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We consider, in the setting of stratified groups G, two analogues of the Ornstein-Uhlenbeck semi-group, namely Markovian diffusion semi-groups acting on L q (p(γ)dγ), whose invariant density p is a heat kernel at time 1 on G.

The first one is symmetric on

i=1 is a basis of the first layer of the Lie algebra of G. The second one, denoted by T t = e -tN , t > 0, is non symmetric on L 2 (pdγ) and the formal real part of N is n i=1 X * i X i . The operators e -tN are compact on L q (pdγ), 1 < q < ∞. The spectrum of N on this space is the set of integers N if polynomials are dense in L 2 (p(γ)dγ), i.e if G has at most 4 layers; and we determine in this case its eigenspaces. When G is step 2, we give another description of these eigenspaces, very similar to the classical definition of "Hermite polynomials" by their generating function.

Introduction and notation

Let G be a stratified Lie group equipped with its (biinvariant) Haar measure dg and dilations (δ t ) t≥0 . Let Q be the homogeneous dimension of G. We denote by D(G) the space of C ∞ compactly supported functions on G, by S(G) the space of Schwartz functions, by S ′ (G) its dual, and L q (ϕdg) = L q (G, ϕdg) for a measurable non negative function ϕ.

As usual, elements Z of the Lie algebra G are identified with left invariant vector fields by (Zf )(g) = d dt | t=0 f (g exp tZ).

Let L be a subLaplacian on G, i.e. an operator on S(G) defined by

L = - n 1 X 2 i (1)
where (X i ) 1≤i≤n is a linear basis of the first layer of G. Obviously L commutes with left translations and satisfies δ t -1 Lδ t = t 2 L, t > 0.

(2)

The following facts are well known, see e.g. [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF]propositions 1.68,1.70,1.74]: -L 2 generates a strongly continuous semi-group e -t 2 L of convolution operators which are contractions on L q (dg), 1 ≤ q ≤ ∞. The kernel p t of e -t 2 L is a positive function such that p t (g) = p t (g -1 ), it lies in S(G) and has norm one in L 1 (dg). Denoting p 1 = p,

p t (g) = t -Q 2 p • δ 1 √ t (g).
Equivalently, for f ∈ L q (dg),

e -t 2 L (f )(γ) = f * p t (γ) = G f (γg -1 )p t (g)dg =
G f (γδ √ t g -1 )p(g)dg.

(3)

The aim of this paper is to generalize the Ornstein-Uhlenbeck semi-group in the setting of stratified groups, namely to consider Markovian semi-groups acting on L q (p(γ)dγ), 1 ≤ q ≤ ∞, for which p(γ)dγ is an invariant measure, whose generators are related to the first layer gradient ∇ = (X 1 , .., X n ).

The classical Ornstein-Uhlenbeck semi-group is defined on S(R n ) by Mehler formula

e -tN 0 (f )(x) = R n
f (e -t x + √ 1e -2t y)p(y)dy, t ≥ 0, 2 where the gaussian density p(y) = 1 (2π)

n 2 e -1 2 |y| 2 is the kernel of e -∆ 2 , and ∆ is the (positive) Laplacian on R n . The O-U semi-group is contracting on L q (R n , pdx), 1 ≤ q ≤ ∞, compact if 1 < q < ∞, but not compact on L 1 (R, pdx) [D, theorem 4.3.5], and p is an invariant measure. The generator -N 0 satisfies

N 0 = n j=1 ( ∂ ∂x j ) * ∂ ∂x j = ∆ - n j=1 ∂p ∂x j p ∂ ∂x j = ∆ + n j=1 x j ∂ ∂x j = ∆ + A
where ( ∂ ∂x j ) * denotes the adjoint on L 2 (R n , pdx) and A is the generator of dilations on R n . On L q (R n , pdx), 1 < q < ∞, the spectrum of N 0 is N, and the Hermite polynomials on R n form an orthogonal basis of eigenvectors of e -tN 0 in L 2 (R n , pdx).

The generator N 0 has a fruitful generalization in (commutative or non commutative) analysis on deformed or q-Fock spaces, namely the number operator N, i.e. the second differential quantization of identity. A substitute of Mehler formula holds and (e -tN ) t>0 is the compression of a one parameter group of unitary dilations, see e.g. [LP 2 ].

Our motivation in this paper is to exploit Mehler formula in another direction: in the setting of stratified groups Mehler formula still defines a semi-group (e -tN ) t>0 and we study which properties of the classical O-U semi-group remain valid. We also hope that this semi-group might throw some light on properties of the heat density p.

Results and organization of the paper

In section 2 we recall some properties of the self-adjoint semi-group on L 2 (pdγ) whose generator is -∇ * ∇ = -n i=1 X * i X i , X * i being the formal adjoint of X i with respect to L 2 (pdγ). We give in passing a simple proof of the known Poincaré inequality in L 2 (pdγ).

In the main section 3 we consider another generalization, the Mehler semi-group, which is defined for t ≥ 0 by (theorem 3)

T t (f )(γ) = G f (δ e -t γδ √ 1-e -2t g)p(g)dg = e -tN (f )(γ).
Some properties are described in 3.2, in particular pdγ is an invariant measure. This semi-group is not selfadjoint on L 2 (pdγ), but formally the real part of its generator -N is -∇ * ∇ and N = L + A where A is the generator of the group (δ e t ) t∈R of dilations, studied in 3.3.

We show in 3.4 that every T t , t > 0, is compact on L q (pdγ), 1 < q < ∞, (proposition 6), with common spectrum e -tN on the closed subspace spanned by polynomials (theorem 7), which coincides with the whole space only if the number of layers of G is ≤ 4 (proposition 8). We describe the eigenspaces in this case.

In 3.5 we give another description of these eigenspaces if G is step two, similar to the usual definition of one variable Hermite polynomials by their generating function.

More notation

We denote G =V 1 ⊕..⊕V k , where V 1 , .., V k are the layers of the Lie algebra G of G, V k = Z being the central layer, so that [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF]p. 5]

[V j , V h ] ⊂ V j+h , [V 1 , V h ] = V h+1 , 1 ≤ h < k The homogeneous dimension of G is Q = k j=1 j dim V j .
Generic elements of the layers are denoted respectively by X, Y..., U, and respective basis of the layers are denoted by (X 1 , .., X n ), (Y 1 , .., Y m ), ..., (U 1 , .., U k ). Such a basis is also denoted by (Z j ) 1≤j≤N . We denote accordingly

g = exp( x i X i + y i Y i + .. + u i U i ) = exp(X + Y + .. + U) = (x, y, .., u) = exp( N j=1 z j Z j ) = (z j ) N j=1 ,
since the mapping (z j ) N j=1 → g is a diffeomorphism: R N → G. We denote by P the space of polynomials on G, as defined in [FS, chapter I-C] for the fixed basis (Z j ) N j=1 : they are polynomials w.r. to the coordinates z j , 1 ≤ j ≤ N.

