

Hsu-Robbins and Spitzer's theorems for the variations of fractional Brownian motion

Ciprian A. Tudor

▶ To cite this version:

Ciprian A. Tudor. Hsu-Robbins and Spitzer's theorems for the variations of fractional Brownian motion. Electronic Communications in Probability, 2009, 14 (14), pp.278-289. hal-00402197

HAL Id: hal-00402197

https://hal.science/hal-00402197

Submitted on 7 Jul 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hsu-Robbins and Spitzer's theorems for the variations of fractional Brownian motion

Ciprian A. Tudor
SAMOS/MATISSE, Centre d'Economie de La Sorbonne,
Université de Panthéon-Sorbonne Paris 1,
90, rue de Tolbiac, 75634 Paris Cedex 13, France.
tudor@univ-paris1.fr

Abstract

Using recent results on the behavior of multiple Wiener-Itô integrals based on Stein's method, we prove Hsu-Robbins and Spitzer's theorems for sequences of correlated random variables related to the increments of the fractional Brownian motion.

2000 AMS Classification Numbers: 60G15, 60H05, 60F05, 60H07.

Key words: multiple stochastic integrals, selfsimilar processes, fractional Brownian motion, Hermite processes, limit theorems, Stein's method.

1 Introduction

A famous result by Hsu and Robbins [7] says that if $X_1, X_2, ...$ is a sequence of independent identically distributed random variables with zero mean and finite variance and $S_n := X_1 + ... + X_n$, then

$$\sum_{n\geq 1} P\left(|S_n| > \varepsilon n\right) < \infty$$

for every $\varepsilon > 0$. Later, Erdös ([3], [4]) showed that the converse implication also holds, namely if the above series is finite for every $\varepsilon > 0$ and X_1, X_2, \ldots are independent and identically distributed, then $\mathbf{E}X_1 = 0$ and $\mathbf{E}X_1^2 < \infty$. Since then, many authors extended this result in several directions.

Spitzer's showed in [13] that

$$\sum_{n\geq 1} \frac{1}{n} P\left(|S_n| > \varepsilon n\right) < \infty$$

for every $\varepsilon > 0$ if and only if $\mathbf{E}X_1 = 0$ and $\mathbf{E}|X_1| < \infty$. Also, Spitzer's theorem has been the object of various generalizations and variants. One of the problems related to the Hsu-Robbins' and Spitzer's theorems is to find the precise asymptotic as $\varepsilon \to 0$ of the quantities

 $\sum_{n\geq 1} P(|S_n| > \varepsilon n)$ and $\sum_{n\geq 1} \frac{1}{n} P(|S_n| > \varepsilon n)$. Heyde [5] showed that

$$\lim_{\varepsilon \to 0} \varepsilon^2 \sum_{n \ge 1} P(|S_n| > \varepsilon n) = \mathbf{E} X_1^2 \tag{1}$$

whenever $\mathbf{E}X_1 = 0$ and $\mathbf{E}X_1^2 < \infty$. In the case when X is attracted to a stable distribution of exponent $\alpha > 1$, Spataru [12] proved that

$$\lim_{\varepsilon \to 0} \frac{1}{-\log \varepsilon} \sum_{n \ge 1} \frac{1}{n} P\left(|S_n| > \varepsilon n \right) = \frac{\alpha}{\alpha - 1}. \tag{2}$$

The purpose of this paper is to prove Hsu-Robbins and Spitzer's theorems for sequences of correlated random variables, related to the increments of fractional Brownian motion, in the spirit of [5] or [12]. Recall that the fractional Brownian motion $(B_t^H)_{t\in[0,1]}$ is a centered Gaussian process with covariance function $R^H(t,s) = \mathbf{E}(B_t^H B_s^H) = \frac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H})$. It can be also defined as the unique self-similar Gaussian process with stationary increments. Concretely, in this paper we will study the behavior of the tail probabilities of the sequence

$$V_n = \sum_{k=0}^{n-1} H_q \left(n^H \left(B_{\frac{k+1}{n}} - B_{\frac{k}{n}} \right) \right)$$
 (3)

where B is a fractional Brownian motion with Hurst parameter $H \in (0,1)$ (in the sequel we will omit the superscript H for B) and H_q is the Hermite polynomial of degree $q \geq 1$ given by $H_q(x) = (-1)^q e^{\frac{x^2}{2}} \frac{d^q}{dx^q} (e^{-\frac{x^2}{2}})$. The sequence V_n behaves as follows (see e.g. [9], Theorem 1; the result is also recalled in Section 3 of our paper): if $0 < H < 1 - \frac{1}{2q}$, a central limit theorem holds for the renormalized sequence $Z_n^{(1)} = \frac{V_n}{c_{1,q,H}\sqrt{n}}$ while if $1 - \frac{1}{2q} < H < 1$, the sequence $Z_n^{(2)} = \frac{V_n}{c_{2,q,H}n^{1-q(1-H)}}$ converges in $L^2(\Omega)$ to a Hermite random variable of order q (see Section 2 for the definition of the Hermite random variable and Section 3 for a rigorous statement concerning the convergence of V_n). Here $c_{1,q,H}, c_{2,q,H}$ are explicit positive constants depending on q and H.

