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Using recent results on the behavior of multiple Wiener-Itô integrals based on Stein's method, we prove Hsu-Robbins and Spitzer's theorems for sequences of correlated random variables related to the increments of the fractional Brownian motion.

Introduction

A famous result by Hsu and Robbins [START_REF] Hsu | Complete convergence and the law of large numbers[END_REF] says that if X 1 , X 2 , . . . is a sequence of independent identically distributed random variables with zero mean and finite variance and S n := X 1 + . . . + X n , then n≥1 P (|S n | > εn) < ∞ for every ε > 0. Later, Erdös ([3], [START_REF] Erdös | Remark on my paper "On a theorem of Hsu and Robbins[END_REF]) showed that the converse implication also holds, namely if the above series is finite for every ε > 0 and X 1 , X 2 , . . . are independent and identically distributed, then EX 1 = 0 and EX 2 1 < ∞. Since then, many authors extended this result in several directions.

Spitzer's showed in [START_REF] Spitzer | A combinatorial lemma and its applications to probability theory[END_REF] that

n≥1 1 n P (|S n | > εn) < ∞
for every ε > 0 if and only if EX 1 = 0 and E|X 1 | < ∞. Also, Spitzer's theorem has been the object of various generalizations and variants. One of the problems related to the Hsu-Robbins' and Spitzer's theorems is to find the precise asymptotic as ε → 0 of the quantities 1 n≥1 P (|S n | > εn) and n≥1

1 n P (|S n | > εn). Heyde [START_REF] Heyde | A supplement to the strong law of large numbers[END_REF] showed that lim

ε→0 ε 2 n≥1 P (|S n | > εn) = EX 2 1 ( 1 
)
whenever EX 1 = 0 and EX 2 1 < ∞. In the case when X is attracted to a stable distribution of exponent α > 1, Spataru [START_REF] Spataru | Precise Asymptotics in Spitzer's law of large numbers[END_REF] proved that lim ε→0 1 log ε n≥1

1 n P (|S n | > εn) = α α -1 . ( 2 
)
The purpose of this paper is to prove Hsu-Robbins and Spitzer's theorems for sequences of correlated random variables, related to the increments of fractional Brownian motion, in the spirit of [START_REF] Heyde | A supplement to the strong law of large numbers[END_REF] or [START_REF] Spataru | Precise Asymptotics in Spitzer's law of large numbers[END_REF]. Recall that the fractional Brownian motion (B H t ) t∈[0,1] is a centered Gaussian process with covariance function

R H (t, s) = E(B H t B H s ) = 1 2 (t 2H + s 2H -|t -s| 2H
). It can be also defined as the unique self-similar Gaussian process with stationary increments. Concretely, in this paper we will study the behavior of the tail probabilities of the sequence

V n = n-1 k=0 H q n H B k+1 n -B k n (3)
where B is a fractional Brownian motion with Hurst parameter H ∈ (0, 1) (in the sequel we will omit the superscript H for B) and H q is the Hermite polynomial of degree q ≥ 1 given by H q (x) = (-1) q e x 2 2 d q dx q (e -x 2

2 ). The sequence V n behaves as follows (see e.g. [START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of fractional Brownian motion[END_REF], Theorem 1; the result is also recalled in Section 3 of our paper): if 0 < H < 1 -1 2q , a central limit theorem holds for the renormalized sequence Z

(1)

n = Vn c 1,q,H √ n while if 1 -1 2q < H < 1, the sequence Z (2) n =
Vn c 2,q,H n 1-q(1-H) converges in L 2 (Ω) to a Hermite random variable of order q (see Section 2 for the definition of the Hermite random variable and Section 3 for a rigorous statement concerning the convergence of V n ). Here c 1,q,H , c 2,q,H are explicit positive constants depending on q and H.

We note that the techniques generally used in the literature to prove the Hsu-Robbins and Spitzer's results are strongly related to the independence of the random variables X 1 , X 2 , . . . . In our case the variables are correlated. Indeed, for any k, l ≥ 1 we have