The dilation δ t , t ≥ 0, are defined on G and G by

δ t (X + Y + .. + U) = tX + t 2 Y + .. + t k U, δ t (exp Z) = exp δ t (Z), Z ∈ G.
For a function f on G,

δ t (f ) = f • δ t .
The generator A of the one parameter group (δ e s ) s∈R of dilations on G satisfies: for f ∈ S(G) and s > 0

d dt | t=1 f • δ t = A(f ) = -tt A d dt t -A (f ) = -tδ t d dt (f • δ1 t ). ( 4 
)
Acknowledgment: We thank W. Hebisch who gave us the idea of the proof of proposition 8.

2 The semi-group e -t∇ * ∇ on L 2 (pdg)

This semi-group has already been introduced in [BHT], under a probabilistic point of view, in connection with some Markov processes on Lie groups. We use instead an analytic point of view as in [O]. We consider this semi-group firstly because it is a natural generalization of the classical O-U semi-group, secondly because its generator ∇ * ∇ is the real part of the generator N we shall study in part 3, see theorem 3.

Definition and some properties

We consider the (closed) accretive sesquilinear form

a(f, h) = G (∇f.∇h)pdg = G n i=1 X i f X i hpdg whose (dense) domain in L 2 (pdg) is the Hilbert space H 1 (p) = {f ∈ L 2 (pdg) | X i f ∈ L 2 (pdg), 1 ≤ i ≤ n} equipped with the norm f 2 H 1 (p) = f 2 L 2 (p) + |∇f | 2 L 2 (p) ; this form is con- tinuous on H 1 (p) × H 1 (p).
Hence [O, proposition 1.51, theorem 1.53] it defines an operator, which we denote by ∇ * ∇, such that -∇ * ∇ is the generator of a strongly continuous semi-group of contractions on L 2 (pdg); moreover this semi-group is holomorphic on the sector Σ π 2 = {|arg z| < π 2 , z = 0}, and e -z∇ * ∇ is a contraction on L 2 (pdg) for z ∈ Σ π 2 . Obviously, on S(G),

∇ * ∇ = n i=1 X * i X i = L - n i=1 X i p p X i = L -B. (5) 
Since X i is a derivation, the chain rule holds, hence X i (f + ) = (X i f )1 {f >0} by the same proof as for usual derivations on R N [O, proposition 4.4], and a(f + , f -) = 0; since the form a also preserves real valued functions, the semigroup e -t∇ * ∇ is positivity preserving [O, theorem 2.6]. Since e -t∇ * ∇ (1) = 1, the semi-group is thus contracting on L ∞ (pdg). Since moreover

∇ * ∇ is self- adjoint, e -t∇ * ∇ is measure preserving, i.e. G e -t∇ * ∇ (f )pdg = G f pdg, t > 0,
so it extends as a contraction semi-group on L 1 (pdg) hence on L q (pdg), 1 < q < ∞ by interpolation.

Poincaré inequality in L 2 (pdg)

Poincaré inequality [START_REF] Driver | Hypoelliptic heat kernel inequalities on the Heisenberg group[END_REF]theorem 4.2] means that the spectrum of

∇ * ∇ on L 2 (pdg) lies in {0} ∪ [C -1 , ∞[: there exists C > 0 such that, for f ∈ S(G), f - G f pdg 2 L 2 (pdg) ≤ C G |∇f | 2 pdg = C G f (∇ * ∇f )pdg. ( 6 
)
(6) follows from the inequality (used for q = 2) [START_REF] Driver | Hypoelliptic heat kernel inequalities on the Heisenberg group[END_REF]theorem 4.1]

∇(e -tL f ) q ≤ C q e -tL (|∇f | q ), 1 < q < ∞, (7) 
which B. Driver and T. Melcher proved, first for H 1 , then for nilpotent groups G (see T. Melcher's thesis), using Malliavin calculus. See also [BHT] for some extensions.

We shall show in proposition 1 that (7) also follows easily from gaussian estimates of p and ∇p.

Using the explicit formula for the Carnot-Caratheodory distance, H.Q. Li [START_REF] Li | Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg[END_REF]corollary 1.2] obtained (7) for q = 1, on the 3-dimensional Heisenberg group G = H 1 . As well known [A, théorème 5.4.7], this implies Log-Sobolev inequality for the measure pdg on H 1 and (6). Another proof of this Log-Sobolev inequality for H 1 , hence for H k , is given in [START_REF] Hebisch | Coercive inequalities on metric measure spaces[END_REF]theorem 7.3].

Proposition 1 [DM] Let G be a stratified group. Then (7) and Poincaré inequality (6) hold true.

Proof: By [START_REF] Driver | Hypoelliptic heat kernel inequalities on the Heisenberg group[END_REF]theorem 4.2,proposition 2.6,lemma 2.3] it is enough to prove (7) for t = 1 2 , at γ = 0. Hence, it is enough to prove, for an element X of the basis of V 1 , and f ∈ S(G),

X(e -1 2 L f )(0) = |X(f * p)(0)| = G ( Xf )(g)p(g)dg ≤ C q,X ∇f L q (pdg) ;
here [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF]p. 22 and proposition 1.29]

( Xf )(g) = d dt | t=0 f ((exp tX)g), X = X + j>n Q X,j Z j
where (Z j ) N j=1 is a basis of G respecting the layers and Q X,j is a polynomial (with homogeneous degree h -

1 if Z j ∈ V h , 2 ≤ h ≤ k). Since [V 1 , V h-1 ] = V h , 2 ≤ h ≤ k, we may choose Z j ∈ V h such that Z j = [Y, A], where Y is an element of the basis of V 1 and A ∈ V h-1 .Then G Z j f (g)Q X,j (g)p(g)dg ≤ G Y f A(Q X,j p)dg + G Af Y (Q X,j p)dg .
Iterating for A ∈ V 1 + .. + V k-1 and so on, G ( Xf )(g)p(g)dg is finally less than a finite number (which does not depend on f ) of terms G Y f Z(Qp)dg where Y is an element of the basis of V 1 , Z ∈ G, and Q is a polynomial. Each of these terms can be estimated by

G Y f Z(Qp)dg ≤ |∇f | L q (pdg) ( ZQ L q ′ (pdg) + Q Zp p L q ′ (pdg) )
where

1 q + 1 q ′ = 1. Then ZQ L q ′ (pdg) is finite since ZQ is a polynomial and p ∈ S(G). The main point is that Q Zp p L q ′ (pdg)
is finite. Indeed, denoting d(g) = d(0, g) where d is the Carnot-Caratheodory distance on G, one uses [START_REF] Coulhon | Varopoulos: Analysis and geometry on groups[END_REF]theorem IV.4.2 and Comments on chapter IV]: for 0 < ε < 1,

C ε e -1 2-2ε d 2 (g) ≤ p(g) ≤ K ε e -1 2+2ε d 2 (g) . (8) 
and, for Z ∈ G,

(Zp)(g) ≤ K ε,Z e -1 2+2ε d 2 (g) . (9) 
Hence Q Zp p lies in L r (pdg), 1 ≤ r < ∞, which ends the proof.

3 Definition and properties of the Mehler semigroup

Preliminaries

The next proposition extends a classical property of independant gaussian variables and will imply the semi-group property of our family of operators.

Proposition 2 Let γ, g be independant G-valued random variables with law pdg. Then the r.v. δ cos θ γδ sin θ g, 0 ≤ θ ≤ π 2 has the same law, i.e. for any bounded borelian function f on G,

G 2 f (δ cos θ γδ sin θ g)p(γ)p(g)dγdg = G f (g)p(g)dg.
More generally, if g 1 , ..., g n are G-valued i.i.d r.v. with law pdg and 1≤j≤n a 2 j = 1, (a j ≥ 0), the law of j=n j=1 δ a j g j is pdg.