We note that the techniques generally used in the literature to prove the Hsu-Robbins and Spitzer's results are strongly related to the independence of the random variables X_1, X_2, \ldots . In our case the variables are correlated. Indeed, for any $k, l \geq 1$ we have $\mathbf{E}\left(H_q(B_{k+1}-B_k)H_q(B_{l+1}-B_l)\right) = \frac{1}{(q!)^2}\rho_H(k-l) \text{ where the correlation function is } \rho_H(k) = \frac{1}{2}\left((k+1)^{2H}+(k-1)^{2H}-2k^{2H}\right) \text{ which is not equal to zero unless } H=\frac{1}{2} \text{ (which is the case of the standard Brownian motion)}. We use new techniques based on the estimates for the multiple Wiener-Itô integrals obtained in [2], [10] via Stein's method and Malliavin calculus. Concretely, we study in this paper the behavior as <math>\varepsilon \to 0$ of the quantities

$$\sum_{n>1} \frac{1}{n} P\left(V_n > \varepsilon n\right) = \sum_{n>1} \frac{1}{n} P\left(Z_n^{(1)} > c_{1,q,H}^{-1} \varepsilon \sqrt{n}\right),\tag{4}$$

and

$$\sum_{n\geq 1} P\left(V_n > \varepsilon n\right) = \sum_{n\geq 1} P\left(Z_n^{(1)} > c_{1,q,H}^{-1} \varepsilon \sqrt{n}\right),\tag{5}$$

if $0 < H < 1 - \frac{1}{2q}$ and of

$$\sum_{n\geq 1} \frac{1}{n} P\left(V_n > \varepsilon n^{2-2q(1-H)}\right) = \sum_{n\geq 1} \frac{1}{n} P\left(Z_n^{(2)} > c_{2,q,H}^{-1} \varepsilon n^{1-q(1-H)}\right) \tag{6}$$

and

$$\sum_{n\geq 1} P\left(V_n > \varepsilon n^{2-2q(1-H)}\right) = \sum_{n\geq 1} P\left(Z_n^{(2)} > c_{2,q,H}^{-1} \varepsilon n^{1-q(1-H)}\right) \tag{7}$$

if $1-\frac{1}{2q} < H < 1$. The basic idea in our proofs is that, if we replace $Z_n^{(1)}$ and $Z_n^{(2)}$ by their limits (standard normal random variable or Hermite random variable) in the above expressions, the behavior as $\varepsilon \to 0$ can be obtained by standard calculations. Then we need to estimate the difference between the tail probabilities of $Z_n^{(1)}, Z_n^{(2)}$ and the tail probabilities of their limits. To this end, we will use the estimates obtained in [2], [10] via Malliavin calculus and we are able to prove that this difference converges to zero in all cases. We obtain that, as $\varepsilon \to 0$, the quantities (4) and (6) are of order of $\log \varepsilon$ while the functions (5) and (7) are of order of ε^2 and $\varepsilon^{1-q(1-H)}$ respectively.

The paper is organized as follows. Section 2 contains some preliminaries on the stochastic analysis on Wiener chaos. In Section 3 we prove the Spitzer's theorem for the variations of the fractional Brownian motion while Section 4 is devoted to the Hsu-Robbins theorem for this sequence.

Throughout the paper we will denote by c a generic strictly positive constant which may vary from line to line (and even on the same line).

2 Preliminaries

Let $(W_t)_{t\in[0,1]}$ be a classical Wiener process on a standard Wiener space $(\Omega, \mathcal{F}, \mathbf{P})$. If $f \in L^2([0,1]^n)$ with $n \geq 1$ integer, we introduce the multiple Wiener-Itô integral of f with respect to W. The basic reference is [11].

Let $f \in \mathcal{S}_m$ be an elementary function with m variables that can be written as

$$f = \sum_{i_1, \dots, i_m} c_{i_1, \dots i_m} 1_{A_{i_1} \times \dots \times A_{i_m}}$$

where the coefficients satisfy $c_{i_1,...i_m} = 0$ if two indices i_k and i_l are equal and the sets $A_i \in \mathcal{B}([0,1])$ are disjoint. For such a step function f we define

$$I_m(f) = \sum_{i_1,\dots,i_m} c_{i_1,\dots i_m} W(A_{i_1}) \dots W(A_{i_m})$$

where we put $W(A) = \int_0^1 1_A(s) dW_s$ if $A \in \mathcal{B}([0,1])$. It can be seen that the mapping I_n constructed above from \mathcal{S}_m to $L^2(\Omega)$ is an isometry on \mathcal{S}_m , i.e.

$$\mathbf{E}[I_n(f)I_m(g)] = n! \langle f, g \rangle_{L^2([0,1]^n)} \text{ if } m = n$$
(8)

and

$$\mathbf{E}[I_n(f)I_m(g)] = 0 \text{ if } m \neq n.$$

Since the set S_n is dense in $L^2([0,1]^n)$ for every $n \ge 1$ the mapping I_n can be extended to an isometry from $L^2([0,1]^n)$ to $L^2(\Omega)$ and the above properties hold true for this extension.

We will need the following bound for the tail probabilities of multiple Wiener-Itô integrals (see [8], Theorem 4.1)

$$P(|I_n(f)| > u) \le c \exp\left(\left(\frac{-cu}{\sigma}\right)^{\frac{2}{n}}\right)$$
 (9)

for all u > 0, $n \ge 1$, with $\sigma = ||f||_{L^2([0,1]^n)}$.

