
HAL Id: hal-00402217
https://hal.science/hal-00402217

Submitted on 6 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Energy conservation of atomistic/continuum coupling
Pascal Aubertin, Julien Réthoré, René de Borst

To cite this version:
Pascal Aubertin, Julien Réthoré, René de Borst. Energy conservation of atomistic/continuum cou-
pling. International Journal for Numerical Methods in Engineering, 2009, 78 (11), pp.1365-1386.
�10.1002/nme.2542�. �hal-00402217�

https://hal.science/hal-00402217
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Energy conservation of atomistic/continuum coupling

Pascal Aubertin1, Julien Réthoré1 and René de Borst2,∗,†

1Université de Lyon, CNRS INSA-Lyon, LaMCoS UMR 5259, France
2Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

The efficient and accurate coupling of two dissimilar domains presents a major challenge, especially when 
wave propagation is considered. Overlap coupling methods are promising in the sense that spurious wave 
reflections can be avoided and loss of energy due to the coupling scheme can be minimized. However, 
the conservation properties and the proper physical representation of the forces depend on the precise 
formulation of the algorithm for coupling such dissimilar models. This is unlike that of coupling similar 
domains. We will demonstrate this with the help of numerical studies in continuum-to-continuum coupling 
and continuum-to-discrete coupling. 

KEY WORDS: multiscale methods; coupling methods; molecular dynamics; finite elements; energy
conservation

1. INTRODUCTION

The macroscopic behaviour of engineering materials is to a large extent determined by physical

processes which occur at a scale that is one to several orders of magnitude smaller than the macro-

scopic scale of observation. There are several ways to incorporate this observation in engineering

analyses. A first possibility is to ignore this inherent multiscale character and to use phenomenolog-

ical constitutive relations that have been derived directly at the macrosopic level. Although many

successful analyses have been conducted in this manner, their range of validity remains limited

and their physical underpinning can be weak. To improve this situation, more recently, constitutive

relations have been derived at the macroscopic level which depart from micromechanical consid-

erations at a lower scale, followed by subsequent upscaling. Constitutive relations derived in this

manner are more sound from a physics point of view and tend to have a larger domain of validity.
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A further approach is to model every detail and to conduct the entire analysis on a fine scale.

To circumvent the insurmountable high computational costs inherent in this approach, multiscale

methods are being sought for. In these approaches a relatively small part of the domain—typically

the part that is of high interest—is modelled at a lower scale, while the remainder of the domain

is modelled directly at the macroscopic level. Evidently, refinements exist, where more than two

levels are considered, but this is usually outside the current capabilities.

A major issue in the latter class of problems is the coupling of domains where the modelling is

done at different scales, see for instance [1–4], or the book by Liu et al. [5]. Broadly speaking, two

classes of coupling methods have been put forward: methods where the coupling is achieved at a

discrete interface, and the methods where a zone of a finite size is employed, often called overlap

or zonal coupling. We consider edge-to-edge coupling [6], the quasi-continuum method [7], and

macroscopic atomistic ab initio dynamics [8] to belong to the first class of methods. The latter class,

which includes approaches like the Arlequin method [9], the bridging domain method [10–14],

discrete-to-continuum bridging [15], the discontinuous enrichment method [16], and bridging scale

decomposition [17, 18], enables a more gradual transition from one domain to the other. It is

gaining prominence not only in solid mechanics, but also in certain fluid mechanics applications,

e.g. [19]. The ability of a gradual transition becomes especially important for highly dissimilar

domains and when wave propagation phenomena are considered, where preservation of the energy

and avoiding spurious reflections when a wave exits one domain and enters the other can become

an issue. In spite of the importance of assessing the robustness of coupling schemes under these

conditions, detailed investigations are relatively scarce in the literature. For this reason we have

conducted detailed studies on energy conservation in overlap coupling in this contribution. Inspired

by earlier work by Ben Dhia and Rateau [9] and Xiao and Belytschko [10] we have chosen a weak

coupling between the models in the two adjacent domains.

A common feature of zonal or overlap coupling methods is that a weighting function is introduced

to partition a certain quantity over both models within the domain where they overlap. Herein, we

have chosen the energy, its major advantage being that it is the only quantity which is extrinsic

to the modelling, and Lagrange multipliers are used to enforce the energy transfer between both

models in the coupling domain. The precise way in which the weighting function is introduced

can be of importance for the proper energy transfer. This is less critical in case of a continuum-

to-continuum transition or a discrete-to-discrete transition, since similar models are then coupled.