Proof: By two changes of variables, denoting C = sin θ cos θ,

G 2 f (δ cos θ γδ sin θ g)p(g)p(γ)dγdg = 1 C Q G 2 f (γ ′ g ′ )p(δ 1 cos θ γ ′ )p(δ 1 sin θ g ′ )dγ ′ dg ′ = 1 C Q G 2 f (g)p(δ 1 cos θ γ ′ )p(δ 1 sin θ (γ ′-1 g))dγ ′ dg = G f (g)(p cos 2 θ * p sin 2 θ )(g)dg = G f (g)p(g)dg.
The second assertion follows by iteration. Remark 1 : A central limit theorem for i.i.d centered random variables with values in a stratified group G and law µ with order 2 moments is proved in [START_REF] Crepel | Théorème central limite sur les groupes nilpotents[END_REF]theorem 3.1]. The density p of the limit law is the kernel at time 1 of a diffusion semi-group whose generator satisfies (2).

Remark 2: If X, Y are i.i.d standard gaussian vectors with values in R n , the couple (X cos θ + Y sin θ, d dθ (X cos θ + Y sin θ)) has the same joint law as (X, Y ). This fact implies, in the O-U case, that cos

N 0 θ is the compression of the isometry R θ of L 2 (R n × R n , p(x)p(y)dxdy) defined by R θ (F )(x, y) = F (x cos θ + y sin θ, -x sin θ + y cos θ)
and (R θ ) θ∈R is a one parameter group preserving the measure p(x)p(y)dxdy. This point of view was exploited e.g. in [P, theorem 2.2] in order to get a concentration inequality for the gaussian measure .

In the stratified setting we were not able to exhibit explicit unitary dilations for the Mehler operators T t defined below.

The Mehler semi-group

We now define the Mehler semi-group on L q (G, pdg).

Theorem 3 Let L, defined by ( 1), be a subLaplacian on a stratified group G, and let p be the kernel of e -L 2 . a) The family of operators (T t ) t≥0 defined on S(G) by

T t (f )(γ) = G f (δ e -t γδ √ 1-e -2t g)p(g)dg = e -L 2 (1-e -2t ) (f )(δ e -t γ) ( 10 
)
is a semi-group whose generator -N is defined on S(G) by

N = L + A. (11) 
b)The probability measure pdγ is invariant by

(T t ) t≥0 i.e. G T t (f )(γ)p(γ)dγ = G f (γ)p(γ)dγ (12) and, for f ∈ S(G), G (Nf )pdg = 0. c) (T t ) t≥0 extends as a Markovian semi-group of contractions on L q (G, pdγ), 1 ≤ q ≤ ∞, strongly continuous if q = ∞. d) If f ∈ L q (pdγ), 1 ≤ q < ∞, T t (f ) - G f pdg L q (pdγ) → t→∞ 0. e) (T t ) t>0 is not self-adjoint on L 2 (G, pdγ) as soon as G is not abelian. Formally ∇ * ∇ is the real part of N, i.e., for f, h ∈ S(G), Nf, h L 2 (p) = (∇ * ∇ + iC)f, h L 2 (p)
where C is a non zero first order differential operator satisfying Cf, h = f, Ch . In particular, for

f ∈ S(G), ℜ G (Nf )f pdγ = G |∇f | 2 pdγ = G (∇ * ∇f )f pdγ.
If moreover f is real valued, the left integral is real.

By the change of notation e -t = cos θ, < θ < π 2 , (10) can be rewritten as

cos N θ(f )(γ) = G f (δ cos θ γδ sin θ g)p(g)dg = δ cos θ • e -1 2 sin 2 θL (f )(γ). (13) Proof: a) Let ϕ(g ′ ) = T t (f )(g ′ ); we compute T s (ϕ)(γ) = G ϕ(δ e -s γ δ √ 1-e -2s h)p(h)dh = G 2 f (δ e -t [δ e -s γδ √ 1-e -2s h] δ √ 1-e -2t g)p(g)p(h)dgdh = G f (δ e -(t+s) γδ √ 1-e -2(s+t) k)p(k)dk = T s+t (f )(γ)
where the third equality comes from proposition 2 applied to (h, g).

By the chain rule applied to (10),

Nf = - d dt | t=0 T t (f ) = Lf + A(f ). b) Proposition 2 gives (12). Differentiating (12) at t = 0 for f ∈ S(G) implies G (Nf )pdg = 0.
Another proof will be given in Remark 3. c) T t is contracting both on L 1 (G, pdγ), since it is positivity and measure preserving, and on L ∞ (G, pdγ), since it is positivity preserving and

T t (1) = 1. Hence T t is contracting on L q (G, pdγ), 1 ≤ q ≤ ∞ by interpolation. Since D(G) is norm dense in L q (G), it is norm dense in L q (pdγ), 1 ≤ q < ∞ : indeed, if F ∈ L q ′ (pdγ) ( 1 q + 1 q ′ = 1) and G f F pdγ = 0 for every f ∈ D(G), then F p ∈ L q ′ (G) hence F p = 0 dγ a.s.. Writing e -t = cos θ, one has, for f ∈ D(G), T t (f ) -f q L q (pdγ) = G [f (δ cos θ γδ sin θ g) -f (γ)]p(g)dg q L q (pdγ) ≤ G 2 |f (δ cos θ γδ sin θ g) -f (γ)| q p(γ)p(g)dγdg,
which converges to 0 as θ → 0 by the dominated convergence theorem. Since T t is contracting, the strong continuity on L q (pdγ) follows by density. d) Similarly, if f is bounded and continuous on G,

f (δ e -t γ δ √ 1-e -2t g) → t→∞ f (g); by dominated convergence theorem T t (f ) → t→∞ G f (g)p(g)dg pointwise
and in the norm of L q (pdγ). The claim follows by density. e) By ( 11), ( 5) and lemma 4 below, for f ∈ S(G),

(N -∇ * ∇)f = A(f ) + 1≤j≤n X j p p X j f = 1≤j≤N b j Z j f
where the functions b j are not all zero if

j > n = dim V 1 . Hence for h ∈ S(G), G (N -∇ * ∇)(f )hpdg = - G f [ 1≤j≤N b j (g)(Z j h)p + hZ j (b j p)]dg. By b), the left hand side is zero for h = 1, hence 1≤j≤N Z j (b j p) = 0. Since T t
preserves real valued functions, so does N, hence

G (N-∇ * ∇)(f )hpdg = - G f (N-∇ * ∇)(h)pdg = - G f (N -∇ * ∇)(h)pdg, which proves (iC) * = -iC, where iC = N -∇ * ∇ = A + B.
The remaining assertions are obvious.