The Hermite random variable of order $q \ge 1$ that appears as limit in Theorem 1, point ii. is defined as (see [9])

$$Z = d(q, H)I_q(L) \tag{10}$$

where the kernel $L \in L^2([0,1]^q)$ is given by

$$L(y_1, \dots, y_q) = \int_{y_1 \vee \dots \vee y_q}^1 \partial_1 K^H(u, y_1) \dots \partial_1 K^H(u, y_q) du.$$

The constant d(q, H) is a positive normalizing constant that guarantees that $\mathbf{E}Z^2 = 1$ and K^H is the standard kernel of the fractional Brownian motion (see [11], Section 5). We will not need the explicit expression of this kernel. Note that the case q = 1 corresponds to the fractional Brownian motion and the case q = 2 corresponds to the Rosenblatt process.

3 Spitzer's theorem

Let us start by recalling the following result on the convergence of the sequence V_n (3) (see [9], Theorem 1).

Theorem 1 Let $q \ge 2$ an integer and let $(B_t)_{t \ge 0}$ a fractional Brownian motion with Hurst parameter $H \in (0,1)$. Then, with some explicit positive constants $c_{1,q,H}, c_{2,q,H}$ depending only on q and H we have

i. If
$$0 < H < 1 - \frac{1}{2q}$$
 then
$$\frac{V_n}{c_{1,q,H}\sqrt{n}} \xrightarrow{\text{Law}}_{n \to \infty} N(0,1) \tag{11}$$

ii. If
$$1 - \frac{1}{2q} < H < 1$$
 then

$$\frac{V_n}{c_{2,q,H}n^{1-q(1-H)}} \xrightarrow{L^2}_{n \to \infty} Z \tag{12}$$

where Z is a Hermite random variable given by (10).

In the case $H = 1 - \frac{1}{2q}$ the limit is still Gaussian but the normalization is different. However we will not treat this case in the present work.

We set

$$Z_n^{(1)} = \frac{V_n}{c_{1,q,H}\sqrt{n}}, \quad Z_n^{(2)} = \frac{V_n}{c_{2,q,H}n^{1-q(1-H)}}$$
 (13)

with the constants $c_{1,q,H}, c_{2,q,H}$ from Theorem 1.

Let us denote, for every $\varepsilon > 0$,

$$f_1(\varepsilon) = \sum_{n>1} \frac{1}{n} P\left(V_n > \varepsilon n\right) = \sum_{n>1} \frac{1}{n} P\left(Z_n^{(1)} > c_{1,q,H}^{-1} \varepsilon \sqrt{n}\right)$$
(14)

and

$$f_2(\varepsilon) = \sum_{n \ge 1} \frac{1}{n} P\left(V_n > \varepsilon n^{2-2q(1-H)}\right) = \sum_{n \ge 1} \frac{1}{n} P\left(Z_n^{(2)} > C_{2,q,H}^{-1} \varepsilon n^{1-q(1-H)}\right)$$
(15)

Remark 1 It is natural to consider the tail probability of order $n^{2-2q(1-H)}$ in (15) because the L^2 norm of the sequence V_n is in this case of order $n^{1-q(1-H)}$.

We are interested to study the behavior of $f_i(\varepsilon)$ (i=1,2) as $\varepsilon \to 0$. For a given random variable X, we set $\Phi_X(z) = 1 - P(X < z) + P(X < -z)$.

The first lemma gives the asymptotics of the functions $f_i(\epsilon)$ as $\epsilon \to 0$ when $Z_n^{(i)}$ are replaced by their limits.

Lemma 1 Consider c > 0.

i. Let $Z^{(1)}$ be a standard normal random variable. Then as

$$\frac{1}{-\log c\varepsilon} \sum_{n\geq 1} \frac{1}{n} \Phi_{Z^{(1)}}(c\varepsilon\sqrt{n}) \to_{\varepsilon\to 0} 2.$$

ii. Let $Z^{(2)}$ be a Hermite random variable or order q given by (10). Then, for any integer $q \ge 1$

$$\frac{1}{-\log c\varepsilon} \sum_{n>1} \frac{1}{n} \Phi_{Z^{(2)}}(c\varepsilon n^{1-q(1-H)}) \to_{\varepsilon \to 0} \frac{1}{1-q(1-H)}.$$

Proof: The case when $Z^{(1)}$ follows the standard normal law is hidden in [12]. We will give the ideas of the proof. We can write (see [12])

$$\sum_{n\geq 1}\frac{1}{n}\Phi_{Z^{(1)}}(c\varepsilon\sqrt{n})=\int_{1}^{\infty}\frac{1}{x}\Phi_{Z^{(1)}}(c\varepsilon\sqrt{x})dx-\frac{1}{2}\Phi_{Z^{(1)}}(c\varepsilon)-\int_{1}^{\infty}P_{1}(x)d\left[\frac{1}{x}\Phi_{Z^{(1)}}(c\varepsilon\sqrt{x})\right].$$

with $P_1(x) = [x] - x + \frac{1}{2}$. Clearly as $\varepsilon \to 0$, $\frac{1}{\log \varepsilon} \Phi_{Z^{(1)}}(c\varepsilon) \to 0$ because $\Phi_{Z^{(1)}}$ is a bounded function and concerning the last term it is also trivial to observe that

$$\frac{1}{-\log c\varepsilon} \int_{1}^{\infty} P_{1}(x) d\left[\frac{1}{x} \Phi_{Z^{(1)}}(c\varepsilon\sqrt{x})\right]$$

$$= \frac{1}{-\log c\varepsilon} \left(-\int_{1}^{\infty} P_{1}(x) \left(\frac{1}{x^{2}} \Phi_{Z^{(1)}}(c\varepsilon\sqrt{x}) dx + c\varepsilon \frac{1}{2} x^{-\frac{1}{2}} \frac{1}{x} \Phi'_{Z^{(1)}}(\varepsilon\sqrt{x})\right) dx\right) \to_{\varepsilon \to 0} 0$$

