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Université de Panthéon-Sorbonne Paris 1,
90, rue de Tolbiac, 75634 Paris Cedex 13, France.

tudor@univ-paris1.fr

Abstract

Using recent results on the behavior of multiple Wiener-Itô integrals based on Stein’s
method, we prove Hsu-Robbins and Spitzer’s theorems for sequences of correlated random
variables related to the increments of the fractional Brownian motion.
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1 Introduction

A famous result by Hsu and Robbins [7] says that if X1,X2, . . . is a sequence of independent
identically distributed random variables with zero mean and finite variance and Sn := X1 +
. . . + Xn, then

∑

n≥1

P (|Sn| > εn) < ∞

for every ε > 0. Later, Erdös ([3], [4]) showed that the converse implication also holds, namely
if the above series is finite for every ε > 0 and X1,X2, . . . are independent and identically
distributed, then EX1 = 0 and EX2

1 < ∞. Since then, many authors extended this result in
several directions.

Spitzer’s showed in [13] that

∑

n≥1

1

n
P (|Sn| > εn) < ∞

for every ε > 0 if and only if EX1 = 0 and E|X1| < ∞. Also, Spitzer’s theorem has been
the object of various generalizations and variants. One of the problems related to the Hsu-
Robbins’ and Spitzer’s theorems is to find the precise asymptotic as ε → 0 of the quantities
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∑

n≥1 P (|Sn| > εn) and
∑

n≥1
1
n
P (|Sn| > εn). Heyde [5] showed that

lim
ε→0

ε2
∑

n≥1

P (|Sn| > εn) = EX2
1 (1)

whenever EX1 = 0 and EX2
1 < ∞. In the case when X is attracted to a stable distribution

of exponent α > 1, Spataru [12] proved that

lim
ε→0

1

− log ε

∑

n≥1

1

n
P (|Sn| > εn) =

α

α − 1
. (2)

The purpose of this paper is to prove Hsu-Robbins and Spitzer’s theorems for sequences of
correlated random variables, related to the increments of fractional Brownian motion, in the
spirit of [5] or [12]. Recall that the fractional Brownian motion (BH

t )t∈[0,1] is a centered

Gaussian process with covariance function RH(t, s) = E(BH
t BH

s ) = 1
2(t2H + s2H − |t− s|2H).

It can be also defined as the unique self-similar Gaussian process with stationary increments.
Concretely, in this paper we will study the behavior of the tail probabilities of the sequence

Vn =

n−1
∑

k=0

Hq

(

nH
(

B k+1
n

− B k
n

))

(3)

where B is a fractional Brownian motion with Hurst parameter H ∈ (0, 1) (in the sequel we
will omit the superscript H for B) and Hq is the Hermite polynomial of degree q ≥ 1 given

by Hq(x) = (−1)qe
x2

2
dq

dxq (e−
x2

2 ). The sequence Vn behaves as follows (see e.g. [9], Theorem
1; the result is also recalled in Section 3 of our paper): if 0 < H < 1 − 1

2q
, a central limit

theorem holds for the renormalized sequence Z
(1)
n = Vn

c1,q,H

√
n

while if 1 − 1
2q

< H < 1, the

sequence Z
(2)
n = Vn

c2,q,Hn1−q(1−H) converges in L2(Ω) to a Hermite random variable of order q

(see Section 2 for the definition of the Hermite random variable and Section 3 for a rigorous
statement concerning the convergence of Vn). Here c1,q,H , c2,q,H are explicit positive constants
depending on q and H.

We note that the techniques generally used in the literature to prove the Hsu-Robbins
and Spitzer’s results are strongly related to the independence of the random variables X1,X2, . . . .

