
where the above defined notations are used instead of “absolute”
notations used in (11). Indeed, a new comparison model is necessary
to derive controller existence conditions by taking into account the
delay uncertainty.

Proposition 4.1: The system (16) is a comparison system for (8) (a
control input v has been added)

16)

where z = col(zg, 21, 22, 23), w = col(wg, wy, wa, wy)

x—i = A4+ A4, Bw = [—Ah 0 Bg]
Cl=[A+ AL a(A4+4,) A+ 4, Cs+Csl"
D! =[B, aB, B. Ds,)" B.,=B,
0 —Ap 0 B3
D _ | &I —adn 6T ab;
Y710 —-A, 0 B
0 —Csn 0 Ds

with @ = has — hp, + 7o and where ws () and z3(#) are, respectively,
the exogenous inputs and controlled outputs.
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Proof: The proof consists in computing the generalized system
by substituting input/output signals wq/zo, w1 /z1,w2/z2 by their
explicit expression, in order to show that the computed gener-
alized system finally coincides with system (8). First, note that
R(t) = he(t) + he(t), he(t) = Sphn(t) + b and let p(t) == i(t) =
zo(t) = z2(t). We have wo(t) = h,(t)z0(t) = h.(t)p(t) and
wa(t) = (he(t))/(6e)z2(t) = (he(t))/(6:)p(t). Then according to
(16)

z1(t) = ap(t) + bpwo(t) + bewa(t)
= (a4 6phn(t) 4+ he(t))p(t)
= (har — hm + h(1))p(t)

Finally as p(t) = @(t) we getwq () = Dp(21(t)) = z(t)—x(t—h(t))
which implies, from the state equation of Proposition 4.1

#(t) = Az(t) + Apx(t — h(t))
—|— Bgll)g (t) —|— Buu(t)
z3(t) = Csx(t) + Cspa(t — h(t))
+ Dssws(t) + Dy u(t) (17)
Since (17) has the same form as (8), this shows that if system (16) is
asymptotically stable then (17) and therefore (8) are hence asymptoti-
cally stable. |
Using Proposition 4.1 and Theorem 2.1 the second main result of the
paper, which provides the solution to the delay-scheduled state feed-
back design problem, can be given:
Lemma 4.1: Consider system (8). If there exist symmetric positive
definite matrices Z, L3, Js > 0 and a positive scalar v such that the
LMIs

K7 (N,; + T,TM,T,;) K, <0

Ly I
fori=1,2 { 13 JJ >0 (18)
hold with

N1 = —diag(Ls, I1, I, v1w,)
M, = diag(Ls, I, I, ' I.,)
L’v,] = diag(:Jg,Il,Iz,“y’IZS)
My = diag(Js, I1, Io, v~ ' Luy)

AT n ~T
N, = | P4 T4z ZC =D, Ki=1

- * -U; |’
T,=[B" D"], K,=|[B!

then there exists a stabilizing delay scheduled state-feedback according
to definition 2.1 with an H. performance index on channel w3 — z3
lower than ~.

Proof: The proof is a straightforward application of theorem 2.1
with system (16). |

B. Controller Computation

The controller can be constructed using the methodology of
Appendix Bwhere X = Z, A = A+ A;,B=1[0 —A;, 0 B3], B, =
B,,,Dgu = [Bu CLB", B‘u, DBU]T

A+ A,
a(A + Ah)
A4 Ay
C3 + Csn

C_-j:
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0 —Ap 0 B3

_ SpI —aAdp 6.1 aBs

D=
0 —Ay 0 Bs (19)
0 —Csp 0 Dss

where o = hyy — h + 71,71 = (hm + hM)/Q and 6, = hy — 71
Using the following lemma, the controller can be finally constructed:

Lemma 4.2 (Controller Construction): The controller construction
is obtained by applying Algorithm 1.1 where Y corresponds to the
matrix (24) in which the matrices defined above are substituted and
Z=X=P"

C. Example
Consider system

i(t) = {‘11 ﬂw(t}—i— Ll) :ﬂ:v(t—h(t))

+ {H w(t) + {H u(t)

(1) = {8 (1)] (1) + m u(t) 20)

with (R, hiar) = (0.1,0.3). When the delay value is exactly known,
we find an Heo closed-loop performance lower than v* = 4.9062.
Since a finite v has been found, this means that the closed loop system
can be stabilized by a delay-scheduled state-feedback controller. A
suitable controller is given by the expression

u(t) K ar(t)k ) K, Ku
ze(t) we(t) K= K K
we(t) = hy () 2c(F) t21 Ha2
Ky =[-30.1953 — 14.9936]
Ki» =[-0.3196 1.1417]
o _ [-5:2534 —2.7139

703303 01755

R —0.0330 0.1899
IXZQ = .