since $\Phi_{Z^{(1)}}$ and $\Phi'_{Z^{(1)}}$ are bounded. Therefore the asymptotics of the function $f_1(\varepsilon)$ as $\varepsilon \to 0$ will be given by $\int_1^\infty \frac{1}{x} \Phi_{Z^{(1)}}(c\varepsilon \sqrt{x}) dx$. By making the change of variables $c\varepsilon \sqrt{x} = y$, we get

$$\lim_{\varepsilon \to 0} \frac{1}{-\log c\varepsilon} \int_{1}^{\infty} \frac{1}{x} \Phi_{Z^{(1)}}(c\varepsilon\sqrt{x}) dx = \lim_{\varepsilon \to 0} \frac{1}{-\log c\varepsilon} 2 \int_{c\varepsilon}^{\infty} \frac{1}{y} \Phi_{Z^{(1)}}(y) dy = \lim_{\varepsilon \to 0} 2\Phi_{Z^{(1)}}(c\varepsilon) = 2.$$

Let us consider now the case of the Hermite random variable. We will have as above

$$\lim_{\varepsilon \to 0} \frac{1}{-\log c\varepsilon} \sum_{n \ge 1} \frac{1}{n} \Phi_{Z^{(2)}}(c\varepsilon n^{1-q(1-H)})$$

$$= \lim_{\varepsilon \to 0} \frac{1}{-\log c\varepsilon} \left(\int_{1}^{\infty} \frac{1}{x} \Phi_{Z^{(2)}}(c\varepsilon x^{1-q(1-H)}) dx - \int_{1}^{\infty} P_{1}(x) d\left[\frac{1}{x} \Phi_{Z^{(2)}}(c\varepsilon x^{1-q(1-H)}) \right] \right)$$

By making the change of variables $c \in x^{1-q(1-H)} = y$ we will obtain

$$\begin{split} &\lim_{\varepsilon \to 0} \frac{1}{-\log c\varepsilon} \int_1^\infty \frac{1}{x} \Phi_{Z^{(2)}} (c\varepsilon x^{1-q(1-H)}) dx \\ &= \lim_{\varepsilon \to 0} \frac{1}{-\log c\varepsilon} \frac{1}{1-q(1-H)} \int_{c\varepsilon}^\infty \frac{1}{y} \Phi_{Z^{(2)}} (y) dy = \lim_{\varepsilon \to 0} \frac{1}{1-q(1-H)} \Phi_{Z^{(2)}} (c\varepsilon) = \frac{1}{1-q(1-H$$

where we used the fact that $\Phi_{Z^{(2)}}(y) \leq y^{-2}\mathbf{E}|Z^{(2)}|^2$ and so $\lim_{y\to\infty}\log y\Phi_{Z^{(2)}}(y)=0$. It remains to show that $\frac{1}{-\log c\varepsilon}\int_1^\infty P_1(x)d\left[\frac{1}{x}\Phi_{Z^{(2)}}(c\varepsilon x^{1-q(1-H)})\right]$ converges to zero as ε tends to 0 (note that actually it follows from a result by [1] that a Hermite random variable has a density, but we don't need it explicitly, we only use the fact that $\Phi_{Z^{(2)}}$ is differentiable almost everywhere). This is equal to

$$\lim_{\varepsilon} \frac{1}{-\log c\varepsilon} \int_{1}^{\infty} P_{1}(x)c\varepsilon(1 - q(1 - H))x^{-q(1 - H) - 1} \Phi'_{Z^{(2)}}(c\varepsilon x^{1 - q(1 - H)})dx$$

$$= c \frac{\varepsilon}{-\log \varepsilon} (c\varepsilon)^{\frac{q(1 - H)}{1 - q(1 - H)}} \int_{c\varepsilon}^{\infty} P_{1}\left(\left(\frac{y}{c\varepsilon}\right)^{\frac{1}{1 - q(1 - H)}}\right) \Phi'_{Z^{(2)}}(y)y^{-\frac{1}{1 - q(1 - H)}}dy$$

$$\leq c \frac{1}{-\log \varepsilon} \int_{c\varepsilon}^{\infty} P_{1}\left(\left(\frac{1}{c\varepsilon}\right)^{\frac{1}{1 - q(1 - H)}}\right) \Phi'_{Z^{(2)}}(y)dy$$

which clearly goes to zero since P_1 is bounded and $\int_0^\infty \Phi_{Z^{(2)}}'(y) dy = 1$.

The next result estimates the limit of the difference between the functions $f_i(\varepsilon)$ given by (14), (15) and the sequence in Lemma 1.