In our case the variables are correlated. Indeed, for any k, l ≥ 1 we have
E (Hq(Bk+1 − Bk)Hq(Bl+1 − Bl)) = 1

(q!)2 ρH(k− l) where the correlation function is ρH(k) =
1
2

(

(k + 1)2H + (k − 1)2H − 2k2H
)

which is not equal to zero unless H = 1
2 (which is the case

of the standard Brownian motion). We use new techniques based on the estimates for the
multiple Wiener-Itô integrals obtained in [2], [10] via Stein’s method and Malliavin calculus.
Concretely, we study in this paper the behavior as ε → 0 of the quantities

∑

n≥1

1

n
P (Vn > εn) =

∑

n≥1

1

n
P
(

Z(1)
n > c−1

1,q,Hε
√

n
)

, (4)
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and
∑

n≥1

P (Vn > εn) =
∑

n≥1

P
(

Z(1)
n > c−1

1,q,Hε
√

n
)

, (5)

if 0 < H < 1 − 1
2q

and of

∑

n≥1

1

n
P
(

Vn > εn2−2q(1−H)
)

=
∑

n≥1

1

n
P
(

Z(2)
n > c−1

2,q,Hεn1−q(1−H)
)

(6)

and
∑

n≥1

P
(

Vn > εn2−2q(1−H)
)

=
∑

n≥1

P
(

Z(2)
n > c−1

2,q,Hεn1−q(1−H)
)

(7)

if 1 − 1
2q

< H < 1. The basic idea in our proofs is that, if we replace Z
(1)
n and Z

(2)
n by

their limits (standard normal random variable or Hermite random variable) in the above
expressions, the behavior as ε → 0 can be obtained by standard calculations. Then we need

to estimate the difference between the tail probabilities of Z
(1)
n , Z

(2)
n and the tail probabilities

of their limits. To this end, we will use the estimates obtained in [2], [10] via Malliavin
calculus and we are able to prove that this difference converges to zero in all cases. We
obtain that, as ε → 0, the quantities (4) and (6) are of order of log ε while the functions (5)
and (7) are of order of ε2 and ε1−q(1−H) respectively.

The paper is organized as follows. Section 2 contains some preliminaries on the
stochastic analysis on Wiener chaos. In Section 3 we prove the Spitzer’s theorem for the
variations of the fractional Brownian motion while Section 4 is devoted to the Hsu-Robbins
theorem for this sequence.

Throughout the paper we will denote by c a generic strictly positive constant which
may vary from line to line (and even on the same line).

2 Preliminaries

Let (Wt)t∈[0,1] be a classical Wiener process on a standard Wiener space (Ω,F ,P). If f ∈
L2([0, 1]n) with n ≥ 1 integer, we introduce the multiple Wiener-Itô integral of f with respect
to W . The basic reference is [11].

Let f ∈ Sm be an elementary function with m variables that can be written as

f =
∑

i1,...,im

ci1,...im1Ai1
×...×Aim

where the coefficients satisfy ci1,...im = 0 if two indices ik and il are equal and the sets
Ai ∈ B([0, 1]) are disjoint. For such a step function f we define

Im(f) =
∑

i1,...,im

ci1,...imW (Ai1) . . . W (Aim)
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where we put W (A) =
∫ 1
0 1A(s)dWs if A ∈ B([0, 1]). It can be seen that the mapping In

constructed above from Sm to L2(Ω) is an isometry on Sm , i.e.

E [In(f)Im(g)] = n!〈f, g〉L2([0,1]n) if m = n (8)

and
E [In(f)Im(g)] = 0 if m 6= n.

Since the set Sn is dense in L2([0, 1]n) for every n ≥ 1 the mapping In can be extended
to an isometry from L2([0, 1]n) to L2(Ω) and the above properties hold true for this extension.

We will need the following bound for the tail probabilities of multiple Wiener-Itô
integrals (see [8], Theorem 4.1)

P (|In(f)| > u) ≤ c exp

(

(−cu

σ

)
2
n

)

(9)

for all u > 0, n ≥ 1, with σ = ‖f‖L2([0,1]n).
The Hermite random variable of order q ≥ 1 that appears as limit in Theorem 1,

point ii. is defined as (see [9])
Z = d(q,H)Iq(L) (10)

where the kernel L ∈ L2([0, 1]q) is given by

L(y1, . . . , yq) =

∫ 1

y1∨...∨yq

∂1K
H(u, y1) . . . ∂1K

H(u, yq)du.