E (H q (B k+1 -B k )H q (B l+1 -B l )) = 1 (q!) 2 ρ H (k -l) where the correlation function is ρ H (k) = 1 2 (k + 1) 2H + (k -1) 2H -2k 2H
which is not equal to zero unless H = 1 2 (which is the case of the standard Brownian motion). We use new techniques based on the estimates for the multiple Wiener-Itô integrals obtained in [START_REF] Breton | Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion[END_REF], [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] via Stein's method and Malliavin calculus. Concretely, we study in this paper the behavior as ε → 0 of the quantities

n≥1 1 n P (V n > εn) = n≥1 1 n P Z (1) n > c -1 1,q,H ε √ n , (4) 
and

n≥1 P (V n > εn) = n≥1 P Z (1) n > c -1 1,q,H ε √ n , (5) 
if 0 < H < 1 -1 2q and of

n≥1 1 n P V n > εn 2-2q(1-H) = n≥1 1 n P Z (2) n > c -1 2,q,H εn 1-q(1-H) (6) 
and

n≥1 P V n > εn 2-2q(1-H) = n≥1 P Z (2) n > c -1 2,q,H εn 1-q(1-H) (7) if 1 -1 2q < H < 1.
The basic idea in our proofs is that, if we replace Z

n and Z

n by their limits (standard normal random variable or Hermite random variable) in the above expressions, the behavior as ε → 0 can be obtained by standard calculations. Then we need to estimate the difference between the tail probabilities of Z

(1) n , Z (2) 
n and the tail probabilities of their limits. To this end, we will use the estimates obtained in [START_REF] Breton | Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion[END_REF], [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] via Malliavin calculus and we are able to prove that this difference converges to zero in all cases. We obtain that, as ε → 0, the quantities (4) and ( 6) are of order of log ε while the functions ( 5) and ( 7) are of order of ε 2 and ε 1-q(1-H) respectively.

The paper is organized as follows. Section 2 contains some preliminaries on the stochastic analysis on Wiener chaos. In Section 3 we prove the Spitzer's theorem for the variations of the fractional Brownian motion while Section 4 is devoted to the Hsu-Robbins theorem for this sequence.

Throughout the paper we will denote by c a generic strictly positive constant which may vary from line to line (and even on the same line).

Preliminaries

Let (W t ) t∈[0,1] be a classical Wiener process on a standard Wiener space (Ω, F, P). If f ∈ L 2 ([0, 1] n ) with n ≥ 1 integer, we introduce the multiple Wiener-Itô integral of f with respect to W . The basic reference is [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF].

Let f ∈ S m be an elementary function with m variables that can be written as

f = i 1 ,...,im c i 1 ,...im 1 A i 1 ×...×A im
where the coefficients satisfy c i 1 ,...im = 0 if two indices i k and i l are equal and the sets

A i ∈ B([0, 1]) are disjoint.
For such a step function f we define

I m (f ) = i 1 ,...,im c i 1 ,...im W (A i 1 ) . . . W (A im ) 3
where we put

W (A) = 1 0 1 A (s)dW s if A ∈ B([0, 1]
). It can be seen that the mapping I n constructed above from S m to L 2 (Ω) is an isometry on S m , i.e.

E [I n (f )I m (g)] = n! f, g L 2 ([0,1] n ) if m = n (8) 
and

E [I n (f )I m (g)] = 0 if m = n.
Since the set S n is dense in L 2 ([0, 1] n ) for every n ≥ 1 the mapping I n can be extended to an isometry from L 2 ([0, 1] n ) to L 2 (Ω) and the above properties hold true for this extension.

We will need the following bound for the tail probabilities of multiple Wiener-Itô integrals (see [START_REF] Major | Tail behavior of multiple integrals and U -statitics[END_REF], Theorem 4.1)

P (|I n (f )| > u) ≤ c exp -cu σ 2 n (9) for all u > 0, n ≥ 1, with σ = f L 2 ([0,1] n ) .
The Hermite random variable of order q ≥ 1 that appears as limit in Theorem 1, point ii. is defined as (see [START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of fractional Brownian motion[END_REF])

Z = d(q, H)I q (L) (10) 
where the kernel L ∈ L 2 ([0, 1] q ) is given by

L(y 1 , . . . , y q ) = 1 y 1 ∨...∨yq ∂ 1 K H (u, y 1 ) . . . ∂ 1 K H (u, y q )du.
The constant d(q, H) is a positive normalizing constant that guarantees that EZ 2 = 1 and K H is the standard kernel of the fractional Brownian motion (see [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF], Section 5). We will not need the explicit expression of this kernel. Note that the case q = 1 corresponds to the fractional Brownian motion and the case q = 2 corresponds to the Rosenblatt process.

Spitzer's theorem

Let us start by recalling the following result on the convergence of the sequence V n (3) (see [START_REF] Nourdin | Central and non-central limit theorems for weighted power variations of fractional Brownian motion[END_REF], Theorem 1).