Proposition 1 Let $q \ge 2$ and c > 0.

i. If $H < 1 - \frac{1}{2q}$, let $Z_n^{(1)}$ be given by (13) and let $Z^{(1)}$ be standard normal random variable. Then it holds

$$\frac{1}{-\log c\varepsilon} \left[\sum_{n\geq 1} \frac{1}{n} P\left(|Z_n^{(1)}| > c\varepsilon\sqrt{n} \right) - \sum_{n\geq 1} \frac{1}{n} P\left(|Z^{(1)}| > c\varepsilon\sqrt{n} \right) \right] \to_{\varepsilon\to 0} 0.$$

ii. Let $Z^{(2)}$ be a Hermite random variable of order $q \geq 2$ and $H > 1 - \frac{1}{2q}$. Then

$$\frac{1}{-\log c\varepsilon} \left[\sum_{n\geq 1} \frac{1}{n} P\left(|Z_n^{(2)}| > c\varepsilon n^{1-q(1-H)} \right) - \sum_{n\geq 1} \frac{1}{n} P\left(|Z^{(2)}| > c\varepsilon n^{1-q(1-H)} \right) \right] \to_{\varepsilon\to 0} 0.$$

Proof: Let us start with the point i. Assume $H < 1 - \frac{1}{2q}$. We can write

$$\begin{split} &\sum_{n\geq 1} \frac{1}{n} P\left(|Z_n^{(1)}| > c\varepsilon\sqrt{n}\right) - \sum_{n\geq 1} \frac{1}{n} P\left(|Z^{(1)}| > c\varepsilon\sqrt{n}\right) \\ &= \sum_{n\geq 1} \frac{1}{n} \left[P\left(Z_n^{(1)} > c\varepsilon\sqrt{n}\right) - P\left(Z^{(1)} > c\varepsilon\sqrt{n}\right)\right] + \sum_{n\geq 1} \left[\frac{1}{n} P\left(Z_n^{(1)} < -c\varepsilon\sqrt{n}\right) - P\left(Z^{(1)} < -c\varepsilon\sqrt{n}\right)\right] \\ &\leq & 2\sum_{n>1} \frac{1}{n} \sup_{x\in \mathbb{R}} \left|P\left(Z_n^{(1)} > x\right) - P\left(Z^{(1)} > x\right)\right|. \end{split}$$

It follows from [10], Theorem 4.1 that

$$\sup_{x \in \mathbb{R}} \left| P\left(Z_n^{(1)} > x \right) - P\left(Z^{(1)} > x \right) \right| \le c \begin{cases} \frac{1}{\sqrt{n}}, & H \in (0, \frac{1}{2}] \\ n^{H-1}, & H \in \left[\frac{1}{2}, \frac{2q-3}{2q-2} \right) \\ n^{qH-q+\frac{1}{2}}, & H \in \left[\frac{2q-3}{2q-2}, 1 - \frac{1}{2q} \right). \end{cases}$$
(16)

and this implies that

$$\sum_{n\geq 1} \frac{1}{n} \sup_{x\in\mathbb{R}} \left| P\left(Z_n^{(i)} > x\right) - P\left(Z^{(i)} > x\right) \right| \leq c \begin{cases} \sum_{n\geq 1} \frac{1}{n\sqrt{n}}, & H \in (0, \frac{1}{2}] \\ \sum_{n\geq 1} n^{H-2}, & H \in [\frac{1}{2}, \frac{2q-3}{2q-2}) \\ \sum_{n\geq 1} n^{qH-q-\frac{1}{2}}, & H \in [\frac{2q-3}{2q-2}, 1 - \frac{1}{2q}). \end{cases}$$

$$(17)$$

and the last sums are finite (for the last one we use $H < 1 - \frac{1}{2q}$). The conclusion follows.

Concerning the point ii. (the case $H > 1 - \frac{1}{2q}$), by using a result in Proposition 3.1 of [2] we have

$$\sup_{x \in \mathbb{R}} \left| P\left(Z_n^{(i)} > x \right) - P\left(Z^{(i)} > x \right) \right| \le c \left(\mathbf{E} \left| Z_n^{(2)} - Z^{(2)} \right|^2 \right)^{\frac{1}{2q}} \le c n^{1 - \frac{1}{2q} - H}$$
 (18)

and as a consequence

$$\sum_{n \geq 1} \frac{1}{n} P\left(|Z_n^{(2)}| > c \varepsilon n^{1-q(1-H)}\right) - \sum_{n \geq 1} \frac{1}{n} P\left(|Z^{(2)}| > c \varepsilon n^{1-q(1-H)}\right) \leq c \sum_{n \geq 1} n^{-\frac{1}{2q}-H}$$

and the above series is convergent because $H > 1 - \frac{1}{2q}$.

We state now the Spitzer's theorem for the variations of the fractional Brownian motion.

Theorem 2 Let f_1, f_2 be given by (14), (15) and the constants $c_{1,q,H}, c_{2,q,H}$ be those from Theorem 1.

i. If
$$0 < H < 1 - \frac{1}{2q}$$
 then

$$\lim_{\varepsilon \to 0} \frac{1}{\log(c_{1,H,q}^{-1}\varepsilon)} f_1(\varepsilon) = 2.$$

ii. If $1 > H > 1 - \frac{1}{2q}$ then

$$\lim_{\varepsilon \to 0} \frac{1}{\log(c_{2,H,q}^{-1}\varepsilon)} f_2(\varepsilon) = \frac{1}{1 - q(1 - H)}.$$

Proof: It is a consequence of Lemma 1 and Proposition 1.

Remark 2 Concerning the case $H = 1 - \frac{1}{2q}$, note that the correct normalization of V_n (3) is $\frac{1}{(\log n)\sqrt{n}}$. Because of the appearance of the term $\log n$ our approach is not directly applicable to this case.

