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Temporal coherence is a fundamental property of macroscopic quantum systems, such as lasers
in optics and Bose-Einstein condensates in atomic gases and it is a crucial issue for interferometry
applications with light or matter waves. Whereas the laser is an “open” quantum system, ultracold
atomic gases are weakly coupled to the environment and may be considered as isolated. The co-
herence time of a condensate is then intrinsic to the system and its derivation is out of the frame
of laser theory. Using quantum kinetic theory, we predict that the interaction with non-condensed
modes gradually smears out the condensate phase, with a variance growing as At2 +Bt+ C at long
times t, and we give a quantitative prediction for A, B and C. Whereas the coefficient A vanishes for
vanishing energy fluctuations in the initial state, the coefficients B and C are remarkably insensitive
to these fluctuations. The coefficient B describes a diffusive motion of the condensate phase that sets
the ultimate limit to the condensate coherence time. We briefly discuss the possibility to observe
the predicted phase spreading, also including the effect of particle losses.

PACS numbers: 03.75.Kk, 03.75.Pp

I. INTRODUCTION

Bose-Einstein condensation eventually occurs in a
bosonic system, if one reduces the temperature at a fixed
density. It is characterized by the macroscopic occupa-
tion of the lowest single particle energy mode and by the
onset of long range coherence both in time and space.
Initially predicted by Einstein for an ideal Bose gas in
1924, it has now been observed in a wide range of phys-
ical systems: in liquid helium [1, 2], in ultracold atomic
gases [3, 4], and in a variety of condensed matter systems
such as magnons in anti-ferromagnets [5], and exciton
polaritons in microcavities [6]. Among all these systems,
ultracold atomic gases offer an unprecedented control on
experimental parameters and allow very precise measure-
ments as is custom in atomic physics. Experimental in-
vestigation of time coherence in condensates began right
after their achievement in the laboratory [7, 8, 9] and
the use of condensates in atomic clocks or interferome-
ters is currently a cutting-edge subject of investigation
[10, 11, 12, 13]. Therefore a crucial issue is to deter-
mine the ultimate limits on the coherence time of these
systems. Unlike lasers and most solid state systems in
which condensation has been observed, ultracold atomic
gases are weakly coupled to their environment. The in-
trinsic coherence time of a condensate is then due to its
interaction with the non-condensed modes in an ideally
isolated system, which makes the problem unique and
challenging. For the one dimensional quasi-condensate
a theoretical treatment exists [14] that was successfully
compared with experiment [15, 16]. In a true three di-
mensional condensate, the problem was solved in [17] at
zero temperature while until now it has been still open
at non-zero temperature.

As it is known since the work of Bogoliubov [18], the
appropriate starting point for the description of a weakly
interacting degenerate Bose gas is that of a weakly inter-
acting gas of quasi-particles: the Bogoliubov excitations.
The interactions among these quasiparticles shall play
the main role in our problem. They have to be included
in the formalism in a way that fulfills the constraint of
energy conservation, a crucial point for an isolated sys-
tem. A first set of works addressed the problem of phase
coherence in condensates using open-system approaches
in analogy with the laser [19, 20, 21]: diffusive spread-
ing of the condensate phase was predicted. These works
however are not to be considered as quantitative, due to
the fact that a simplified model is used in [19], and due
to an approximate expression of the condensate phase
derivative in [20, 21]. Moreover, lacking the constraint of
energy conservation, these approaches neglect some long
time correlations among Bogoliubov excitations that are
responsible for a ballistic spreading in time of the con-
densate phase as shown in [22, 23] using many-body ap-
proaches. Unfortunately the final prediction in [22] does
not include the interactions among Bogoliubov modes:
the Bogoliubov excitations then do not decorrelate in
time, the prediction quantitatively disagrees with quan-
tum ergodic theory [23], and no diffusive regime for the
condensate phase is found. Finally, the ergodic approach
in [23], while giving the correct ballistic spreading of the
phase, cannot predict a diffusive term.