Theorem 1 Let q ≥ 2 an integer and let (B t ) t≥0 a fractional Brownian motion with Hurst parameter H ∈ (0, 1). Then, with some explicit positive constants c 1,q,H , c 2,q,H depending only on q and H we have

i. If 0 < H < 1 -1 2q then V n c 1,q,H √ n Law -→ n→∞ N (0, 1) (11) 
ii

. If 1 -1 2q < H < 1 then V n c 2,q,H n 1-q(1-H) L 2 -→ n→∞ Z ( 12 
)
where Z is a Hermite random variable given by [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF].

In the case H = 1 -1 2q the limit is still Gaussian but the normalization is different. However we will not treat this case in the present work.

We set

Z (1) n = V n c 1,q,H √ n , Z (2) n = V n c 2,q,H n 1-q(1-H) (13) 
with the constants c 1,q,H , c 2,q,H from Theorem 1.

Let us denote, for every ε > 0,

f 1 (ε) = n≥1 1 n P (V n > εn) = n≥1 1 n P Z (1) n > c -1 1,q,H ε √ n (14) 
and

f 2 (ε) = n≥1 1 n P V n > εn 2-2q(1-H) = n≥1 1 n P Z (2) n > c -1 2,q,H εn 1-q(1-H) (15)
Remark 1 It is natural to consider the tail probability of order n 2-2q(1-H) in (15) because the L 2 norm of the sequence V n is in this case of order n 1-q(1-H) .

We are interested to study the behavior of f i (ε) (i = 1, 2) as ε → 0. For a given random variable X, we set Φ X (z) = 1 -P (X < z) + P (X < -z).

The first lemma gives the asymptotics of the functions f i (ǫ) as ε → 0 when

Z (i)
n are replaced by their limits.

Lemma 1 Consider c > 0.

i. Let Z (1) be a standard normal random variable. Then as

1 -log cε n≥1 1 n Φ Z (1) (cε √ n) → ε→0 2.
ii. Let Z (2) be a Hermite random variable or order q given by (10). Then, for any integer

q ≥ 1 1 -log cε n≥1 1 n Φ Z (2) (cεn 1-q(1-H) ) → ε→0 1 1 -q(1 -H)
.

Proof: The case when Z (1) follows the standard normal law is hidden in [START_REF] Spataru | Precise Asymptotics in Spitzer's law of large numbers[END_REF]. We will give the ideas of the proof. We can write (see [START_REF] Spataru | Precise Asymptotics in Spitzer's law of large numbers[END_REF])

n≥1 1 n Φ Z (1) (cε √ n) = ∞ 1 1 x Φ Z (1) (cε √ x)dx - 1 2 Φ Z (1) (cε) - ∞ 1 P 1 (x)d 1 x Φ Z (1) (cε √ x) . with P 1 (x) = [x] -x + 1 2 . Clearly as ε → 0, 1 log ε Φ Z (1) (cε) → 0 because Φ Z (1)
is a bounded function and concerning the last term it is also trivial to observe that 1 log cε

∞ 1 P 1 (x)d 1 x Φ Z (1) (cε √ x) = 1 -log cε - ∞ 1 P 1 (x) 1 x 2 Φ Z (1) (cε √ x)dx + cε 1 2 x -1 2 1 x Φ ′ Z (1) (ε √ x) dx → ε→0 0 since Φ Z (1)
and Φ ′ Z (1) are bounded. Therefore the asymptotics of the function f 1 (ε) as ε → 0 will be given by

∞ 1 1 x Φ Z (1) (cε √ x)dx.
By making the change of variables cε √ x = y, we get

lim ε→0 1 -log cε ∞ 1 1 x Φ Z (1) (cε √ x)dx = lim ε→0 1 -log cε 2 ∞ cε 1 y Φ Z (1) (y)dy = lim ε→0 2Φ Z (1) (cε) = 2.
Let us consider now the case of the Hermite random variable. We will have as above

lim ε→0 1 -log cε n≥1 1 n Φ Z (2) (cεn 1-q(1-H) ) = lim ε→0 1 -log cε ∞ 1 1 x Φ Z (2) (cεx 1-q(1-H) )dx - ∞ 1 P 1 (x)d 1 x Φ Z (2) (cεx 1-q(1-H) )
By making the change of variables cεx 1-q(1-H) = y we will obtain

lim ε→0 1 -log cε ∞ 1 1 x Φ Z (2) (cεx 1-q(1-H) )dx = lim ε→0 1 -log cε 1 1 -q(1 -H) ∞ cε 1 y Φ Z (2) (y)dy = lim ε→0 1 1 -q(1 -H) Φ Z (2) (cε) = 1 1 -q(1 -H)
where we used the fact that Φ Z (2) (y) ≤ y -2 E|Z (2) | 2 and so lim y→∞ log yΦ Z (2) (y) = 0.