However, in the case of continuum-to-discrete transition, or vice versa, we have very different

quantities: Classical notions like strains and stresses in the continuum model, but in the atomistic

domain only quantities like displacements and the bonding energy make sense from a physics point

of view. These differences make that the precise form of the algorithm becomes more critical if we

wish to properly preserve energy and avoid the appearance of non-physical forces when a wave

propagates through the coupling zone. This is of particular importance since the characteristic

space and time scales in the atomistic domain are much smaller than those in the continuum

domain. For an efficient multiscale analysis, it is therefore imperative that large time steps and/or

a coupling zone that contains only a limited number of atoms and/or a limited number of finite

elements do not destroy the accuracy and conservation properties of the coupling algorithm.

This contribution is organized as follows. First, the governing equations for a continuum and

for an atomistic domain are recalled. Subsequently, the sets of equations are cast in a weak format

and the partition-of-unity for the energy distribution over both models is introduced. The coupling

conditions are introduced and enforced via Lagrange multipliers. Next, the spatial discretization for

the continuum domain is done, the equations are cast into a matrix–vector format for both models
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and for the Lagrange multipliers, and the time integration scheme is introduced. Finally, the energy

preservation properties are analysed for continuum-to-continuum coupling and for continuum-to-

discrete coupling. Differences are highlighted which depend on the precise formulation, and the

favourable properties of one formulation in terms of energy conservation for multiscale analyses

are indicated.

2. PROBLEM STATEMENT

2.1. Governing equations

We consider the domain � with the boundaries ��1 and ��2 on which the displacements and

tractions are prescribed, respectively. The domain is thought to consist of two subdomains, �M

and �m , which are modelled using a continuum approach and a molecular dynamics approach,

respectively. The boundary between both domains is assumed to be fixed, in order to study and

quantify the energy conservation properties of the coupling scheme between both subdomains.

Assuming small deformation gradients for simplicity, the governing equations in the continuum

subdomain �M can be written in a standard manner as

For x∈�M (t) and t ∈[0;T ], given the initial conditions (u(x,0), u̇(x,0))

find (u,r)∈U
ad ×S

ad such that

�ü=divr+gd

(1)

with u as the continuum displacement vector, r the stress tensor, and gd the body force vector

applied in �, subject to the boundary conditions

U
ad = {u=u(x, t)∈[H1(�M )]3; u=ud on �1�, ∀t ∈[0,T ]}

S
ad = {r=K :∇u(x, t)∈[L2(�M )]6; r ·n=Fd on �2�, ∀t ∈[0,T ]}

(2)

where K is the fourth-order stiffness tensor, n the outward normal vector to ��2, and ud and Fd

the prescribed displacements and tractions at ��1 and ��2, respectively.

For the discrete domain, i.e. �m , we build a grid of Na atoms, and, accordingly, the initial value

problem in this domain can be written as

For 1�i�Na(t) and t ∈[0;T ], given the initial conditions (d(0), ḋ(0))

find (d, f)∈D
ad ×F

ad such that

mi d̈i = fi

(3)

with

D
ad = {d=(di (t))1�i�Na , ∀t ∈[0,T ]}

F
ad = {f=(fi (t)=−∇iU(d(t)))1�i�Na , ∀t ∈[0,T ]}

(4)
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from where it transpires that the interatomic forces are derived from a potential energy U. d and f

assemble the discrete displacements and forces of the individual atoms, respectively. The internal

energy of the discrete domain can be viewed as the sum of each atomic contribution U j

U=
∑

j

U j (d) (5)

and the force fi acting on atom i can be written as the sum of all elementary forces

fi =−
�U

�di
=

∑

j �=i

fi j (6)

with

fi j =−

(

�Ui

�di j
+

�U j

�d j i

)

di j

di j
=−f j i (7)

and

di j =|di j |=|d j −di | (8)

We will use the simplest possible descriptions for the potential energy, taking into account

only the pair interactions in the total energy. With pair potentials, we can elaborate the potential

energy as

U=
1

2!

Na
∑

i=1

Na
∑

j=1

V (di ,d j ) (9)

and the interaction force reads as

fi j =−
(Vi j )

′

di j
di j (10)

Examples of pair potential functions are the well-known Lennard–Jones potential

V LJ(r)=4a

[

(

b

r

)12

−

(

b

r

)6
]

(11)

which is a combination of attractive and repulsive interactions, and the Morse potential:

VMorse(r)=D(1−e−�(r−re))2−D (12)

The constants a, b, D, and � denote material parameters and re is the interatomic equilibrium

distance. We note that other potentials have been developed, which allow for a better description of

metallic bonds, for example the embedded atoms method potential [20], and the present analysis

can rather straightforwardly be extended to such more complicated potentials.
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2.2. Weak formulations