Remark 3 : We now give another instructive proof of G (Nf )pdg = 0, f ∈ S(G), hence of (12). We claim that, for f, h ∈ S(G),

G (Nf )hdg = G f [L(h) -Qh + d ds | s=1 h • δ1 s ]dg = G f (L -QId -A)(h)dg.
Indeed, N = L + A, L is formally selfadjoint on L 2 (dg) and the claim follows by differentiating at s = 1 the right hand side of

G f (δ s γ)h(γ)dγ = s -Q G f (γ ′ )h(δ1 s γ)dγ ′ .
By ( 4) and [LP, lemma 2], p may be precisely defined as the unique solution in

L 1 (G), satisfying G p(g)dg = 1, of (L -QId -A)(p) = Lp -Qp + sδ s d ds (p • δ1 s ) = 0.
Remark 4: As already mentioned in section 2.2, Log-Sobolev inequality for pdγ is known for H k . It is equivalent both to hypercontractivity of e -tN and to hypercontractivity of e -t∇ * ∇ on H k , since p is an invariant measure for these markovian semigroups and N, ∇ * ∇ are diffusion operators [A, theorem 2.8.2].

The generator of dilations

We may identify G with a group of finite matrices [V, theorem 3.6.6]. The derivation formula for an exponential of a matrix valued function, see e.g. [H, theorem 69], applied to a smooth function Z(s): R → G, where G has k layers, gives

d ds exp Z(s) = lim h→0 exp Z(s + h) -exp Z(s) h = lim h→0 exp(Z(s) + hZ ′ (s)) -exp Z(s) h = [exp Z(s)]V (Z(s)), ( 14 
)
where

V (Z(s)) = (d exp) Z(s) (Z ′ (s)) = Z ′ (s) + k-1 l=1 (-1) l (l + 1)! (AdZ(s)) l (Z ′ (s)). (15) Hence exp Z(s + h) = exp Z(s) exp h[V (Z(s)) + o(1)],
which entails for f ∈ C ∞ (G)

d ds f (exp Z(s)) = V (Z(s))(f )(exp Z(s)). ( 16 
)
Lemma 4 Let A be the generator of the group of dilations (δ e t ) t∈R . Then

A(f )(g) = 1≤j≤N a j (g)Z j f (g)
where the functions a j are polynomials w.r. to the coordinates of g, and are not all zero for j > n

= dim V 1 . Proof: Assume that G has k layers, k ≥ 2. Let δ s g = exp(sX + s 2 Y + .. + s k U) = exp Z(s). By (16) A = V (Z(1)). Noting that Z ′ -Z ∈ V 2 +..+V k , we get (AdZ(1)) l (Z ′ (1)) ∈ V 3 + .. + V k , l ≥ 1. So V (Z(1)) -(X + 2Y ) lies in V 3 + .. + V k .
Notation: We denote by P n the (finite dimensional) space of homogeneous polynomials on G with homogeneous degree n, n ∈ N, i.e. satisfying δ s (P ) = s n P, P ∈ P n ;

(17) equivalently, P n is the eigensubspace of A on P associated to n. The finite dimensional subspaces B n = P 0 + .. + P n are stable under L and dilations, hence under e -tL 2 and cos N θ by ( 10), these operators being naturally extended on S ′ (G). In particular e L 2 is well defined on B n and is the inverse of e -L 2 , which is thus one to one on every B n hence on P = ∪ n≥0 B n . The next lemma is the key for the computation of the spectrum of cos N θ. It will be exploited again in section 3.5. 3), on S(G), hence on S ′ (G), for t > 0,

Lemma 5 a) The generator A of dilations on

G satisfies [L, A] = 2L on C ∞ (G). b) e -L 2 • cos N θ = δ cos θ e -L 2 on S ′ (G). c)
e -t 2 2 L = δ1 t • e -L 2 • δ t . (18) 
Hence, on S ′ (G)), by ( 10) and ( 18)

applied to t = cos θ, e -L 2 • cos N θ = e -L 2 • δ cos θ • e -sin 2 θ 2 L = δ cos θ • e -L 2 . c) Since e -L
2 is invertible on P, and P is stable under cos N θ, b) implies on P

cos N θ • e L 2 = e L 2 • δ cos θ .
Applying this to P n proves the result.

3.4 Compacity and spectrum of cos N θ on L q (pdγ) Proposition 6 Let cos N θ be defined by ( 13). Then a) cos N θ is a Hilbert-Schmidt operator on L 2 (pdγ). b) cos N θ is compact on L q (pdγ), 1 < q < ∞; its non zero eigenvalues and corresponding eigenspaces are the same on L 2 (pdγ) and L q (pdγ). In particular its spectrum σ(cos N θ) does not depend on q and σ(cos N θ) = (cos θ) σ(N ) ∪ {0}.

Actually, cos N θ is a trace class operator on L 2 (pdγ) by a) and the semi-group property of (e -tN ) t>0 . Proof: a) We must show that the kernel of cos N θ lies in L 2 (G×G, pdγ ⊗pdg). For fixed γ and θ, 0

< θ < π 2 , G f (δ cos θ γδ sin θ g)p(g)dg = 1 sin Q θ G f (z)p(δcos θ sin θ γ -1 δ 1 sin θ z)dz,
so we must prove the convergence of the integral

I(θ) = G 2 p 2 (δcos θ sin θ γ -1 δ 1 sin θ z) p(γ) p(z) dzdγ.
By the gaussian estimates (8)

C ε K 3 ε p 2 (δcos θ sin θ γ -1 δ 1 sin θ z) p(γ) p(z) ≤ exp( d 2 (z) 2 -2ε - d 2 (γ) 2 + 2ε - d 2 (δcos θ sin θ γ -1 δ 1 sin θ z) 1 + ε ) = exp β.
The Carnot distance d satisfies d(g) ≤ d(γ -1 g) + d(γ) and d(δ t g) = td(g).

Hence

(

1 + ε)β ≤ d 2 (z) 2(1 -ε) 2 - d 2 (γ) 2 -( 1 sin θ d(z) - cos θ sin θ d(γ)) 2 ≤ d 2 (z)( 1 2 -4ε - 1 -cos θ sin 2 θ ) + d 2 (γ)( cos θ -cos 2 θ sin 2 θ - 1 2 ).
Since 1-cos θ sin 2 θ > 1 2 on ]0, π 2 ], the coefficient of d 2 (γ) is strictly negative, and so is the coefficient of d 2 (z) for small enough ε > 0. Hence, for some c, C > 0,

I(θ) ≤ C G 2 e -c(d 2 (z)+d 2 (γ)) dzdγ = C( G e -cd 2 (z) dz) 2 .
By the left hand side of (8), for small ε,

C ε G e -cd 2 (z) dz ≤ G p 2c(1-ε) (z)dz,
and the last integral is finite since p ∈ S(G). This proves a). b) By interpolation, since cos N θ is compact on L 2 (p(g)dg) and bounded on L ∞ (pdg) and L 1 (pdg), it is compact on L q (pdg), 1 < q < ∞, with the same spectrum and the same eigenspaces associated to non zero eigenvalues [D, theorems 1.6.1 and 1.6.2].