4 Hsu-Robbins theorem for the variations of fractional Brownian motion

In this section we prove a version of the Hsu-Robbins theorem for the variations of the fractional Brownian motion. Concretely, we denote here by, for every $\varepsilon > 0$

$$g_1(\varepsilon) = \sum_{n \ge 1} P(|V_n| > \varepsilon n) \tag{19}$$

if $H < 1 - \frac{1}{2q}$ and by

$$g_2(\varepsilon) = \sum_{n>1} P\left(|V_n| > \varepsilon n^{2-2q(1-H)}\right)$$
(20)

if $H > 1 - \frac{1}{2q}$ and we estimate the behavior of the functions $g_i(\varepsilon)$ as $\varepsilon \to 0$. Note that we

$$g_1(\varepsilon) = \sum_{n \ge 1} P\left(|Z_n^{(1)}| > c_{1,q,H}^{-1} \varepsilon \sqrt{n}\right), \quad g_2(\varepsilon) = \sum_{n \ge 1} P\left(|Z_n^{(2)}| > c_{2,q,H}^{-1} \varepsilon n^{1-q(1-H)}\right)$$

with $Z_n^{(1)}, Z_n^{(2)}$ given by (13). We decompose it as: for $H < 1 - \frac{1}{2q}$

$$g_{1}(\varepsilon) = \sum_{n\geq 1} P\left(|Z^{(1)}| > c_{1,q,H}^{-1} \varepsilon \sqrt{n}\right) + \sum_{n\geq 1} \left[P\left(|Z_{n}^{(1)}| > c_{1,q,H}^{-1} \varepsilon \sqrt{n}\right) - P\left(|Z^{(1)}| > c_{1,q,H}^{-1} \varepsilon \sqrt{n}\right)\right].$$

and for $H > 1 - \frac{1}{2a}$

$$g_{2}(\varepsilon) = \sum_{n\geq 1} P\left(|Z^{(2)}| > \varepsilon c_{2,q,H}^{-1} n^{1-q(1-H)}\right) + \sum_{n\geq 1} \left[P\left(|Z_{n}^{(2)}| > c_{2,q,H}^{-1} \varepsilon n^{1-q(1-H)}\right) - P\left(|Z^{(2)}| > c_{2,q,H}^{-1} \varepsilon n^{1-q(1-H)}\right)\right].$$

We start again by consider the situation when $Z_n^{(i)}$ are replaced by their limits.

Lemma 2 i. Let $Z^{(1)}$ be a standard normal random variable. Then

$$\lim_{\varepsilon \to 0} (c\varepsilon)^2 \sum_{n \ge 1} P\left(|Z^{(1)}| > c\varepsilon\sqrt{n}\right) = 1.$$

ii. Let $Z^{(2)}$ be a Hermite random variable with $H>1-\frac{1}{2q}$. Then

$$\lim_{\varepsilon \to 0} (c\varepsilon)^{\frac{1}{1-q(1-H)}} \sum_{n \ge 1} P\left(|Z^{(2)}| > c\varepsilon n^{1-q(1-H)} \right) = \mathbf{E} |Z^{(2)}|^{\frac{1}{1-q(1-H)}}.$$

Proof: The part i. is a consequence of the result of Heyde [5]. Indeed take $X_i \sim N(0,1)$ in (1). Concerning part ii. we can write

$$\begin{split} &\lim_{\varepsilon \to 0} (c\varepsilon)^{\frac{1}{1-q(1-H)}} \sum_{n \geq 1} \Phi_{Z^{(2)}}(c\varepsilon n^{1-q(1-H)}) \\ &= \lim_{\varepsilon \to 0} (c\varepsilon)^{\frac{1}{1-q(1-H)}} \left[\int_{1}^{\infty} \Phi_{Z^{(2)}}(c\varepsilon x^{1-q(1-H)}) dx - \int_{1}^{\infty} P_{1}(x) d \left[\Phi_{Z^{(2)}}(c\varepsilon x^{1-q(1-H)}) \right] \right] \\ &:= \lim_{\varepsilon \to 0} (A(\varepsilon) + B(\varepsilon)) \end{split}$$

with $P_1(x) = [x] - x + \frac{1}{2}$. Moreover

$$A(\varepsilon) = (c\varepsilon)^{\frac{1}{1-q(1-H)}} \int_{1}^{\infty} \Phi_{Z^{(2)}}(c\varepsilon x^{1-q(1-H)}) dx$$
$$= \frac{1}{1-q(1-H)} \int_{c\varepsilon}^{\infty} \Phi_{Z^{(2)}}(y) y^{\frac{1}{1-q(1-H)}-1} dy.$$

Since $\Phi_{Z^{(2)}}(y) \leq y^{-2}$ we have $\Phi_{Z^{(2)}}(y)y^{\frac{1}{1-q(1-H)}} \to_{y\to\infty} 0$ and therefore

$$A(\varepsilon) = -\Phi_{Z^{(2)}}(c\varepsilon)(c\varepsilon)^{\frac{1}{1-q(1-H)}} - \int_{c\varepsilon}^{\infty} \Phi_{Z^{(2)}}'(y)y^{\frac{1}{1-q(1-H)}}dy$$

where the first terms goes to zero and the second to $\mathbf{E} |Z^{(2)}|^{\frac{1}{1-q(1-H)}}$. The proof that the term $B(\varepsilon)$ converges to zero is similar to the proof of Lemma 2, point ii.

Remark 3 The Hermite random variable has moments of all orders (in particular the moment of order $\frac{1}{1-q(1-H)}$ exists) since it is the value at time 1 of a selfsimilar process with stationary increments.