We now specify the weak formulation, in order to arrive at an energetical framework and to allow

for a discretization of the continuum subdomain. Then, for the continuum subdomain

∀v∗ ∈U̇
ad,0, given the initial conditions (u(x,0), u̇(x,0))

find u∈U
ad such that

∫

�M

�·ü ·v∗ d�+

∫

�M

∇u :K :∇v∗ d�=

∫

�2�

Fd ·v∗ ds+

∫

�M

gd ·v∗ d�

(13)

with v∗ as the test function, or written in a more compact manner as

aM (u,v∗)= lM (v∗) (14)

where

aM (u,v∗) =

∫

�M

�·ü ·v∗ d�+

∫

�M

e(u) :K :e(v∗)d� (15)

lM (v∗) =

∫

�2�

Fd ·v∗ ds+

∫

�M

gd ·v∗ d� (16)

In the subdomain �m the weak formulation becomes

∀w∗ ∈Ḋ
ad,0, given the initial conditions (d(0), ḋ(0))

find d∈D
ad such that

Na
∑

i=1

mi d̈i ·w
∗
i +

Na
∑

i=1

∇iU(d) ·w∗
i =0

(17)

with w∗ as the test function, or, again in a more compact fashion

am(d,w∗)=0 (18)

and

am(d,w∗)=
Na
∑

i=1

mi d̈i ·w
∗
i +

Na
∑

i=1

∇iU(d) ·w∗
i

2.3. Coupling models

In order to establish efficient coupling between both subproblems introduced before and to specify

the handshaking conditions, we enforce a weak coupling on a common zone �c=�M ∩�m . We

consider the mechanical energy, which expresses the concept of duality between stress and strain,

or loading and displacement, as the most relevant quantity. Indeed, we set out to couple two kinds

of models that describe the same physical reality, but each with a different description. Dualizing

the formulations and writing them in a weak format make it possible to obtain a global formulation

that preserves the descriptive properties of each model, and to focus on the quantity of interest,

i.e. the energy, which should not depend on the kind of the model.
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Figure 1. Partition of unity for the energy distribution.

In the handshaking zone �c, we enforce a velocity coupling in a weak sense, and we distribute

the energy between both models via a partition of unity [9]. For this purpose we define the following

functions, see Figure 1:

� :�M → [0,1] (19)

� :�m → [0,1] (20)

such that

�(x) = 1 for x∈�M\�c

�(x) = 1 for x∈�m\�c

�(x)+�(x) = 1 for x∈�c

(21)

The weak formulation with the distribution of the energy then reads as:

∀(v∗,w∗)∈U̇
ad,0×Ḋ

ad,0, given the initial conditions (u(x,0), u̇(x,0),d(0), ḋ(0))

find (u,d)∈U
ad ×D

ad such that

a�,M (u,v∗)+a�,m(d,w∗)= l�,M (v∗)

(22)

Remark 1

The modified forms a�,M , a�,m , and l�,M take into account the weighting functions �(x) and �(x).

However, the precise form of the weighting functions has not yet been specified.

Remark 2

The formulation distributes the energy over both models, but does not enforce a coupling. A

coupling condition still has to be introduced.

2.4. Coupling condition

Before we rigorously formulate the coupling condition on �c, we recall that:

• The displacement and velocity fields in the domains �M and �m have a different nature. In

�M we have a continuum field, whereas in �m we have a discrete field, which is only defined

at the geometrical points corresponding to the atoms. Thus, we have to compare two fields,

u̇ and ḋ, on �c which have a very different nature.

6



• The velocity coupling between both models is enforced in a weak sense, and the condition

therefore has to be written in a weak format, i.e. in a ‘global’ or ‘integral’ way.

For these reasons we construct a new space, denoted by M and named the ‘mediator space’, on

which we will project the fields u̇ and ḋ in order to be able to compare them. The nature of M

is constrained by the discrete character of the atomistic field. Indeed, its displacements cannot be

extrapolated outside the atomic positions if we want to maintain a physical interpretation at the

fine scale. Accordingly, M has to be a subspace of the physical atomistic space. More precisely,

we will project the velocities using an operator � on a discrete subset �c of the atomic positions

included in �c. Considering that M is built as a Hilbert space, we introduce a scalar product c

from M×M to R.