It remains to show that

1 -log cε ∞ 1 P 1 (x)d 1 x Φ Z (2) (cεx 1-q(1-H)
) converges to zero as ε tends to 0 (note that actually it follows from a result by [START_REF] Albin | A note on Rosenblatt distributions[END_REF] that a Hermite random variable has a density, but we don't need it explicitly, we only use the fact that Φ Z (2) is differentiable almost everywhere). This is equal to

lim ε 1 -log cε ∞ 1 P 1 (x)cε(1 -q(1 -H))x -q(1-H)-1 Φ ′ Z (2) (cεx 1-q(1-H) )dx = c ε -log ε (cε) q(1-H) 1-q(1-H) ∞ cε P 1 y cε 1 1-q(1-H) Φ ′ Z (2) (y)y - 1 1-q(1-H) dy ≤ c 1 -log ε ∞ cε P 1 1 cε 1 1-q(1-H) Φ ′ Z (2) (y)dy
which clearly goes to zero since P 1 is bounded and

∞ 0 Φ ′ Z (2) (y)dy = 1.
The next result estimates the limit of the difference between the functions f i (ε) given by ( 14), (15) and the sequence in Lemma 1.

Proposition 1 Let q ≥ 2 and c > 0.

i. If H < 1 -1 2q , let Z (1) 
n be given by ( 13) and let Z (1) be standard normal random variable. Then it holds

1 -log cε   n≥1 1 n P |Z (1) n | > cε √ n - n≥1 1 n P |Z (1) | > cε √ n   → ε→0 0.
ii. Let Z (2) be a Hermite random variable of order q ≥ 2 and H > 1 -1 2q . Then

1 -log cε   n≥1 1 n P |Z (2) n | > cεn 1-q(1-H) - n≥1 1 n P |Z (2) | > cεn 1-q(1-H)   → ε→0 0.
Proof: Let us start with the point i. Assume H < 1 -1 2q . We can write n≥1

1 n P |Z (1) n | > cε √ n - n≥1 1 n P |Z (1) | > cε √ n = n≥1 1 n P Z (1) n > cε √ n -P Z (1) > cε √ n + n≥1 1 n P Z (1) n < -cε √ n -P Z (1) < -cε √ n ≤ 2 n≥1 1 n sup x∈R P Z (1) n > x -P Z (1) > x .
It follows from [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], Theorem 4.1 that

sup x∈R P Z (1) n > x -P Z (1) > x ≤ c      1 √ n , H ∈ (0, 1 2 ] n H-1 , H ∈ [ 1 2 , 2q-3 2q-2 ) n qH-q+ 1 2 , H ∈ [ 2q-3 2q-2 , 1 -1 2q ). ( 16 
)
and this implies that

n≥1 1 n sup x∈R P Z (i) n > x -P Z (i) > x ≤ c      n≥1 1 n √ n , H ∈ (0, 1 2 ] n≥1 n H-2 , H ∈ [ 1 2 , 2q-3 2q-2 ) n≥1 n qH-q-1 2 , H ∈ [ 2q-3 2q-2 , 1 -1 2q ).
(17) and the last sums are finite (for the last one we use H < 1 -1 2q ). The conclusion follows.

Concerning the point ii. (the case H > 1 -1 2q ), by using a result in Proposition 3.1 of [START_REF] Breton | Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion[END_REF] we have

sup x∈R P Z (i) n > x -P Z (i) > x ≤ c E Z (2) n -Z (2) 2 1 2q ≤ cn 1-1 2q -H (18) 
and as a consequence

n≥1 1 n P |Z (2) n | > cεn 1-q(1-H) - n≥1 1 n P |Z (2) | > cεn 1-q(1-H) ≤ c n≥1 n -1 2q -H
and the above series is convergent because H > 1 -1 2q .

We state now the Spitzer's theorem for the variations of the fractional Brownian motion.