The constant d(q,H) is a positive normalizing constant that guarantees that EZ2 = 1 and
KH is the standard kernel of the fractional Brownian motion (see [11], Section 5). We will
not need the explicit expression of this kernel. Note that the case q = 1 corresponds to the
fractional Brownian motion and the case q = 2 corresponds to the Rosenblatt process.

3 Spitzer’s theorem

Let us start by recalling the following result on the convergence of the sequence Vn (3) (see
[9], Theorem 1).

Theorem 1 Let q ≥ 2 an integer and let (Bt)t≥0 a fractional Brownian motion with Hurst
parameter H ∈ (0, 1). Then, with some explicit positive constants c1,q,H , c2,q,H depending
only on q and H we have

i. If 0 < H < 1 − 1
2q

then

Vn

c1,q,H

√
n

Law−→n→∞N(0, 1) (11)
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ii. If 1 − 1
2q

< H < 1 then

Vn

c2,q,Hn1−q(1−H)

L2

−→n→∞Z (12)

where Z is a Hermite random variable given by (10).

In the case H = 1− 1
2q

the limit is still Gaussian but the normalization is different. However
we will not treat this case in the present work.

We set

Z(1)
n =

Vn

c1,q,H

√
n

, Z(2)
n =

Vn

c2,q,Hn1−q(1−H)
(13)

with the constants c1,q,H , c2,q,H from Theorem 1.
Let us denote, for every ε > 0,

f1(ε) =
∑

n≥1

1

n
P (Vn > εn) =

∑

n≥1

1

n
P
(

Z(1)
n > c−1

1,q,Hε
√

n
)

(14)

and

f2(ε) =
∑

n≥1

1

n
P
(

Vn > εn2−2q(1−H)
)

=
∑

n≥1

1

n
P
(

Z(2)
n > c−1

2,q,Hεn1−q(1−H)
)

(15)

Remark 1 It is natural to consider the tail probability of order n2−2q(1−H) in (15) because
the L2 norm of the sequence Vn is in this case of order n1−q(1−H).

We are interested to study the behavior of fi(ε) (i = 1, 2) as ε → 0. For a given
random variable X, we set ΦX(z) = 1 − P (X < z) + P (X < −z).

The first lemma gives the asymptotics of the functions fi(ǫ) as ε → 0 when Z
(i)
n are

replaced by their limits.

Lemma 1 Consider c > 0.

i. Let Z(1) be a standard normal random variable. Then as

1

− log cε

∑

n≥1

1

n
ΦZ(1)(cε

√
n) →ε→0 2.

ii. Let Z(2) be a Hermite random variable or order q given by (10). Then, for any integer
q ≥ 1

1

− log cε

∑

n≥1

1

n
ΦZ(2)(cεn1−q(1−H)) →ε→0

1

1 − q(1 − H)
.
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Proof: The case when Z(1) follows the standard normal law is hidden in [12]. We will give
the ideas of the proof. We can write (see [12])

∑

n≥1

1

n
ΦZ(1)(cε

√
n) =

∫ ∞

1

1

x
ΦZ(1)(cε

√
x)dx − 1

2
ΦZ(1)(cε) −

∫ ∞

1
P1(x)d

[

1

x
ΦZ(1)(cε

√
x)

]

.

with P1(x) = [x] − x + 1
2 . Clearly as ε → 0, 1

log ε
ΦZ(1)(cε) → 0 because ΦZ(1) is a bounded

function and concerning the last term it is also trivial to observe that

1

− log cε

∫ ∞

1
P1(x)d

[

1

x
ΦZ(1)(cε

√
x)

]

=
1

− log cε

(

−
∫ ∞

1
P1(x)

(

1

x2
ΦZ(1)(cε

√
x)dx + cε

1

2
x− 1

2
1

x
Φ′

Z(1)(ε
√

x)

)

dx

)

→ε→0 0

since ΦZ(1) and Φ′
Z(1) are bounded. Therefore the asymptotics of the function f1(ε) as ε → 0

will be given by
∫∞
1

1
x
ΦZ(1)(cε

√
x)dx. By making the change of variables cε

√
x = y, we get

lim
ε→0

1

− log cε

∫ ∞

1

1

x
ΦZ(1)(cε

√
x)dx = lim

ε→0

1

− log cε
2

∫ ∞

cε

1

y
ΦZ(1)(y)dy = lim

ε→0
2ΦZ(1)(cε) = 2.