With these definitions we formulate the velocity coupling as

∀l∗ ∈M, c(l∗,�u̇−�ḋ)=〈l∗,�u̇−�ḋ〉M=0 (23)

with c as the classical scalar product on M:

∀(y,z)∈M×M, c(y,z)=〈y,z〉M=
∑

�c

(y(xi ) ·z(xi )) (24)

The global equations are coupled via Lagrange multipliers and can subsequently be written as:

∀(v∗,w∗,l∗)∈U̇
ad,0×Ḋ

ad,0×M, given the initial conditions (u(x,0), u̇(x,0),d(0), ḋ(0))

find (u,d,k)∈U
ad ×D

ad ×M such that

a�,M (u,v∗)+a�,m(d,w∗)+c(k,�v∗−�w∗)= l�,M (v∗)

c(l∗,�u̇−�ḋ)=0

(25)

3. DISCRETIZED PROBLEM

We now introduce the spatio-temporal discretizations. First, the continuum subproblem on �M is

discretized with a finite element method, and subsequently a time discretization is applied in order

to solve the dynamic global problem.

3.1. Spatial discretization for the continuum problem

With the shape functions Ni and nodal vectors ui , which assemble the unknowns, one obtains for

the subdomain �M

∀x∈�M , uh(x)=
∑

Ni

Ni (x)ui =NTU (26)

With the latter, symbolic notation, the bilinear form aM and the linear form lM , cf. Equations (15)

and (16), become

aM (uh,v
∗
h) =V∗TMÜ+V∗TKU (27)

lM (v∗
h) =V∗TF (28)
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where the term that represents the body forces has been omitted for simplicity, and

M=NTN (29)

K= ∇NT
K∇N (30)

the standard mass and stiffness matrices, respectively. Introducing the weighting function �, the

bilinear and linear forms as formulated in a standard fashion in Equations (27) and (28) then

become

a�,M (uh,v
∗
h) =V∗TM�Ü+V∗TK�U (31)

l�,M (v∗
h) =V∗TF� (32)

where the precise form of the matrices M�, K�, and the vector F�, which governs the energy

distribution via the weighting function �, is yet left unspecified. With the standard definition of

the scalar product, the coupling term in the continuum can be discretized as follows:

c(k,�v∗
h)=V∗TCMK=V∗TFL

M (33)

with CM as the continuum coupling matrix. The vector K contains the Lagrange multipliers and

its size equals the �c subset cardinal times the dimension of the space considered. FL
M can be

regarded as a fictitious force due to the coupling via the Lagrange multipliers. This force has a

non-zero value only in the coupling zone �c.

3.2. Weighting function for the atomistic problem

In the subdomain�m the problem is discrete by nature and there is no need for spatial discretization.

We can directly use a standard matrix formulation

m= [mi, j ]=[�i, jmi ] (34)

f= [fi ]=[−∇iU(d)] (35)

and Equation (17) becomes:

w∗ ·md̈=w∗ ·f (36)

The modified form a�,m that takes into account the distribution of the energy then reads as:

a�,m(d,w∗)=w∗ ·m�d̈−w∗ ·f� (37)

with

�i = �(di ) (38)

m� = [�i�i, jmi ] (39)

f� = [f�,i ] (40)

The weighted atomic forces f�,i directly stem from the weighted internal energy U�:

f�,i =−
�U�

�di
(41)
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Using (5) and (9), we write:

U� =
Na
∑

k=1

�k

2

Na
∑

j=1

V (dk,d j ) (42)

The expression of the weighted interatomic forces involves the evaluation of the weighting func-

tion at the positions of the neighbours of each atom. We elaborate this by combining Equation (41)

with (42) to obtain:

f�,i =−
Na
∑

k=1

�i +�k

2

�Vik

�di
=�i .fi −

Na
∑

k=1

�k−�i

2

�Vik

�di
(43)

From this formulation we observe that we have two contributions to the weighted force: the first

contribution relates to the original force weighted by the function � at the current atomic position,

while the residual sum stands for the weighted elementary interatomic forces. This residual force

fR�,i =−
Na
∑

k=1

�k−�i

2

�Vik

�di
(44)

can become significant when �i �=�k .

Under some non-restrictive assumptions we will study the behaviour of this residual term. We

assume, for simplicity, that the � function is linear in the coupling overlapping zone. Furthermore,

we assume that we only take into account a finite and reasonable number of neighbours for the

computation of the interatomic forces. Put differently, the summation will be carried out on Nn

neighbours on a subset of �m , within a cutoff radius rc. Then, the residual force fR
�,i

is bounded

as follows:

‖fR�,i‖�Nn×max

⏐

⏐

⏐

⏐

�k−�i

2

⏐

⏐

⏐

⏐

×max‖fik‖�Nn×
rc

2Lc
×max‖fik‖ (45)

Accordingly, when the ratio rc/Lc vanishes, which implies that the coupling domain is much larger

than the atomic cutoff radius, the residual force will be negligible compared with the ‘classical’

force fi :

‖fR�,i‖≪‖fi‖ (46)

Henceforth, we will assume that this condition is satisfied and we will use this approximation for

the weighted forces:

f�,i =�i fi (47)