By the compacity on L q (pdg), the set of these eigenvalues is {cos λ θ | λ ∈ σ q (N)} where σ q (N) denotes the spectrum of N on L q (pdg) [L, chap. 34.5, theorem 13

]. Hence σ q (N) = σ 2 (N) is discrete and lies in {λ ∈ C | ℜλ ≥ 0} since cos N θ is contracting on L 2 (pdg) (or since ℜ Nf, f ≥ 0). Theorem 7 Let G be a step k stratified group. 1) If k ≤ 4 a) the spectrum of cos N θ on L 2 (pdg) is σ(cos N θ) = (cos θ) N ∪ {0} and σ(N) = N.
b) the corresponding eigenspaces E n , n ≥ 0, (which are not pairwise orthogonal in L 2 (pdg)) are

E n = e 1 2 L (P n ).
2) If k > 4, assertions a) b) remain true for the restriction of cos N θ to the closed subspace L 2 P (pdg) spanned by polynomials.

If k = 1 polynomials in E n are the Hermite polynomials with degree n.

Proof: 1) follows from 2) and proposition 8 below.

2) We first define E n by E n = e L 2 (P n ). By lemma 5, E n lies in the eigenspace of cos N θ associated to the eigenvalue cos n θ. By proposition 6, cos N θ is compact on L 2 P (pdg). The claim then follows from the following facts: Let T : E → E be a compact operator on an infinite dimensional Banach space E; let Λ be a set of eigenvalues of T and let E λ , λ ∈ Λ, be eigensubspaces whose union is total in E. Then a) the spectrum of T is Λ ∪ {0} b) for λ ∈ Λ, E λ is the whole eigenspace associated to λ. Indeed, assume that T has an eigenvalue λ 0 / ∈ Λ. Then Tλ 0 I has a closed range with non zero finite codimension (see e.g. [L, chap. 21.1, theorems 3, 4]). But this range contains the linear span of the E λ 's, λ ∈ Λ, hence is the whole of E. This is a contradiction, which proves a).

Let λ 0 ∈ Λ; since E λ 0 is stable under T, T acts on the quotient space E/E λ 0 and is still compact. The E λ 's, λ ∈ Λ\{λ 0 } span a dense subspace of E/E λ 0 . Applying a) to E/E λ 0 , λ 0 cannot belong to the spectrum of T on the quotient space, which proves b).

The proof of the next proposition is essentially due to W. Hebisch (private communication).

Proposition 8 Let G be a stratified group. Then the polynomials are dense in L 2 (pdg) if and only if G is step k with k ≤ 4.

Proof: 1) We recall that polynomials are dense in L 2 (R, e -c|x| α dx) if and only if α ≥ 1 2 : obviously, this does not depend on c and is equivalent to the density of polynomials in L 2 (R + , e -x α dx). If 0 < α < 1 2 , [PS, Part III, problem 153] produces a non zero bounded function g α which is orthogonal to polynomials in L 2 (R + , e -cos(απ)x α dx). If α ≥ 1 2 , the result follows from the trick of [START_REF] Hamburger | Zur Konvergenztheorie der Stieltjesschen Kettenbrüche[END_REF]. Indeed, if ψ ∈ L 2 (R + , e -x α dx) and α ≥ 1 2 , the function

F (z) = R + ψ(x)e √ xz e -x α dx = R +
ψ(y 2 )e yz e -y 2α ydy is bounded and holomorphic on {ℜz < β} for some β > 0, by Cauchy-Schwarz inequality.

Expanding z → e √ xz in power series, one gets F (-z) = -F (z) if ψ is orthogonal to polynomials in L 2 (R + , e -x α dx). Thus F extends as a bounded entire function, which must be zero by Liouville theorem since F (0) = 0. Hence the Fourier transform of y → ψ(y 2 )e -y 2α y is zero, i.e. ψ = 0 a.s.. 2) We identify g = exp Z ∈ G with the coordinates (x, y, .., w) of Z w.r. to a basis respecting the layers and denote

η(g) = i≤l |x i | 2 + i≤m |y i | 2 2 + ... + i≤r |w i | 2 k . Obviously η(δ s g) = s 2 η(g), in particular η(g) = d 2 (g)η(δ 1 d(g)
g), d denoting the Carnot distance. Since η is strictly positive and bounded on the d-unit sphere of G, there exist constants c ′ , C ′ > 0 such that

c ′ η(g) ≤ d 2 (g) ≤ C ′ η(g).
By (8) there exist constants c, C > 0 such that the following embeddings

L 2 (e -Cη(g) dg) → L 2 (pdg) → L 2 (e -cη(g) dg)
are continuous, with dense ranges since D(G) is dense in the three spaces.

3) The algebraic tensor product

E = ⊗ i≤l L 2 (e -Cx 2 i dx i ) ⊗ ... ⊗ i≤p L 2 (e -C|w i | 2 k dw i ),
is dense in L 2 (e -Cη(g) dg). For k ≤ 4, one variable polynomials are dense in every factor of E by step 1), hence polynomials are dense in L 2 (e -Cη(g) dg) and in L 2 (pdg).

Let k ≥ 5. By 1) there exists a non zero function g ∈ L 2 (e -c|wr| 2 k dw r ) which is orthogonal to polynomials w.r. to w r . Then 1 ⊗ .... ⊗ 1 ⊗ g ∈ L 2 (e -cη(g) dg) is orthogonal to all polynomials, so polynomials are neither dense in L 2 (e -cη(g) dg), nor in L 2 (pdg).

Generating functions of polynomial eigenvectors of N

The usual Hermite polynomials on R, denoted by H n , n ∈ N, are the eigenvectors of the Ornstein-Uhlenbeck operator N 0 , and have the generating function

e ixt+ 1 2 t 2 = n≥0 (it) n n! H n (x) = e 1 2 ∆ (e ixt ) = e 1 2 ∆ • δ t (e ix ),
noting that x → e ix is a bounded eigenvector of ∆. In particular

i n H n (x) = d n dt n | t=0 e 1 2 ∆ • δ t (e ix ).
We shall verify (proposition 11) that a similar formula gives polynomial eigenvectors of N. When G is step two, these vectors are total in L q (pdg), 1 ≤ q < ∞, see theorem 12 below. More precisely we give in 3.5.1 a technical lemma producing eigenvectors of N out of eigenvectors of L. In 3.5.3 we use this lemma when ϕ is both an eigenvector of L and a coefficient function of a representation of G (proposition 11). We shall first gather in 3.5.2 well known facts about these functions.

Candidates for generating functions of eigenvectors of N

In the next lemma 9 we state technical assumptions ensuring the validity of the computation of some eigenvectors of N. Using lemma 5 b), the point is to define "e L 2 ϕ" for suitable functions ϕ : in lemma 5 c), we choose ϕ ∈ P, here we choose eigenvectors of L.

Lemma 9 Let G be a stratified group and let ϕ ∈ S ′ (G) ∩ C ∞ (G) be an eigenvector of L such that Lϕ = λϕ. We assume that, for n ≥ 1,

(i) d n dt n | t=0 G δ t (ϕ)(γg -1 )p(g)dg = G d n dt n | t=0 δ t (ϕ)(γg -1 )p(g)dg (ii) d n dt n | t=0 δ t (ϕ) is a polynomial on G. Let f t = e t 2 λ 2 δ t (ϕ), t > 0; h n = d n dt n | t=0 f t . Then h n is a polynomial on G and cos N θ(h n ) = cos n θ h n . Π(µ) = G Π(g)dµ(g).
In particular (Π(p t dg)) t≥0 is a semigroup of operators on L 2 (R k ), whose generator is -Π (L). Indeed, for a C ∞ vector F , by ( 22),

- d dt G Π(g)(F )p t (g)dg = G Π(g)(F )(Lp t )(g)dg = G L • Π(g)(F )p t (g)dg = G Π(g) • Π(L)(F )p t (g)dg → t→0 + Π(L)(F ). Since p ∈ S(G), Π(pdg) = e -1 2 Π(L)
is a trace class operator [START_REF] Corwin | Representations of nilpotent Lie groups and their applications Part 1: Basic theory and examples[END_REF]theorem 4.2.1]; in particular its non zero eigenvalues are {e -1 2 λ , λ ∈ σ 2 (Π(L))}, where λ runs through the eigenvalues of Π(L) on [START_REF] Corwin | Representations of nilpotent Lie groups and their applications Part 1: Basic theory and examples[END_REF]theorem A.2.7 p. 241].