Let us consider now the case of the Hermite random variable. We will have as above

lim
ε→0

1

− log cε

∑

n≥1

1

n
ΦZ(2)(cεn1−q(1−H))

= lim
ε→0

1

− log cε

(
∫ ∞

1

1

x
ΦZ(2)(cεx1−q(1−H))dx −

∫ ∞

1
P1(x)d

[

1

x
ΦZ(2)(cεx1−q(1−H))

])

By making the change of variables cεx1−q(1−H) = y we will obtain

lim
ε→0

1

− log cε

∫ ∞

1

1

x
ΦZ(2)(cεx1−q(1−H))dx

= lim
ε→0

1

− log cε

1

1 − q(1 − H)

∫ ∞

cε

1

y
ΦZ(2)(y)dy = lim

ε→0

1

1 − q(1 − H)
ΦZ(2)(cε) =

1

1 − q(1 − H)

where we used the fact that ΦZ(2)(y) ≤ y−2E|Z(2)|2 and so limy→∞ log yΦZ(2)(y) = 0.
It remains to show that 1

− log cε

∫∞
1 P1(x)d

[

1
x
ΦZ(2)(cεx1−q(1−H))

]

converges to zero as
ε tends to 0 (note that actually it follows from a result by [1] that a Hermite random variable
has a density, but we don’t need it explicitly, we only use the fact that ΦZ(2) is differentiable
almost everywhere). This is equal to

lim
ε

1

− log cε

∫ ∞

1
P1(x)cε(1 − q(1 − H))x−q(1−H)−1Φ′

Z(2)(cεx
1−q(1−H))dx

= c
ε

− log ε
(cε)

q(1−H)
1−q(1−H)

∫ ∞

cε

P1

(

( y

cε

)
1

1−q(1−H)

)

Φ′
Z(2)(y)y

− 1
1−q(1−H) dy

≤ c
1

− log ε

∫ ∞

cε

P1

(

(

1

cε

)
1

1−q(1−H)

)

Φ′
Z(2)(y)dy
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which clearly goes to zero since P1 is bounded and
∫∞
0 Φ′

Z(2)(y)dy = 1.

The next result estimates the limit of the difference between the functions fi(ε) given
by (14), (15) and the sequence in Lemma 1.

Proposition 1 Let q ≥ 2 and c > 0.

i. If H < 1− 1
2q

, let Z
(1)
n be given by (13) and let Z(1) be standard normal random variable.

Then it holds

1

− log cε





∑

n≥1

1

n
P
(

|Z(1)
n | > cε

√
n
)

−
∑

n≥1

1

n
P
(

|Z(1)| > cε
√

n
)



→ε→0 0.

ii. Let Z(2) be a Hermite random variable of order q ≥ 2 and H > 1 − 1
2q

. Then

1

− log cε





∑

n≥1

1

n
P
(

|Z(2)
n | > cεn1−q(1−H)

)

−
∑

n≥1

1

n
P
(

|Z(2)| > cεn1−q(1−H)
)



→ε→0 0.

Proof: Let us start with the point i. Assume H < 1 − 1
2q

. We can write

∑

n≥1

1

n
P
(

|Z(1)
n | > cε

√
n
)

−
∑

n≥1

1

n
P
(

|Z(1)| > cε
√

n
)

=
∑

n≥1

1

n

[

P
(

Z(1)
n > cε

√
n
)

− P
(

Z(1) > cε
√

n
)]

+
∑

n≥1

[

1

n
P
(

Z(1)
n < −cε

√
n
)

− P
(

Z(1) < −cε
√

n
)

]

≤ 2
∑

n≥1

1

n
sup
x∈R

∣

∣

∣P
(

Z(1)
n > x

)

− P
(

Z(1) > x
)∣

∣

∣ .

It follows from [10], Theorem 4.1 that

sup
x∈R

∣

∣

∣P
(

Z(1)
n > x

)

− P
(

Z(1) > x
)∣

∣

∣ ≤ c











1√
n
, H ∈ (0, 1

2 ]

nH−1, H ∈ [12 , 2q−3
2q−2 )

nqH−q+ 1
2 , H ∈ [2q−3

2q−2 , 1 − 1
2q

).