Theorem 2 Let f 1 , f 2 be given by ( 14), (15) and the constants c 1,q,H , c 2,q,H be those from Theorem 1.

i. If 0 < H < 1 -1 2q then lim ε→0 1 log(c -1 1,H,q ε) f 1 (ε) = 2. ii. If 1 > H > 1 -1 2q then lim ε→0 1 log(c -1 2,H,q ε) f 2 (ε) = 1 1 -q(1 -H)
.

Proof: It is a consequence of Lemma 1 and Proposition 1.

Remark 2 Concerning the case

H = 1 -1 2q , note that the correct normalization of V n (3) is 1 (log n) √ n .
Because of the appearance of the term log n our approach is not directly applicable to this case.

Hsu-Robbins theorem for the variations of fractional Brownian motion

In this section we prove a version of the Hsu-Robbins theorem for the variations of the fractional Brownian motion. Concretely, we denote here by, for every ε > 0

g 1 (ε) = n≥1 P (|V n | > εn) (19) if H < 1 -1 2q and by g 2 (ε) = n≥1 P |V n | > εn 2-2q(1-H) (20) if H > 1 -1 2q
. and we estimate the behavior of the functions g i (ε) as ε → 0. Note that we can write

g 1 (ε) = n≥1 P |Z (1) n | > c -1 1,q,H ε √ n , g 2 (ε) = n≥1 P |Z (2) n | > c -1 2,q,H εn 1-q(1-H)
with Z

(1)

n , Z (2) 
n given by ( 13). We decompose it as: for

H < 1 -1 2q g 1 (ε) = n≥1 P |Z (1) | > c -1 1,q,H ε √ n + n≥1 P |Z (1) n | > c -1 1,q,H ε √ n -P |Z (1) | > c -1 1,q,H ε √ n .
and for

H > 1 -1 2q g 2 (ε) = n≥1 P |Z (2) | > εc -1 2,q,H n 1-q(1-H) + n≥1 P |Z (2) n | > c -1 2,q,H εn 1-q(1-H) -P |Z (2) | > c -1 2,q,H εn 1-q(1-H) .
We start again by consider the situation when

Z (i)
n are replaced by their limits.

Lemma 2 i. Let Z (1) be a standard normal random variable. Then

lim ε→0 (cε) 2 n≥1 P |Z (1) | > cε √ n = 1.
ii. Let Z (2) be a Hermite random variable with H > 1 -1 2q . Then lim ε→0 (cε)

1 1-q(1-H) n≥1 P |Z (2) | > cεn 1-q(1-H) = E|Z (2) | 1 1-q(1-H) .
Proof: The part i. is a consequence of the result of Heyde [START_REF] Heyde | A supplement to the strong law of large numbers[END_REF]. Indeed take X i ∼ N (0, 1) in [START_REF] Albin | A note on Rosenblatt distributions[END_REF]. Concerning part ii. we can write lim ε→0 (cε)

1 1-q(1-H) n≥1 Φ Z (2) (cεn 1-q(1-H) ) = lim ε→0 (cε) 1 1-q(1-H) ∞ 1 Φ Z (2) (cεx 1-q(1-H) )dx - ∞ 1 P 1 (x)d Φ Z (2) (cεx 1-q(1-H) ) := lim ε→0 (A(ε) + B(ε)) with P 1 (x) = [x] -x + 1 2 . Moreover A(ε) = (cε) 1 1-q(1-H) ∞ 1 Φ Z (2) (cεx 1-q(1-H) )dx = 1 1 -q(1 -H) ∞ cε Φ Z (2) (y)y 1 1-q(1-H) -1 dy.
Since Φ Z (2) (y) ≤ y -2 we have Φ Z (2) (y)y 1 1-q(1-H) → y→∞ 0 and therefore

A(ε) = -Φ Z (2) (cε)(cε) 1 1-q(1-H) - ∞ cε Φ ′ Z (2) (y)y 1 1-q(1-H) dy
where the first terms goes to zero and the second to E Z (2) 1 1-q(1-H) . The proof that the term B(ε) converges to zero is similar to the proof of Lemma 2, point ii.

Remark 3

The Hermite random variable has moments of all orders (in particular the moment of order 1 1-q(1-H) exists) since it is the value at time 1 of a selfsimilar process with stationary increments.