L 2 (R k ). Moreover, for F ∈ L 2 (R k ), the function Π(pdg)(F ) is a C ∞ vector for Π
Let U be a set of non trivial unitary irreducible representations of G whose equivalence classes support the Plancherel measure for G. By Kirillov theory, there exists an integer k, which does not depend on Π ∈ U , such that Π : G → B(L 2 (R k )), see more details in 3.5.4 below.

Proposition 10 Let G be a stratified group and let F be the set of coefficient functions

F ={ϕ Π,µ,µ ′ = Π(.)(F µ ), F µ ′ | Π ∈ U, F µ , F µ ′ ∈ B Π } ⊂ L ∞ (dg) where B Π is an orthogonal basis of L 2 (R k ) chosen among eigenvectors of e -1 2 Π(L) . Then F , which lies in C ∞ (G), is a set of eigenvectors of L which is total in L q (p(g)dg), 1 ≤ q < ∞.
For fixed Π, µ the functions {ϕ Π,µ,µ ′ | F µ ′ ∈ B Π } are independent and belong to the same eigenspace of L.

Proof: a) For every non trivial unitary irreducible representation

Π of G, since Π(pdg)(F µ ) = e -1 2 Π(L) (F µ ) = e -1 2 λµ F µ , F µ is a C ∞ vector for Π, hence ϕ Π,µ,µ ′ ∈ C ∞ (G); ϕ Π,µ,µ ′ is an eigenvector of L with eigenvalue λ µ by (22). Since Π is irreducible, the closed invariant subspace {F ∈ L 2 (R k ) | ∀g ∈ G Π(g)(F µ ), F = 0}
is reduced to {0}, which implies the independence of the ϕ Π,µ,µ ′ 's. (In the Heisenberg case, see [T, p. 19, 51]). b) Let ψ ∈ L q ′ (pdg), 1 q + 1 q ′ = 1, be orthogonal to F , i.e. for Π ∈ U,

0 = G Π(g)(F µ ), F µ ′ ψ(g)p(g)dg = ( G Π(g)ψ(g)p(g)dg)(F µ ), F µ ′ .
Equivalently Π(ψp) = ψp(Π) = 0 for Π ∈ U. Then Plancherel formula for G (see e.g. [START_REF] Corwin | Representations of nilpotent Lie groups and their applications Part 1: Basic theory and examples[END_REF]theorem 4.3.10]) implies that ψp = 0 dg a.s.. Indeed, this is clear if ψp ∈ L 2 (dg), in particular if q ′ ≥ 2. In general, ψp ∈ L 1 (dg), (ψp) * p tψp L 1 (dg) → t→0 0 and (ψp) * p t ∈ L 2 (dg); moreover (ψp) * p t = 0 a.s. since, for every Π ∈ U, Π((ψp) * p t ) = Π(ψp)Π(p t ) = 0.

Polynomial eigenvectors of N built from coefficients of representations

We now consider the functions e 1 2 t 2 λµ ϕ Π,µ,µ ′ • δ t as generating functions of polynomial eigenvectors of N.

Proposition 11 Let ϕ Π,µ,µ ′ = Π(.)(F µ ), F µ ′ ∈ F be as in proposition 10. For n ≥ 1, let

h Π,µ,µ ′ n = d n dt n | t=0 e 1 2 t 2 λµ ϕ Π,µ,µ ′ • δ t .
Then h Π,µ,µ ′ n is a polynomial eigenvector of cos N θ with eigenvalue cos n θ.

Proof: By proposition 10 and lemma 9, it is enough to prove assumptions (i) and (ii) in lemma 9. We claim the existence of a polynomial ψ n , n ≥ 1, which does not depend on t, such that, for 0 ≤ t ≤ 1 and n ≥ 0,

d n dt n ϕ Π,µ,µ ′ • δ t ≤ ψ n .
Since g → ψ n (γg -1 ) is still a polynomial, it lies in L 1 (pdg) for every γ ∈ G, and this will prove assumption (i). We now verify the claim.

Case 1: The computation of derivatives being easier if G is step two, we first consider this setting.

By Schur lemma, the restriction of Π to the center exp Z of G is given by a character u → e i l,u where l is some linear form on Z, see e.g. [START_REF] Corwin | Representations of nilpotent Lie groups and their applications Part 1: Basic theory and examples[END_REF]p. 184].

If g = (x, u) and X = n j=1 x j X j ∈ V 1 , ϕ Π,µ,µ ′ (δ t g) = e it 2 l,u Π(exp tX)(F µ ), F µ ′ = e it 2 l,u Φ Π,µ,µ ′ t (x)
and, by ( 22), andd m dt m e it 2 l,u Φ Π,µ,µ ′ t (x) is, for 0 ≤ t ≤ 1, less than a polynomial ψ n which does not depend on t. This proves (i) and (ii) in this case.

d m dt m Φ Π,µ,µ ′ t (x) = Π(exp tX)Π(X) m (F µ ), F µ ′ . ( 23 
) Since Π(X) m (F µ ) lies in L 2 (R k , dξ), Π(X) m (F µ ), F µ ′ and Π(X) m (F µ ) L 2 (dξ) are polynomials w.r. to x, d m dt m | α=0 δ t (ϕ Π,µ,µ ′ ) is a polynomial w.r. to x, u,
General case: As in ( 14) and ( 15), for g = exp Z = exp(X + Y + ..+ U) and t > 0, since

V (Π(δ t Z)) = Π(V (δ t Z)), d dt ϕ Π,µ,µ ′ (δ t g) = d dt exp Π(δ t Z)(F µ ), F µ ′ = Π(V (δ t Z))(F µ ), exp -Π(δ t Z)(F µ ′ ) .
At t = 0 this reduces to the polynomial Π(X)(F µ ), F µ ′ . Since Π(V (δ t Z) has polynomial coefficients w.r. to t and the coordinates of g, so does Π(V (δ t Z))(F µ ) L 2 (dξ) . Hence there is a polynomial ψ 1 w.r. to the coordinates of g such that

sup 0≤t≤1 Π(V (δ t Z))(F µ ) L 2 (dξ) ≤ ψ 1 .
This proves the claim for n = 1. Clearly this can be iterated for upper derivatives, which proves (i) and (ii).

The step two setting: generalized Hermite polynomials

In this case, the key facts are the extension of the explicit functions ϕ Π,µ,µ ′ ∈ F as entire functions on the complexification of G and the explicit expression of p. Theorem 12 gives another proof of theorem 7 a) in this setting, with another description of the eigenspaces of N by generating functions.