3.3. Coupled system

We next write the coupling force using the Lagrange multipliers in the atomistic domain similar

to that in the continuum domain

fLm =CmK (48)

whereupon the weighted and coupled system (25) can be cast in a matrix–vector format:

V∗T(M�Ü+K�U+CMK)+W∗T(m�d̈−f�−CmK) =V∗TF� (49)

l∗T(CT
M U̇−CT

m ḋ) = 0 (50)
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Since this set must hold for any admissible (V∗,W∗,l∗), we finally obtain

M�Ü+K�U = F�−CMK

m�d̈ = f�+CmK

CT
M U̇ = CT

m ḋ

(51)

with (U,d,K) the set of unknowns.

3.4. Time integration scheme

The time scheme relies on the discretization with a time step �t and has five stages:

• Given the quantities at step n, compute the displacements Un+1 and dn+1.

• Compute the predictive accelerations Ü∗
n+1 and d̈∗

n+1, neglecting the Lagrange forces.

• Compute the predictive velocities U̇∗
n+1 and ḋ∗

n+1.

• Adjust these velocities to give the final velocities U̇n+1 and ḋn+1 by taking into account the

coupling terms and Lagrange multipliers Kn+1.

• Adjust the predictive accelerations to give the final accelerations Ün+1 and d̈n+1.

Below we specify the different steps of this predictor–corrector scheme:

• With the displacements, velocities and accelerations at step n, we compute the displacements

at step n+1 as follows:

Un+1 = Un+U̇n�t+
1
2
Ün(�t)

2

dn+1 = dn+ ḋn�t+
1
2
d̈n(�t)

2
(52)

• The predictive accelerations at step n+1 are computed with the system (51) but without

coupling terms:

Ü∗
n+1 = M̃−1

� (F�,n+1−K�Un+1)

d̈∗
n+1 = m−1

�
f�,n+1

(53)

Note that we use, for the continuum, a lumped mass matrix M̃�, which is standard for explicit

time integration.

• The predictive velocities are computed with the Newmark scheme:

U̇∗
n+1 = U̇n+ 1

2
(Ün+Ü∗

n+1)�t

ḋ∗
n+1 = ḋn+ 1

2
(d̈n+ d̈∗

n+1)�t
(54)

• We next adjust the velocities by introducing the coupling terms:

U̇n+1 = U̇∗
n+1− 1

2
M̃−1

� FL
M,n+1�t

ḋn+1 = ḋ∗
n+1+ 1

2
m−1

�
fLm,n+1�t

(55)
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• Finally, we compute the accelerations:

Ün+1 = Ü∗
n+1−M̃−1

� FL
M,n+1

d̈n+1 = d̈∗
n+1+m−1

�
fLm,n+1

(56)

The first three steps are simple and do not need further explanation. The last steps enforce the

coupling condition (23).

From Equations (23) and (51), the coupling condition becomes:

CT
M (U̇∗

n+1−M̃−1
� CMKn+1�t)=CT

m(ḋ∗
n+1+m−1

�
CmKn+1�t) (57)

The new values of the Lagrange multipliers Kn+1 are subsequently computed by solving

AKn+1=bn+1 (58)

with

A =
�t

2
(CT

MM̃−1
� CM +CT

mm
−1
�

Cm)

bn+1 = CT
M U̇∗

n+1−CT
m ḋ

∗
n+1

(59)

and bn+1 stands for the weak coupling condition on the predictive velocities. Thus, this term is a

measure of the error compared with the solution that satisfies the system (51).

3.5. Energy balance of the resolution scheme

We now focus on the energy conservation in the coupled system. Indeed, a most important aspect

of a coupling method is that it conserves the global energy and ensures a proper transfer of the

relevant quantities from one domain to the other. We assume, for simplicity, that there is no external

force acting on the continuum subdomain. We will use the following notations for the mean value

and the jump of a quantity V between tn and tn+1 as:

〈V〉 = 1
2
(Vn+1+Vn)

[V] = Vn+1−Vn

(60)

where we have the following property:

〈V〉T[V]= 1
2
[VTV] (61)

Thus, the Newmark scheme described in the previous subsection can be written more compactly as:

[U] = 〈U̇〉�t−
(�t)2

4
[Ü] (62)

[U̇] = 〈Ü〉�t (63)

[d] = 〈ḋ〉�t−
(�t)2

4
[d̈] (64)

[ḋ] = 〈d̈〉�t (65)
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We use the system (51) to compute the mean value of the equilibrium equations between time

step tn and tn+1 and we multiply by [U] for the continuum subdomain and by [d] for the atomistic

subdomain to obtain the following discrete sets:

[

1

2
U̇TM̃�U̇−

(�t)2

8
ÜTM̃�Ü+

1

2
UTK�U

]

= −[U]T〈CMK〉 (66)

[

1

2
ḋTm�ḋ−

(�t)2

8
d̈Tm�d̈

]

= [d]T〈f�〉+[d]T〈CmK〉 (67)

where the following quantities can be identified: (i) the kinetic energy EM
K = 1

2
U̇TM̃�U̇ in the

continuum; (ii) the internal energy EM
P = 1

2
UTK�U in the continuum; (iii) the kinetic energy Em

K =
1
2
ḋTm�ḋ in the atoms; (iv) the acceleration terms ((�t)2/(8)ÜTM̃�Ü and ((�t)2/8)d̈Tm�d̈ due to

the central difference scheme; (v) the work of the Lagrange multipliers related to the displacements

of the continuum and to the displacements of the atoms, [U]T〈CMK〉 and [d]T〈CmK〉, respectively;

and (vi) the work of the interatomic forces within the atomic displacements [d]T〈f�〉.

Remark 1

We observe from this discretized energy balance that the relevant quantity for the atomistic domain

is the work of the interatomic forces. Indeed, we could have used the total potential energy, but,

within this discretized scheme, we then would have had to compute the work of the atomic forces.

Remark 2

The precise form of the different matrices has still been left open. We will specify and investigate

different forms in the remainder.

4. ANALYSIS OF THE COUPLING SCHEME

In the present section we will analyse the coupling scheme with respect to energy conservation.

First, we will consider the coupling between two continuum subdomains and show that the precise

formulation is less critical, in particular with respect to energy conservation. Subsequently, we will

demonstrate that this is not the case when two dissimilar subdomains are coupled, e.g. a continuum

subdomain and a subdomain that is inherently discrete.

4.1. Coupling of two continuum subdomains

At first, we compute the lumped mass matrix, cf. Equation (53), as follows:

M̃�,I =�(X I )M̃I (68)

where X I is the position of the I th node and M̃ is the classical lumped mass matrix. Similarly,

the stiffness matrix is computed by weighting the elementary terms, thus taking into account the

influence of the weighting function � [13]:

K�,I,J =

∫

�

�(X)∇u(NI (X)) :K :∇u(NJ (X))d� (69)
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Figure 2. Propagating traction wave in two continuum subdomains: (a) displacements at t=0 and

(b) displacements at t=0.1837244×10−12 s.

We consider two longitudinal bars, each modelled with finite elements, with a coupling region

Lc in between. The left bar is submitted to a traction wave, the initial configuration being displaced

on the left-most 50 elements. The right bar is fixed at its right end. The entire domain is 94.337×

10−9m long and each bar has been modelled using 150 elements. The computation extends over

2500 time steps each of �t=1.2248×10−15 s, which corresponds to 99% of the critical time step.

Figure 2(a) shows the initial displacements in the first bar. Figure 2(b) shows how in the second

bar the travelling wave is captured in the coupling zone.

We now focus on the mechanical energy transfer when the wave passes through the coupling

zone from the first domain to the second domain. We consider three cases in which the coupling

length Lc contains 2, 10, and 40 elements, respectively, see Figure 3. In each case, the mechanical

energy, calculated as described in (66), passes from one domain to the other without significant

loss. We just notice that at each crossing of the coupling domain, the total energy oscillates before

attaining its correct value. This phenomenon corresponds to the energy that is temporarily stored
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Figure 3. Energy plots for the finite element–finite element coupling. In subfigures (a), (c), and (e),
the drawn line is the energy in the first (left) bar and the dashed line is the energy in the second
(right) bar. The bold drawn line is the total mechanical energy: (a) energy transfer for Lc consisting
of 2 elements; (b) oscillations in the mechanical energy for Lc consisting of 2 elements; (c) energy
transfer for Lc consisting of 10 elements; (d) oscillations in the mechanical energy for Lc consisting
of 10 elements; (e) energy transfer for Lc consisting of 40 elements; and (f) oscillations in the

mechanical energy for Lc consisting of 40 elements.

in the Lagrange multipliers. Indeed, as argued in the preceding section, there is an amount of work

stored in the Lagrange multipliers when the wave passes the coupling zone. We will return to this

issue in more detail in the next subsection.