Proposition 2 i. Let $H < 1 - \frac{1}{2q}$ and let $Z_n^{(1)}$ be given by (13). Let also $Z^{(1)}$ be a standard normal random variable. Then

$$(c\varepsilon)^2 \sum_{n>1} \left[P\left(|Z_n^{(1)}| > c\varepsilon\sqrt{n} \right) - P\left(|Z^{(1)}| > c\varepsilon\sqrt{n} \right) \right] \to_{\varepsilon \to 0} 0$$

ii. Let $H > 1 - \frac{1}{2q}$ and let $Z_n^{(2)}$ be given by (13). Let $Z^{(2)}$ be a Hermite random variable.

$$(c\varepsilon)^{\frac{1}{1-q(1-H)}} \sum_{n\geq 1} \left[P\left(|Z_n^{(2)}| > c\varepsilon n^{1-q(1-H)}\right) - P\left(|Z^{(2)}| > c\varepsilon n^{1-q(1-H)}\right) \right] \to_{\varepsilon\to 0} 0.$$

Remark 4 Note that the bounds (16), (18) does not help here because the series that appear after their use are not convergent.

Proof of Proposition 2: Case $H < 1 - \frac{1}{2q}$. We have, for some $\beta > 0$ to be chosen later,

$$\varepsilon^{2} \sum_{n \geq 1} \left[P\left(|Z_{n}^{(1)}| > c\varepsilon\sqrt{n} \right) - P\left(|Z^{(1)}| > c\varepsilon\sqrt{n} \right) \right]$$

$$= \varepsilon^{2} \sum_{n=1}^{\left[\varepsilon^{-\beta}\right]} \left[P\left(|Z_{n}^{(1)}| > c\varepsilon\sqrt{n} \right) - P\left(|Z^{(1)}| > c\varepsilon\sqrt{n} \right) \right]$$

$$+ \varepsilon^{2} \sum_{n > \left[\varepsilon^{-\beta}\right]} \left[P\left(|Z_{n}^{(1)}| > c\varepsilon\sqrt{n} \right) - P\left(|Z^{(1)}| > c\varepsilon\sqrt{n} \right) \right]$$

$$:= I_{1}(\varepsilon) + J_{1}(\varepsilon).$$

Consider first the situation when $H \in (0, \frac{1}{2}]$. Let us choose a real number β such that $2 < \beta < 4$. By using (16),

$$I_1(\varepsilon) \le c\varepsilon^2 \sum_{n=1}^{[\varepsilon^{-\beta}]} n^{-\frac{1}{2}} \le c\varepsilon^2 \varepsilon^{-\frac{\beta}{2}} \to_{\varepsilon \to 0} 0$$

since $\beta < 4$. Next, by using the bound for the tail probabilities of multiple integrals and since $\mathbf{E} \left| Z_n^{(1)} \right|^2$ converges to 1 as $n \to \infty$

$$J_{1}(\varepsilon) = \varepsilon^{2} \sum_{n > [\varepsilon^{-\beta}]} P\left(Z_{n}^{(1)} > c\varepsilon\sqrt{n}\right) \leq c\varepsilon^{-2} \sum_{n > [\varepsilon^{-\beta}]} \exp\left(\frac{-c\varepsilon\sqrt{n}}{\left(\mathbf{E}\left|Z_{n}^{(1)}\right|^{2}\right)^{\frac{1}{2}}}\right)^{\frac{2}{q}}$$

$$\leq \varepsilon^{2} \sum_{n > [\varepsilon^{-\beta}]} \exp\left(\left(-cn^{-\frac{1}{\beta}}\sqrt{n}\right)^{\frac{2}{q}}\right)$$

and since converges to zero for $\beta > 2$. The same argument shows that $\varepsilon^2 \sum_{n>[\varepsilon^{-\beta}]} P\left(Z^{(1)} > c\varepsilon\sqrt{n}\right)$ converges to zero.

The case when $H \in (\frac{1}{2}, \frac{2q-3}{2q-2})$ can be obtained by taking $2 < \beta < \frac{2}{H}$ (it is possible since H < 1) while in the case $H \in (\frac{2q-3}{2q-2}, 1 - \frac{1}{2q})$ we have to choose $2 < \beta < \frac{2}{qH-q+\frac{3}{2}}$ (which is possible because $H < 1 - \frac{1}{2q}$!).

Case $H > 1 - \frac{1}{2q}$. We have, with some suitable $\beta > 0$

$$\varepsilon^{\frac{1}{1-q(1-H)}} \sum_{n\geq 1} \left[P\left(|Z_n^{(2)}| > c\varepsilon n^{1-q(1-H)} \right) - P\left(|Z^{(2)}| > c\varepsilon n^{1-q(1-H)} \right) \right]$$

$$= \varepsilon^{\frac{1}{1-q(1-H)}} \sum_{n=1}^{[\varepsilon^{-\beta}]} \left[P\left(|Z_n^{(2)}| > c\varepsilon n^{1-q(1-H)} \right) - P\left(|Z^{(2)}| > c\varepsilon n^{1-q(1-H)} \right) \right]$$

$$+ \varepsilon^{\frac{1}{1-q(1-H)}} \sum_{n\geq [\varepsilon^{-\beta}]} \left[P\left(|Z_n^{(2)}| > c\varepsilon n^{1-q(1-H)} \right) - P\left(|Z^{(2)}| > c\varepsilon n^{1-q(1-H)} \right) \right]$$

$$:= I_2(\varepsilon) + J_2(\varepsilon).$$

Choose $\frac{1}{1-q(1-H)} < \beta < \frac{1}{(1-q(1-H))(2-H-\frac{1}{2q})}$ (again, this is always possible when $H > 1-\frac{1}{2q}!$). Then

$$I_2(\varepsilon) \le ce^{\frac{1}{1-q(1-H)}} \varepsilon^{(-\beta)(2-H-\frac{1}{2q})} \to_{\varepsilon \to 0} 0$$

and by (9)

$$J_{2}(\varepsilon) \leq c \sum_{n>[\varepsilon^{-\beta}]} \exp\left(\left(\frac{-c\varepsilon n^{1-q(1-H)}}{\left(\mathbf{E}\left|Z_{n}^{(2)}\right|^{2}\right)^{\frac{1}{2}}}\right)^{\frac{2}{q}}\right) \leq c \sum_{n>[\varepsilon^{-\beta}]} \exp\left(cn^{-\frac{1}{\beta}}n^{1-q(1-H)}\right)^{\frac{2}{q}} \to_{\varepsilon\to 0} 0$$