Theorem 12 Let G be a step two stratified group. Then By proposition 10, L(ϕ) = λϕ for some λ = λ µ . Hence t → e 1 2 t 2 λ m(t) also extends as a holomorphic function on Ω and

d n dz n | z=0 e 1 2 z 2 λ m = G [ d n dz n | z=0 e 1 2 z 2 λ ϕ z ]ψpdg = G h Π,µ,µ ′ n ψpdg, n ≥ 0. If ψ is orthogonal to {h Π,µ,µ ′ n
, n ≥ 0}, these derivatives are zero, hence e 1 2 z 2 λ m is zero on Ω. In particular m(1) = 0, i.e. ψ is orthogonal to ϕ, which proves the claim.

Step 2: The Heisenberg groups H k A basis of the first layer of the Lie algebra is X 1 , Y 1 , .., X k , Y k where [X j , Y j ] = -4U, U spans the center, and the other commutators are zero. By the Campbell-Hausdorff formula,

g = exp( k j=1 x j X j +y j Y j +uU) = exp uU k j=1 exp(-2x j y j U) exp y j Y j exp x j X j .
We first consider the Schrödinger (unitary irreducible) representation Π S :

H k → B(L 2 (R k )), defined on the Lie algebra by Π S (X j ) = ∂ ∂ξ j , Π S (Y j ) = iξ j , Π S (U) = - 1 4 [ ∂ ∂ξ j , iξ j ] = - i 4 I. For F ∈ L 2 (R k ), this implies Π S (g)(F )(ξ) = e -i u 4 e i 2 P k j=1 x j y j e i P k j=1 y j ξ j F (ξ + x), (24) 
and

Π S (L) = H = k j=1 (- ∂ 2 ∂ξ 2 j + ξ 2 j )
is the harmonic oscillator. If k = 1, an o.n. basis of eigenvectors of H in L 2 (R) is the sequence of Hermite functions F µ , µ ∈ N. The so called special Hermite functions [T, p. 18-19] are, for µ, µ ′ ∈ N and ε µ,µ ′ = sgn(µ ′µ),

Π S (x, y, 0)(F µ ), F µ ′ = Φ µ,µ ′ (x, y) = R e iyξ F µ (ξ + x 2 )F µ ′ (ξ - x 2 )dξ = r µ,µ ′ (x 2 + y 2 )e -1 2 (x 2 +y 2 ) (x + iε µ,µ ′ y) |µ-µ ′ | , (25) 
where r µ,µ ′ = r µ ′ ,µ is a one variable polynomial with real coefficients.

An o.n basis of eigenvectors of

H in L 2 (R k ) is the sequence k j=1 F µ j (ξ j ) µ∈N k , which gives, for µ, µ ′ ∈ N k and g = (x, y, u), ϕ Π S ,µ,µ ′ (g) = Π(g)(F µ ), F µ ′ = e -i u 4 k j=1 Φ µ j ,µ ′ j (x j , y j ). By (25) the function z → ϕ Π S ,µ,µ ′ (zx, zy, z 2 u) is holomorphic on C. Let R a,δ = {α + iβ | |α| < a, |β| < δ} ⊂ C.
For some constant C a,δ , and

z ∈ R a,δ , ϕ Π S ,µ,µ ′ (zx, zy, z 2 u) ≤ C a,δ e 1 2 aδ|u| k j=1 e δ 2 (x 2 j +y 2 j ) .
We now look for conditions on a, δ ensuring that the right hand side lies in L q (pdg). We recall [Hu] that

p(x, y, u) = R e iλu Q(x, y, λ)dλ = c k R e iλu k j=1 2λ sh2λ e -λ th2λ (x 2 j +y 2 j ) dλ. Noting that Q(x, y, λ) = k j=1 Q 1 (x j , y j , λ) is even w.r. to λ, we get, for q ≥ 1, 1 2 R e q 2 aδ|u| p(x, y, u)du ≤ R ch( q 2 aδu)p(x, y, u)du = Q(x, y, iaδ q 2 ).
We need the convergence of

R 2k k j=1 e qδ 2 (x 2 j +y 2 j ) Q 1 (x j , y j , i q 2 aδ)dxdy = c k j=1 R 2 e (qδ 2 -1 2 qaδ tgqaδ )(x 2 j +y 2 j ) dx j dy j ,
which holds for qaδ ≤ π 4 and a > 2δ. Thus, taking a = N ∈ N, ϕ Π S ,µ,µ ′ satisfies the assumptions of step 1 on

Π l (g)(F )(ξ) = e i l,M F (ξ ′ ). ( 27 
)
The set of C ∞ vectors for Π l is S(R k ) [START_REF] Corwin | Representations of nilpotent Lie groups and their applications Part 1: Basic theory and examples[END_REF]corollary 4.1.2]. Every irreducible unitary representation of G is equivalent to a representation constructed in this way; different M l , M ′ l and different l, l ′ in the same coadjoint orbit induce equivalent representations [START_REF] Corwin | Representations of nilpotent Lie groups and their applications Part 1: Basic theory and examples[END_REF]theorems 2.2.2,2.2.3,2.2.4].

By Kirillov theory there is an integer k and a set U 0 ⊂ G * of "generic" orbits with maximal dimension 2k, such that m l = k for l ∈ U 0 . The Plancherel measure is supported by U 0 [START_REF] Corwin | Representations of nilpotent Lie groups and their applications Part 1: Basic theory and examples[END_REF]theorem 4.3.10].

We now compute such a Π l when G is step 2. Let U 1 , .., U d be a basis of the central layer Z and let χ 1 , ., χ n be a basis of the first layer V 1 of G.

Let l∈ G * and let λ = d j=1 λ j U * j be its central part, identified with a vector λ ∈ R d . Let A λ be the n × n matrix with coefficients λ, [χ j , χ h ] .

By Campbell-Hausdorff formula, for Y ∈ G,

X ∈ V 1 , U ∈ Z, g = exp(X + U), exp Adg(Y ) = g exp Y g -1 = e [X,Y ] exp Y = exp(Y + [X, Y ]),
hence the coadjoint orbit of l, i.e. {l • Adg, g ∈ G} ⊂ G * , is l + range A λ . We now assume that l lies in U 0 , so that the range of A λ has dimension 2k.There exists an orthogonal matrix Ω λ such that

A λ = Ω λ A ′ λ Ω * λ
where A ′ λ is block diagonal, the non zero blocks having the form ν j (λ) 0 1 -1 0 , ν j (λ) > 0.

(28)

The new basis of V 1 (defined by the columns of Ω λ ) is denoted by X 1 , Y 1 , .., X k , Y k , S 1 , ..., S n-2k , so that λ, [X j , X h ] = 0 = λ, [Y j , Y h ] , λ, [X j , Y h ] = ν j (λ)δ jh , 1 ≤ j, h ≤ k.

(29) We denote t = Ω λ (x, y, s) ∈ R n , where n j=1

t j χ j = k j=1 x j X j + y j Y j + n-2k h=1 s h S h = X + Y + S ∈ V 1 .
Choosing M l = Z+span{Y j , S h } 1≤j≤k,1≤h≤n-2k , let us compute Π l . By definition Π l (exp u j U j ) = e iu j λ j . For g = exp(X + Z) and Z = Y + S, exp( (ξ j + x j )X j ).