(16)

and this implies that

∑

n≥1

1

n
sup
x∈R

∣

∣

∣
P
(

Z(i)
n > x

)

− P
(

Z(i) > x
)∣

∣

∣
≤ c











∑

n≥1
1

n
√

n
, H ∈ (0, 1

2 ]
∑

n≥1 nH−2, H ∈ [12 , 2q−3
2q−2)

∑

n≥1 nqH−q− 1
2 , H ∈ [2q−3

2q−2 , 1 − 1
2q

).

(17)
and the last sums are finite (for the last one we use H < 1 − 1

2q
). The conclusion follows.
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Concerning the point ii. (the case H > 1 − 1
2q

), by using a result in Proposition 3.1
of [2] we have

sup
x∈R

∣

∣

∣P
(

Z(i)
n > x

)

− P
(

Z(i) > x
)∣

∣

∣ ≤ c

(

E

∣

∣

∣Z(2)
n − Z(2)

∣

∣

∣

2
)

1
2q

≤ cn
1− 1

2q
−H

(18)

and as a consequence

∑

n≥1

1

n
P
(

|Z(2)
n | > cεn1−q(1−H)

)

−
∑

n≥1

1

n
P
(

|Z(2)| > cεn1−q(1−H)
)

≤ c
∑

n≥1

n
− 1

2q
−H

and the above series is convergent because H > 1 − 1
2q

.

We state now the Spitzer’s theorem for the variations of the fractional Brownian
motion.

Theorem 2 Let f1, f2 be given by (14), (15) and the constants c1,q,H , c2,q,H be those from
Theorem 1.

i. If 0 < H < 1 − 1
2q

then

lim
ε→0

1

log(c−1
1,H,qε)

f1(ε) = 2.

ii. If 1 > H > 1 − 1
2q

then

lim
ε→0

1

log(c−1
2,H,qε)

f2(ε) =
1

1 − q(1 − H)
.

Proof: It is a consequence of Lemma 1 and Proposition 1.

Remark 2 Concerning the case H = 1− 1
2q

, note that the correct normalization of Vn (3) is
1

(log n)
√

n
. Because of the appearance of the term log n our approach is not directly applicable

to this case.

4 Hsu-Robbins theorem for the variations of fractional Brow-

nian motion

In this section we prove a version of the Hsu-Robbins theorem for the variations of the
fractional Brownian motion. Concretely, we denote here by, for every ε > 0

g1(ε) =
∑

n≥1

P (|Vn| > εn) (19)

8



if H < 1 − 1
2q

and by

g2(ε) =
∑

n≥1

P
(

|Vn| > εn2−2q(1−H)
)

(20)

if H > 1 − 1
2q

. and we estimate the behavior of the functions gi(ε) as ε → 0. Note that we
can write

g1(ε) =
∑

n≥1

P
(

|Z(1)
n | > c−1

1,q,Hε
√

n
)

, g2(ε) =
∑

n≥1

P
(

|Z(2)
n | > c−1

2,q,Hεn1−q(1−H)
)

with Z
(1)
n , Z

(2)
n given by (13).

We decompose it as: for H < 1 − 1
2q

g1(ε) =
∑

n≥1

P
(

|Z(1)| > c−1
1,q,Hε

√
n
)

+
∑

n≥1

[

P
(

|Z(1)
n | > c−1

1,q,Hε
√

n
)

− P
(

|Z(1)| > c−1
1,q,Hε

√
n
)]

.

and for H > 1 − 1
2q

g2(ε) =
∑

n≥1

P
(

|Z(2)| > εc−1
2,q,Hn1−q(1−H)

)

+
∑

n≥1

[

P
(

|Z(2)
n | > c−1

2,q,Hεn1−q(1−H)
)

− P
(

|Z(2)| > c−1
2,q,Hεn1−q(1−H)

)]

.

We start again by consider the situation when Z
(i)
n are replaced by their limits.