We state the main result of this section which is a consequence of Lemma 2 and Proposition 2.

Theorem 3 Let $q \geq 2$ and let $c_{1,q,H}, c_{2,q,H}$ be the constants from Theorem 1. Let $Z^{(1)}$ be a standard normal random variable, $Z^{(2)}$ a Hermite random variable of order $q \geq 2$ and let g_1, g_2 be given by (19) and (20). Then

i. If
$$0 < H < 1 - \frac{1}{2q}$$
, we have $(c_{1,q,H}^{-1}\varepsilon)^2 g_1(\varepsilon) \to_{\varepsilon \to 0} 1 = \mathbf{E} Z^{(1)}$.

ii. If
$$1 - \frac{1}{2q} < H < 1$$
 we have $(c_{2,q,H}^{-1}\varepsilon)^{\frac{1}{1-q(1-H)}}g_2(\varepsilon) \to_{\varepsilon \to 0} \mathbf{E}|Z^{(2)}|^{\frac{1}{1-q(1-H)}}$.

Remark 5 In the case $H = \frac{1}{2}$ we retrieve the result (1) of [5]. The case q = 1 is trivial, because in this case, since $V_n = B_n$ and $\mathbf{E}V_n^2 = n^{2H}$, we obtain the following (by applying Lemma 1 and 2 with q = 1)

$$\frac{1}{\log \varepsilon} \sum_{n > 1} \frac{1}{n} P\left(|V_n| > \varepsilon n^{2H} \right) \to_{\varepsilon \to 0} \frac{1}{H}$$

and

$$\varepsilon^2 \sum_{n\geq 1} P\left(|V_n| > \varepsilon n^{2H}\right) \to_{\varepsilon \to 0} \mathbf{E} \left| Z^{(1)} \right|^{\frac{1}{H}}.$$

Remark 6 Let $(\varepsilon_i)_{i\in\mathbb{Z}}$ be a sequence of i.i.d. centered random variable with finite variance and let $(a_i)_{i\geq 1}$ a square summable real sequence. Define $X_n = \sum_{i\geq 1} a_i \varepsilon_{n-i}$. Then the sequence $S_N = \sum_{n=1}^N [K(X_n) - \mathbf{E}K(X_n)]$ satisfies a central limit theorem or a non-central limit theorem according to the properties of the measurable function K (see [6] or [14]). We think that our tools can be applied to investigate the tail probabilities of the sequence S_N in the spirit of [5] or [12] at least the in particular cases (for example, when ε_i represents the increment $W_{i+1} - W_i$ of a Wiener process because in this case ε_i can be written as a multiple integral of order one and X_n can be decomposed into a sum of multiple integrals. We thank the referee for mentioning the references [6] and [14].

References

- [1] L.M. Albin (1998): A note on Rosenblatt distributions. Statist. Probab. Lett., 40(1), 83–91.
- [2] J.-C. Breton and I. Nourdin (2008): Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion. *Electronic Communications in Probability*, **13**, 482-493.
- [3] P. Erdös (1949): On a theorem of Hsu and Robbins. Ann. Math. Statistics, 20, 286-291.
- [4] P. Erdös (1950): Remark on my paper "On a theorem of Hsu and Robbins". *Ann. Math. statistics*, **21**, 138.
- [5] C.C. Heyde (1975): A supplement to the strong law of large numbers. *Journal of Applied Probability*, **12**, 173-175.
- [6] H-C Ho and T/ Hsing (1997): Limit theorems for functionals of moving averages. *The Annals of Probability*, **25**(4), 1636-1669.
- [7] P. Hsu and H. Robbins (1947): Complete convergence and the law of large numbers. *Proc. Nat. Acad. Sci. U.S.A.*, **33**, 25-31.
- [8] P. Major (2005): Tail behavior of multiple integrals and *U*-statitics. *Probability Surveys*, **2**, 448-505.
- [9] I. Nourdin, D. Nualart and C.A. Tudor (2008): Central and non-central limit theorems for weighted power variations of fractional Brownian motion. *Preprint*.
- [10] I. Nourdin and G. Peccati (2007): Stein's method on Wiener chaos. To appear in *Probability Theory and Related Fields*.
- [11] D. Nualart (2006): Malliavin Calculus and Related Topics. Second Edition. Springer.
- [12] A. Spataru (1999): Precise Asymptotics in Spitzer's law of large numbers. *Journal of Theoretical Probability*, **12**(3), 811-819.
- [13] F. Spitzer (1956): A combinatorial lemma and its applications to probability theory. Trans. Amer. Math. Soc., 82, 323-339.
- [14] W. B. Wu (2006): Unit root testing for functionals of linear processes. *Econometric Theory*, **22**(1), 1-14.