Next, we investigate the behaviour of the method when we use the standard mass and stiffness

matrices in the prediction step, i.e. without multiplying them by the weight function. The second

step of the time integration scheme is the computation of the equilibrium based on the prediction

step, Equation (53). As we do not use the Lagrange multipliers in the prediction step, we assume

that both subdomains are not coupled during this step and, thus, that both subdomains are free.
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Figure 4. Energy plots with standard matrices, i.e. without weighting in the predictor phase. In subfigure
(a), the drawn line is the energy in the first (left) bar and the dashed line represents the energy in the
second (right) bar. The bold drawn line is the total mechanical energy: (a) energy transfer for Lc consisting

of 10 elements and (b) oscillations in the mechanical energy for Lc consisting of 10 elements.

0 5 10 15 20 25 30 35

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

X (nm)

D
is

p
la

ce
m

en
t 

(n
m

)

Figure 5. Displacements at t=0. The left and right sides constitute the continuum domains, while the
inside zone covers the atomistic region.

Indeed, we first solve the ‘uncoupled’ equations and subsequently, we link them using the Lagrange

multipliers. The predictive accelerations are then computed as

Ü∗
n+1=M̃−1(Fn+1−KUn+1) (70)

This provides the initial solutions that have to be coupled using the Lagrange multipliers. For

this subsequent coupling step, it is necessary to use the weighted mass matrix, cf. Equation (59).

Now, we obtain the plots for the mechanical energy, which are given in Figure 4(a). The energy

conservation is also satisfactory, the oscillations being slightly different, but the transfer is very

good and looks similar to that when using the weighted stiffness matrix also in the predictive step,

see Figure 4(a), with the same order of magnitude.
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Figure 6. Wave propagation in a one-dimensional bar for the prediction step with weighted
matrices. The left and right sides are continuum domains, while the inside zone represents the

atomistic region: (a) displacements at t=60×10−15 s; (b) displacements at t=105×10−15 s;

and (c) displacements at t=150×10−15 s.

4.2. Coupling atomistics to a continuum

In this subsection we focus on the coupling between a continuum and an atomistic domain, applying

the same methodologies as before, and using again a one-dimensional bar to carry out a quantitative

assessment. We now consider a longitudinal bar described with finite elements, containing an
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atomistic region, with a coupling zone on both sides. The bar is submitted to a traction wave,

which is enforced by displacing the left-most 20 elements in the initial configuration, see Figure 5.

The right-hand end is free. The whole domain is 59.142528×10−9m long and 100 atoms have

been put in the atomistic domain. The interatomic distance is re=0.1234708×10−9m and the

finite element size is h=re. We use a Lennard–Jones potential as constitutive model for the atoms,

with a=32.043529×10−21 J and a mass m=0.0016599×10−24 g. The elastic material properties

for the finite element model have been derived from the atomic properties [21]. The computation

continues for 2000 time steps with �t=1×10−15 s, which amounts to 95% of the critical time step.

As for the continuum–continuum problem, we first analyse the problem using weighted matrices

for the predictive part of the solution strategy, cf. Equations (68) and (69). The coupling length

Lc includes 5 elements. The displacements are shown for different times in Figure 6. When the

wave passes through the coupling domain, we obtain an amplification of the amplitude and a

non-negligible reflection. Considering the energy plots, Figure 7, we observe that, even though the

total energy is conserved—which is logical within this integration scheme—the energy transfer

between the domains is poor. Many reflections occur, causing information to be lost completely

in the end.

An explanation of this phenomenon resides in the discretization of the initial-value problem.

The introduction of the weighting in the elementary terms of the internal forces in the continuum

is tantamount to considering a porous material where the porosity changes progressively with the

distance. At the right-hand side, i.e. near the end of the coupling zone, the left continuum bar

has a near-zero Young’s modulus and a near-zero mass. This construction does not cause any

spurious reflections in the case of a coupling between two continuum domains, but it introduces

a non-symmetric problem between a continuum and a domain which is composed of atoms. The

atomistic internal forces have been weighted with the weight function, cf. Equation (47), and to

solve the problem the continuum internal forces must be constructed such that a full symmetry

will exist between both domains.
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Figure 7. Energy transfer for the finite element—molecular dynamics coupling. The drawn line is
the energy in the first (left) continuum domain. The dashed line is the energy in the second (right)
continuum domain, and the dash-dotted line represents the energy in the atomistic zone. The bold

drawn line is the total mechanical energy.
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Figure 8. Wave propagation in a one-dimensional bar. Weighted matrices. The left and right sides are

continuum domains, while the inside zone is the atomistic region: (a) displacements at t=105×10−15 s;

(b) displacements at t=150×10−15 s; and (c) displacements at t=240×10−15 s.

The original continuum internal forces were expressed as:

F� =K�U (71)

In order to follow the same procedure as the atomistic one, we write:

F�,I =�(X I )KU (72)
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Figure 9. Mechanical energy (drawn line) and the work stored in the Lagrange multipliers (dashed line).