Lemma 2 i. Let Z(1) be a standard normal random variable. Then

lim
ε→0

(cε)2
∑

n≥1

P
(

|Z(1)| > cε
√

n
)

= 1.

ii. Let Z(2) be a Hermite random variable with H > 1 − 1
2q

. Then

lim
ε→0

(cε)
1

1−q(1−H)

∑

n≥1

P
(

|Z(2)| > cεn1−q(1−H)
)

= E|Z(2)|
1

1−q(1−H) .

Proof: The part i. is a consequence of the result of Heyde [5]. Indeed take Xi ∼ N(0, 1) in
(1). Concerning part ii. we can write

lim
ε→0

(cε)
1

1−q(1−H)

∑

n≥1

ΦZ(2)(cεn1−q(1−H))

= lim
ε→0

(cε)
1

1−q(1−H)

[∫ ∞

1
ΦZ(2)(cεx1−q(1−H))dx −

∫ ∞

1
P1(x)d

[

ΦZ(2)(cεx1−q(1−H))
]

]

:= lim
ε→0

(A(ε) + B(ε))

9



with P1(x) = [x] − x + 1
2 . Moreover

A(ε) = (cε)
1

1−q(1−H)

∫ ∞

1
ΦZ(2)(cεx1−q(1−H))dx

=
1

1 − q(1 − H)

∫ ∞

cε

ΦZ(2)(y)y
1

1−q(1−H)
−1

dy.

Since ΦZ(2)(y) ≤ y−2 we have ΦZ(2)(y)y
1

1−q(1−H) →y→∞ 0 and therefore

A(ε) = −ΦZ(2)(cε)(cε)
1

1−q(1−H) −
∫ ∞

cε

Φ′
Z(2)(y)y

1
1−q(1−H) dy

where the first terms goes to zero and the second to E
∣

∣Z(2)
∣

∣

1
1−q(1−H) . The proof that the

term B(ε) converges to zero is similar to the proof of Lemma 2, point ii.

Remark 3 The Hermite random variable has moments of all orders (in particular the mo-
ment of order 1

1−q(1−H) exists) since it is the value at time 1 of a selfsimilar process with
stationary increments.

Proposition 2 i. Let H < 1− 1
2q

and let Z
(1)
n be given by (13). Let also Z(1) be a standard

normal random variable. Then

(cε)2
∑

n≥1

[

P
(

|Z(1)
n | > cε

√
n
)

− P
(

|Z(1)| > cε
√

n
)]

→ε→0 0

ii. Let H > 1 − 1
2q

and let Z
(2)
n be given by (13). Let Z(2) be a Hermite random variable.

Then

(cε)
1

1−q(1−H)

∑

n≥1

[

P
(

|Z(2)
n | > cεn1−q(1−H)

)

− P
(

|Z(2)| > cεn1−q(1−H)
)]

→ε→0 0.

Remark 4 Note that the bounds (16), (18) does not help here because the series that appear
after their use are not convergent.

Proof of Proposition 2: Case H < 1 − 1
2q

. We have, for some β > 0 to be chosen later,

ε2
∑

n≥1

[

P
(

|Z(1)
n | > cε

√
n
)

− P
(

|Z(1)| > cε
√

n
)]

= ε2

[ε−β ]
∑

n=1

[

P
(

|Z(1)
n | > cε

√
n
)

− P
(

|Z(1)| > cε
√

n
)]

+ε2
∑

n>[ε−β]

[

P
(

|Z(1)
n | > cε

√
n
)

− P
(

|Z(1)| > cε
√

n
)]

:= I1(ε) + J1(ε).
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Consider first the situation when H ∈ (0, 1
2 ]. Let us choose a real number β such that

2 < β < 4. By using (16),

I1(ε) ≤ cε2

[ε−β ]
∑

n=1

n− 1
2 ≤ cε2ε−

β

2 →ε→0 0

since β < 4. Next, by using the bound for the tail probabilities of multiple integrals and

since E

∣

∣

∣
Z

(1)
n

∣

∣

∣

2
converges to 1 as n → ∞

J1(ε) = ε2
∑

n>[ε−β]

P
(

Z(1)
n > cε

√
n
)