0.0617 —0.0289

V. CONCLUSION

A new model transformation allowing to turn an LTI time-delay
system with time-varying delays into an uncertain LPV system
in “LFT” form has been developed. From this reformulation, a
new delay-dependent stability test, based on the application of the
scaled-bounded real lemma, has been derived. The interest of such
formulation resides in the similarities with the bounded-real lemma
for finite dimensional systems which can be used with many robust
control tools.

The stability test is extended to address a new control synthesis
problem for time-delay systems. In this original approach, the con-
troller gains are scheduled by the current value of the delay and this
structure has motivated the name of “delay-scheduled controller” in
reference to gain-scheduled controllers arisings in the control of LPV
systems. A certain interest of the approach is the simple robustness
analysis with respect to uncertainty on the delay knowledge which
is actually a difficult problem when the delay is considered as an
operator. In the provided approach, the uncertainty is uniquely char-
acterized by a parameter variation and can be very easily handled due
to the similarities with robustness analysis with respect to uncertain
system matrices. Even if the results are presented for LTI systems with
single time-delay, it can be easily generalized to the LPV case with
multiple delays.

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on June 17,2010 at 06:54:32 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 9, SEPTEMBER 2009 2259

Further works will be devoted to the reduction of conservatism of the
approach by finding better model transformations and tighter bound on
the norm of the operators.

APPENDIX

A. Proof of Lemma 2.1

Consider the LPV system (3). The augmented system (see [11]) is
given by (21)—(23), shown at the bottom of the page.

The signals w. and z. represent the controller parameter-scheduled
channel. Let K be the state-feedback matrix, as defined in definition
2.1. Then computing the closed-loop system and substituting its ex-

by the substitution of the matrices of system (23) into (24). Permuting
lines and columns of matrix inequalities (26) yields

KT®'K, <0 KIUVEK, <0

where K, = diag(Ny, I) and K}, = diag(Nv, I). Due to the iden-
tity block in the matrices K7, and K7, it is possible to simplify the
expression using Schur’s complement. To this aim, let us decompose
the previous matrices as ¥/ = [U,;]; ;=12 P = [®i;]i,j=1,2 and
therefore we get

rT AL
-/\/I,/ 0 (I)n @12 ,'\[, 0 <0
0 I * @22 0 I

pression into the scaled-bounded real lemma |: NT 0] |:\1;11 U1s } {J\;’V 0} <0 on
ALP+PA. PB. C 0 I)][ % Tsf| O I
T
* ~Lw l[);c—[ ; <0 24) which are in turn equivalent to
* * —L

with L,, = diag(L,I;,vlw,) and L. = diag(L,I,,v *I.,) where
L scales the controller and system parameter-scheduled channels. Iso-
lating the expression containing the state-feedback matrix from (24),
this inequality may be rewritten into

V(P L, L7+ PTUTKV+VIKTUP <0 (29)
where

P =diag(P,I,I), U=[I | 0 | 0]

N (@31 — 35, <I>’11§) Ao <0
N (\11’11 - w;zw;;qﬂlﬁ) Ny <0 (28)

which are exactly the LMIs of Theorem 2.1 and the proof of the con-
troller existence is completed. The form of & is given in Appendix B.
B. State-Feedback Computation

The state-feedback matrix /' may be computed using the following
algorithm:

) BY 0o DL, DI DI, o 0o o01F Algorithm 1.1: Controller computation
V= { 0 ‘ I 0 0 0 ‘ 00 o] 1) Compute whole matrices L = | L; Lz] and J = L™' =
2 3
I T

and the matrix ¥(P, L.,, L7 ') is given by the substitution of the ma-
trices of system (23) into (24). Note that this inequality is nonlinear
due to the product between the matrix variables P, /X' and the presence
of both matrices I and L~"'. However, as shown in [11], it turns out
that it is possible to find an equivalent LMI formulation by the mean
of the projection lemma and then the following equivalent underlying
problem is obtained

[ T ] from the values of Ly and .J; using a singular value
J9 :

decomposition on the relations Lg.]z = I — L3.Js and then L
and J are solutions of the equations:

0 I i 7.
[33' ES]T:[OZ 13} (29

where (2.7) € {(L.J),(J.L)}.