Hence, by ( 27) and ( 29), for F ∈ L 2 (R k ), Π l (g)(F )(ξ) = e i l,M F (ξ + x) = e i P k j=1 ν j y j (ξ j + 1 2 x j ) e i l,Y +S F (ξ + x). (30)

Since we may replace l by l ′ in the orbit of l, we may suppose l, Y j = 0, 1 ≤ j ≤ k. In particular, by (30), Π l (X j ) = ∂ ∂ξ j , Π l (Y j ) = iν j ξ j , 1 ≤ j ≤ k, Π l (S h ) = i l, S h I, 1 ≤ h ≤ n-2k.

Since Ω λ is orthogonal, -L = k j=1 (X 2 j + Y 2 j ) + n-2k h=1 S 2 h , which entails

Π l (L) = k j=1 - ∂ 2 ∂ξ 2 j + ν 2 j ξ 2 j + n-2k h=1 l, S h 2 I.
A basis of eigenvectors of Π l (L) is thus

k j=1 F µ j ( √ ν j ξ j ) µ∈N k
. By (30) and ( 25), for g = (x, y, s, u), ϕ Π l ,µ,µ ′ (g) = e i λ,u e i P n-2k h=1 s h l,S h k j=1 1 √ ν j Φ µ j, µ ′ j ( √ ν j x j , √ ν j y j ).

Hence, for z ∈ R a,δ and some constant C a,δ , with t = Ω λ (x, y, s), ϕ Π l ,µ,µ ′ (zt, z 2 u) ≤ C a,δ e 2aδ| λ,u | e δ P n-2k h=1 |s h l,S h | k j=1 1 √ ν j e δ 2 ν j (x 2 j +y 2 j )

= e 2aδ| λ,u | w a,δ,l (x, y, s).

By [START_REF] Cygan | Heat kernels for class 2 nilpotent groups[END_REF]corollary 5.5] the heat kernel p(t, u) is the Fourier transform of CQ(t, λ) w.r. to the central variables, where

Q(t, λ) = n-2k h=1 e -1 2 s 2 h k j=1
Q 1 (x j , y j , ν j 4 ) = Q(t, -λ).

Again, we need the convergence of R n w q a,δ,l (x, y, s)

n-2k h=1 e -1 2 s 2 h k j=1
Q 1 (x j , y j , iqaδν j 2 )dxdyds, which holds if qaδ max ν j ≤ π 4 and a > 2δ. This ends the proof of theorem 12.

  The set of polynomials e L 2 (P n ) is a space of eigenvectors of cos N θ associated to the eigenvalue cos n θ, n ≥ 0. Proof: a) We rewrite (2) as Le tA = e 2t e tA L, t ∈ R, and a) follows by differentiating at t = 0. b) By (

Proof: Since ϕ ∈ C ∞ (G), t → f t is C ∞ on R + . By (2) L • δ t (ϕ) = t 2 λδ t (ϕ), so that δ t (ϕ) = e -L 2 f t . By lemma 5 b)

We claim that

In particular, applying (20) with θ = 0,

Hence, by ( 20) and ( 19),

By Leibnitz rule, it is enough to prove the claim for δ t (ϕ) instead of f t . By lemma 5 b) we may replace e -L 2 cos N θ in the claim by δ cos θ e -L 2 . The claim now follows from assumption (i).

By Leibnitz rule and assumption (ii), h n is a polynomial. So is cos N θ(h n ) and the result follows from ( 21) since e -L

2 is one to one on P. Remark 5: ϕ and ϕ • δ β , β > 0, give colinear h n 's, since

3.5.2 A total set of eigenvectors of L in L q (pdg), 1 ≤ q < ∞.

We still denote by Π the associated differential representation, defined for a C ∞ vector F and X ∈ G by

and Π(X m ) = Π(X) m , see e.g. [START_REF] Corwin | Representations of nilpotent Lie groups and their applications Part 1: Basic theory and examples[END_REF]p.227]; by definition, Π(X m )(F ) still lies in L 2 (R k ) and is still a C ∞ vector for Π. Π extends as a representation of the convolution algebra M(G) by a) every ϕ Π,µ,µ ′ ∈ F lies in the closed subspace of L q (pdg), 1 ≤ q < ∞, spanned by constants and the polynomials {h Π,µ,µ ′ n , n ≥ 1} defined in proposition 11.

b) The set of generalized Hermite polynomials

together with the constants is a set of eigenvectors of N which is total in

In contrast, if G has more than 4 layers, assertion b) is false by proposition 8, hence a) is false for some ϕ Π,µ,µ ′ ∈ F , by proposition 10. If G has 3 or 4 layers, we do not know if the conclusions of theorem 12 hold true. Proof of theorem 12: a) implies b) by propositions 10 and 11.

b) implies c) as recalled in the proof of theorem 7.

a) The proof is given in three steps. In step 1 we state two standard sufficient conditions ensuring statement a); in step 2 we verify these conditions when G is a Heisenberg group; in step 3 we show how the general step 2 case mimicks the Heisenberg case.

Step 1: Let ϕ Π,µ,µ ′ ∈ F and assume that (i) for every g ∈ G, the function t → ϕ Π,µ,µ ′ (δ t g) extends as a holomorphic function z → ϕ Π,µ,µ ′ z (g) on C. (ii) for some connected neighborhood Ω of the real axis, for every compact K ⊂ Ω, there exists w K ∈ L q (pdg), 1 ≤ q < ∞, such that

We claim that ϕ Π,µ,µ ′ = ϕ then lies in the closed subspace of L q (pdg) spanned by h Π,µ,µ ′ n , n ≥ 1. Indeed, let ψ ∈ L q ′ (pdg), 1 q + 1 q ′ = 1, and let

By the assumptions, m extends as a holomorphic function on Ω and

Plancherel formula for H k (see e.g. [START_REF] Thangavelu | Harmonic analysis on the Heisenberg group[END_REF]Theorem 1.3.1] or [START_REF] Corwin | Representations of nilpotent Lie groups and their applications Part 1: Basic theory and examples[END_REF]p.154]) involves the representations

The conditions of step 1 are satisfied by ϕ Π,µ,µ ′ • δ β , replacing R a,δ by R βa,βδ , which ends the proof of theorem 12 for H k . Taking remark 5 into account, the set ∪

Step 3. We first recall some more facts on representations and compute the set F for step 2 stratified groups. We shall follow Cygan's scheme [Cy].

Let l ∈ G * . Among the Lie subalgebras M ⊂ G satisfying l, [X, Y ] = 0 for every X, Y ∈ M, some have minimal codimension m l and are denoted by M l . Then the map

is a representation of the subgroup exp M l and induces an irreducible unitary representation of G as follows [START_REF] Corwin | Representations of nilpotent Lie groups and their applications Part 1: Basic theory and examples[END_REF]theorems 1.3.3,2.2.1 and p 41] : One chooses independent vectors (X j ) m l i=1 such that G = M l + span{(X j ) m l i=1 }. For (g, ξ) ∈ G ×R m l there exist (ξ ′ , M) ∈ R m l × M l such that exp(

Then, for F ∈ L 2 (R m l ),