≤ cε−2
∑

n>[ε−β]

exp











−cε
√

n
(

E

∣

∣

∣Z
(1)
n

∣

∣

∣

2
)

1
2











2
q

≤ ε2
∑

n>[ε−β ]

exp

(

(

−cn
− 1

β
√

n
)

2
q

)

and since converges to zero for β > 2. The same argument shows that ε2
∑

n>[ε−β ] P
(

Z(1) > cε
√

n
)

converges to zero.
The case when H ∈ (1

2 , 2q−3
2q−2) can be obtained by taking 2 < β < 2

H
(it is possible

since H < 1) while in the case H ∈ (2q−3
2q−2 , 1− 1

2q
) we have to choose 2 < β < 2

qH−q+ 3
2

(which

is possible because H < 1 − 1
2q

!).

Case H > 1 − 1
2q

. We have, with some suitable β > 0

ε
1

1−q(1−H)

∑

n≥1

[

P
(

|Z(2)
n | > cεn1−q(1−H)

)

− P
(

|Z(2)| > cεn1−q(1−H)
)]

= ε
1

1−q(1−H)

[ε−β ]
∑

n=1

[

P
(

|Z(2)
n | > cεn1−q(1−H)

)

− P
(

|Z(2)| > cεn1−q(1−H)
)]

+ε
1

1−q(1−H)

∑

n≥[ε−β]

[

P
(

|Z(2)
n | > cεn1−q(1−H)

)

− P
(

|Z(2)| > cεn1−q(1−H)
)]

:= I2(ε) + J2(ε).

Choose 1
1−q(1−H) < β < 1

(1−q(1−H))(2−H− 1
2q

)
(again, this is always possible when H > 1− 1

2q
!).

Then
I2(ε) ≤ ce

1
1−q(1−H) ε

(−β)(2−H− 1
2q

) →ε→0 0
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and by (9)

J2(ε) ≤ c
∑

n>[ε−β ]

exp























−cεn1−q(1−H)

(

E

∣

∣

∣Z
(2)
n

∣

∣

∣

2
) 1

2











2
q













≤ c
∑

n>[ε−β]

exp
(

cn
− 1

β n1−q(1−H)
)

2
q →ε→0 0

We state the main result of this section which is a consequence of Lemma 2 and
Proposition 2.

Theorem 3 Let q ≥ 2 and let c1,q,H , c2,q,H be the constants from Theorem 1. Let Z(1) be
a standard normal random variable, Z(2) a Hermite random variable of order q ≥ 2 and let
g1, g2 be given by (19) and (20). Then

i. If 0 < H < 1 − 1
2q

, we have (c−1
1,q,Hε)2g1(ε) →ε→0 1 = EZ(1).

ii. If 1 − 1
2q

< H < 1 we have (c−1
2,q,Hε)

1
1−q(1−H) g2(ε) →ε→0 E|Z(2)|

1
1−q(1−H) .

Remark 5 In the case H = 1
2 we retrieve the result (1) of [5]. The case q = 1 is trivial,

because in this case, since Vn = Bn and EV 2
n = n2H , we obtain the following (by applying

Lemma 1 and 2 with q = 1)

1

log ε

∑

n≥1

1

n
P
(

|Vn| > εn2H
)

→ε→0
1

H

and

ε2
∑

n≥1

P
(

|Vn| > εn2H
)

→ε→0 E

∣

∣

∣
Z(1)

∣

∣

∣

1
H

.

Remark 6 Let (εi)i∈Z be a sequence of i.i.d. centered random variable with finite variance
and let (ai)i≥1 a square summable real sequence. Define Xn =

∑

i≥1 aiεn−i. Then the se-

quence SN =
∑N

n=1 [K(Xn) − EK(Xn)] satisfies a central limit theorem or a non-central
limit theorem according to the properties of the measurable function K (see [6] or [14]). We
think that our tools can be applied to investigate the tail probabilities of the sequence SN in
the spirit of [5] or [12] at least the in particular cases (for example, when εi represents the
increment Wi+1 −Wi of a Wiener process because in this case εi can be written as a multiple
integral of order one and Xn can be decomposed into a sum of multiple integrals. We thank
the referee for mentioning the references [6] and [14].
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