KL®K, <0 KEUK, <0 (26) 2) The computation of the controller matrix K consists in solving
the LMI (as in [11]).
where Ky = Ker(U), Ky = Ker(V), N .
® = diag(P ' 1,1)¥diag(P ", I,I) and ¥ is given Y+UTEV+ VKU <0
rAPX T+ XA X0 B] [0 C"]
. . 0 0
Y * —diag(L, I, vIw;) |:0 pr } (21)
_ . . —ding(L™" Ty 71.,)
TA+ANTX + X1(A4+ A4, —X14, XaB  (har— b ) (A4 AL (C+C)T
* —Xo 0 —(har — han) AT -cF
M, * *  =yL,  (ha = hy)B" D" (22)
* * * X, 0
L * * * * —~I.
T rA 0 B() B1 Bz Bu 07 T
Ze 0 0 0 0 0 0o I we
20 Co 0 Doo Dor Doz Dy 0 wo
z1 Ci 0 Dio D1 D2 D, 0 wy (23)
Z3 Co 0 Dy Dy Da D, 0 w3
r I 0 0 0 0 0 0 "
We: L 0 I 0 0 0 0 04 b=ze
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where Y is given in (21) and

0 X 'B,1" I 0
- 10 0 . 100
U= 0 I v 0 I
D, 0 0 0

C. Proof of Theorem 3.1

First substitute matrices governing system (11) into the scaled-
bounded real lemma [11] and performing a congruence transformation
with respect to diag(I,I,I,X,,I) leads to the semi-infinite LMI
Iy 4+ A(t)I2 < 0 with II; defined in (22) and

0 0 0 (A4+A4;,) 0
« 0 0 —4AF o0
My= |+ %= 0 BY 0 (30)
* x x 0 0
* Kk * 0

Since this LMI is affine in 2(t) then it is necessary and sufficient to
check the feasibility of the LMI at the vertices only (i.e., at h(t) €
{Rmins hmax }) and we get LMIs (14).
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Optimal Preview Control of Markovian
Jump Linear Systems

Kenneth D. Running and Nuno C. Martins, Member, IEEE

Abstract—In this technical note, we investigate the design of controllers,
for discrete-time Markovian jump linear systems, that achieve optimal ref-
erence tracking in the presence of preview (reference look-ahead). For a
quadratic cost and given a reference sequence, we obtain the optimal so-
lution for the full information case. The optimal control policy consists of
the additive contribution of two terms: a feedforward term and a feedback
term. We show that the feedback term is identical to the standard optimal
linear quadratic regulator for Markovian jump linear systems. We provide
explicit formulas for computing the feedforward term, including an anal-
ysis of convergence.

Index Terms—Markovian jump linear systems.

[. INTRODUCTION

This technical note deals with the problem of designing control sys-
tems that achieve optimal reference tracking in discrete-time. More
specifically, we consider the servomechanism problem, i.e., given a ref-
erence, the objective is to design feedback and feedforward strategies
so that the state of the plant tracks the reference optimally, according
to a quadratic cost. Here, we consider a plant that is linear but varies
in time according to a Markovian process that takes values in a finite
alphabet, such systems are called Markovian jump linear systems.

Basic notation: Throughout the technical note, we adopt the fol-
lowing notation: 1) Boldface letters, such as x, indicate (possibly vector
valued) real random variables, while the default font is used to represent
particular realizations of a random variable or deterministic quantities.
2) If G is a matrix then [G]; ; is the entry located at the ith row and
Jjth column. 3) if G is a matrix then G’ indicates its transpose. Further
notation will be introduced as needed.
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