By writing the internal forces in this manner, symmetry has been restored. Moreover, we have

obtained a simpler solution scheme. Indeed, by writing the continuum internal forces in this manner,

the second step of the procedure is equivalent to solving the ‘free’ problems separately, since

Ü∗
n+1 = −M̃−1

� K�Un+1=−M̃−1a−1aKUn+1

d̈∗
n+1 = m−1

�
f�,n+1=m−1b−1bfn+1

(73)

where a and b are the diagonal weighting matrices (e.g. aI =a(X I )). Finally, we obtain:

Ü∗
n+1 = −M̃−1KUn+1

d̈∗
n+1 = m−1fn+1

(74)

The problem is therefore highly simplified. We first solve the ‘free’ uncoupled problems separately,

and then, as a second step, we couple them using the Lagrange multipliers. For this step we use

the weighted mass matrices.

We now apply this procedure to the example. The displacements are shown for different times

in Figure 8.

The simulations do not reveal spurious reflections anymore when the wave passes through the

coupling zone, and the information at t=0 is preserved during the computation. Figure 9 shows

the total mechanical energy during the computation. We observe some fluctuations each time the

wave crosses a coupling zone. In fact, work is stored by the Lagrange multipliers, and subsequently

put back in the mechanical system when the wave leaves the coupling zone. We clearly observe

that the work of the Lagrange multipliers is complementary to the mechanical energy, and the

energy balance formulated in Equations (66)–(67) is thus satisfied. Considering the energy plots

of Figure 10 we observe that for different coupling lengths (i) the total energy is preserved, and

that (ii) the energy correctly passes from one domain to the other when the wave traverses the

coupling zones.
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Figure 10. Energy plots for the finite element—molecular dynamics coupling. In subfigures (a), (c), and
(e) the drawn line is the energy in the first (left) continuum, the dashed line is the energy in the second
(right) continuum, and the dash-dotted line represents the energy stored in the atoms. The bold drawn
line is the total mechanical energy: (a) energy transfer for Lc consisting of 2 elements; (b) energy drift
for Lc consisting of 2 elements; (c) energy transfer for Lc consisting of 5 elements; (d) energy drift
for Lc consisting of 5 elements; (e) energy transfer for Lc consisting of 10 elements; and (f) energy

drift for Lc consisting of 10 elements.
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Figure 11. Energy plots for the finite element—molecular dynamics coupling in the multiscale example.
In subfigure (a), the drawn line is the energy in the first (left) continuum, the dashed line is the energy in
the second (right) continuum, and the dash-dotted line is the energy stored in the atoms. The bold drawn
line is the total mechanical energy: (a) energy transfer for Lc consisting of 5 elements and (b) energy

loss for Lc consisting of 5 elements.

Finally, we present some calculations that demonstrate the potential for truly multiscale compu-

tations. Instead of choosing a finite element length h that is of the same order of magnitude as the

interatomic distance re, we put 20 atoms in each finite element. The coupling length covers 5

elements and we put 26 Lagrange multipliers in this zone, at atomic positions. Again, we

observe that the energy balance is satisfied, Figure 11(a), and the total energy loss is very small,

Figure 11(b).

5. CONCLUDING REMARKS

In this contribution, we have discussed methods for coupling two subdomains, which are typical

of multiscale analyses. A most important criterion for the accuracy and robustness of any coupling

method is that it conserves energy, in particular when a propagating wave passes from one domain

to the other. Zonal or overlap coupling methods seem better suited for this task, since, in principle,

they have a better capability to avoid spurious wave reflections.

We have proposed a class of overlap coupling methods and have analyzed the energy conservation

properties when a wave passes from one subdomain to another. Like other proposals in the

literature [9, 10] it enforces a weak kinematic coupling. Herein, the energy is used to enforce the

coupling via Lagrange multipliers that are active in the overlapping region.

The energy transfer has been analysed for two different cases: Coupling similar domains

(continuum to continuum) and coupling dissimilar domains (continuum to discrete). The former

case is rather insensitive to the precise formulation of the predictor–corrector algorithm. It does

not make much difference whether the weighting function that distributes the energy in the over-

lapping domain is included in the predictor step or not. The situation is very different, however,

when dissimilar domains are considered. Then, to avoid spurious reflections and a proper energy

transfer it is essential that weighting functions are only used in the corrector phase when both

subdomains are coupled. This is tantamount to first discretizing the continuum subdomain prior

to multiplication by the weighting function, rather than the reverse procedure. The resulting
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algorithm has potential for truly multiscale analyses, where the size of the finite elements signif-

icantly exceeds the interatomic distance, while coupling zones can be used which contain only a

few finite elements.
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