Proposition 2 i. Let H < 1 -1 2q and let Z (1) 
n be given by [START_REF] Spitzer | A combinatorial lemma and its applications to probability theory[END_REF]. Let also Z (1) be a standard normal random variable. Then

(cε) 2 n≥1 P |Z (1) n | > cε √ n -P |Z (1) | > cε √ n → ε→0 0 ii. Let H > 1 -1 2q and let Z (2) 
n be given by [START_REF] Spitzer | A combinatorial lemma and its applications to probability theory[END_REF]. Let Z (2) be a Hermite random variable. Then (cε) 1 1-q(1-H) n≥1 P |Z (2) n | > cεn 1-q(1-H) -P |Z (2) | > cεn 1-q(1-H) → ε→0 0.

Remark 4 Note that the bounds (16), (18) does not help here because the series that appear after their use are not convergent.

Proof of Proposition 2: Case H < 1 -1 2q . We have, for some β > 0 to be chosen later,

ε 2 n≥1 P |Z (1) n | > cε √ n -P |Z (1) | > cε √ n = ε 2 [ε -β ] n=1 P |Z (1) n | > cε √ n -P |Z (1) | > cε √ n +ε 2 n>[ε -β ] P |Z (1) n | > cε √ n -P |Z (1) | > cε √ n := I 1 (ε) + J 1 (ε).
and by ( 9)

J 2 (ε) ≤ c n>[ε -β ] exp            -cεn 1-q(1-H) E Z (2) n 2 1 2      2 q       ≤ c n>[ε -β ] exp cn -1 β n 1-q(1-H) 2 q → ε→0 0
We state the main result of this section which is a consequence of Lemma 2 and Proposition 2.

Theorem 3 Let q ≥ 2 and let c 1,q,H , c 2,q,H be the constants from Theorem 1. Let Z (1) be a standard normal random variable, Z (2) a Hermite random variable of order q ≥ 2 and let g 1 , g 2 be given by ( 19) and (20). Then i. If 0 < H < 1 -1 2q , we have (c -1 1,q,H ε) 2 g 1 (ε) → ε→0 1 = EZ (1) .

ii. If 1 -1 2q < H < 1 we have (c -1 2,q,H ε)

1 1-q(1-H) g 2 (ε) → ε→0 E|Z (2) | 1 1-q(1-H) .
Remark 5 In the case H = 1 2 we retrieve the result (1) of [START_REF] Heyde | A supplement to the strong law of large numbers[END_REF]. The case q = 1 is trivial, because in this case, since V n = B n and EV 2 n = n 2H , we obtain the following (by applying Lemma 1 and 2 with q = 1) Remark 6 Let (ε i ) i∈Z be a sequence of i.i.d. centered random variable with finite variance and let (a i ) i≥1 a square summable real sequence. Define X n = i≥1 a i ε n-i . Then the sequence S N = N n=1 [K(X n ) -EK(X n )] satisfies a central limit theorem or a non-central limit theorem according to the properties of the measurable function K (see [START_REF] Ho | Limit theorems for functionals of moving averages[END_REF] or [START_REF] Wu | Unit root testing for functionals of linear processes[END_REF]). We think that our tools can be applied to investigate the tail probabilities of the sequence S N in the spirit of [START_REF] Heyde | A supplement to the strong law of large numbers[END_REF] or [START_REF] Spataru | Precise Asymptotics in Spitzer's law of large numbers[END_REF] at least the in particular cases (for example, when ε i represents the increment W i+1 -W i of a Wiener process because in this case ε i can be written as a multiple integral of order one and X n can be decomposed into a sum of multiple integrals. We thank the referee for mentioning the references [START_REF] Ho | Limit theorems for functionals of moving averages[END_REF] and [START_REF] Wu | Unit root testing for functionals of linear processes[END_REF].

H and ε 2 n≥1P

 2 |V n | > εn 2H → ε→0 1 |V n | > εn 2H → ε→0 E Z (1) 1 H .

Consider first the situation when H ∈ (0, 1 2 ]. Let us choose a real number β such that 2 < β < 4. By using (16),

Next, by using the bound for the tail probabilities of multiple integrals and since E Z

and since converges to zero for β > 2. The same argument shows that ε 2 n>[ε -β ] P Z (1) > cε √ n converges to zero.

The case when H ∈ ( 1 2 , 2q-3 2q-2 ) can be obtained by taking 2

We have, with some suitable β > 0 (2) n | > cεn 1-q(1-H) -P |Z (2) | > cεn 1-q(1-H)

) (again, this is always possible when H > 1-1 2q !). Then I 2 (ε) ≤ ce 1 1-q(1-H) ε (-β)(2-H-1 2q ) → ε→0 0