As we now explain, quantum kinetic theory allows to
include both energy conservation and quasi-particle in-
teractions, and gives access to both the ballistic and the
diffusive behavior of the phase. To be as general and
as simple as possible, we consider a homogeneous gas in
a box of volume V with periodic boundary conditions.
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The condensate then forms in the plane wave with wave
vector k = 0. The total number of particles is fixed to
N and the density is ρ = N/V . Let us consider the
phase accumulated by the condensate during a time in-
terval t: ϕ(t) = θ(t) − θ(0) where θ is the condensate
phase operator [24]. Due to the interactions with the
Bogoliubov quasi-particles, the accumulated condensate
phase will not be exactly the same in each realization of
the experiment. We say that the phase fluctuates and
spreads out in time or that the variance Varϕ(t) is an
increasing function of time. In presence of energy fluc-
tuations in the initial state, the variance of the phase
grows quadratically in time as already mentioned [22, 23].
Quantitatively this may be seen as follows: for t → ∞,
ϕ(t) ∼ −µ(E)t/~ where µ(E) is the chemical potential
which depends only on the energy of the isolated system
[23]. By linearizing µ(E) around the average energy Ē
for small relative energy fluctuations, one finds

Varϕ(t) =

(

dµ

dE

)2

E=Ē

VarE
t2

~2
. (1)

This ballistic spreading in time of the phase is compara-
ble to that of a group of cars traveling with different
speeds. What happens if one reduces ideally to zero
the energy fluctuations in the initial state ? We will
show that the condensate phase will still spread but more
slowly, with a diffusive motion. A precise calculation of
the diffusion coefficient of the condensate phase in differ-
ent experimental conditions, with or without fluctuations
in the initial energy is the main goal of this paper.

The paper is organized as follows: in the overview sec-
tion II we present our main results that we test against
classical field simulations, and we indicate two possible
schemes to observe them experimentally with cold atoms.
In section III we present the equations of motion for the
condensate phase and we introduce the correlation func-
tion C(t) of the phase derivative. Starting from kinetic
equations in section IV, that we linearize and solve in sec-
tion V, we obtain explicit results for the phase variance
in section VI. We discuss the effect of losses in section
VII and we conclude in section VIII.

II. OVERVIEW AND MAIN RESULT

For a low temperature gas T ≪ Tc the temporally
coarse-grained derivative of the condensate phase can be
expressed in terms of the numbers nk of quasi-particles
of wave vector k [23]

ϕ̇ ≃ −µ0/~ −
∑

k 6=0

Aknk (2)

where the constant term µ0 is the ground state chem-
ical potential of the gas and Ak = g

~V (Uk + Vk)2. The
coupling constant g for interactions between cold atoms is
linked to the s-wave scattering length a by g = 4π~

2a/m,
m being the atom mass, and Uk, Vk are the coefficients

of the usual Bogoliubov modes. As a consequence of (2),
the variance of the condensate phase is determined by
the correlation functions of the Bogoliubov quasiparticle
numbers nk. To describe the evolution of the quasiparti-
cles number fluctuations δnk(t) = nk(t) − 〈nk〉 we write
quantum kinetic equations [25] that we linearize. Intro-

ducing the vector ~A of componentsAk, the vector δ~n(t) of
components δnk(t), the vector ~x(t) of components xk(t):

xk(t) =
∑

k′ 6=0

Ak′〈δnk(t)δnk′(0)〉 , (3)

and the matrix M of linearized kinetic equations, one
has:

~̇x(t) = M~x(t) . (4)

On the basis of these linearized equations we get our main
result, that is the asymptotic expression of the variance
of the condensate accumulated phase at long times:

Varϕ(t) ≃ At2 + Bt+ C for t→ ∞ . (5)

In what follows we give an explicit expression for the
coefficients A, B and C.
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FIG. 1: Rescaled diffusion coefficient of the condensate phase
as a function of the rescaled temperature. Full line: numer-
ical result from the solution of (6). Dashed line: analytical
prediction at low temperature: y = 0.3036x4 . Dotted line:
approximate prediction of linear scaling at high temperature:
y ∝ x.

The matrix M has a zero frequency eigenvector ~u0.
We then split the correlation vector ~x into two com-

ponents: ~x = γ~u0 + ~X(t). The component of ~x along
~u0 is constant in time. If it is non zero the correla-
tion function of the condensate phase derivative C(t) =

〈ϕ̇(t)ϕ̇(0)〉 − 〈ϕ̇(t)〉〈ϕ̇(0)〉 = ~A · ~x(t), does not decay to
zero for t→ ∞ and the phase variance will grow quadrat-
ically. In our general formalism we can show that γ is
linked to energy fluctuations in the initial state and we
recover the result (1) for the coefficient A. The remaining
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component ~X has zero mean energy. For the linear co-
efficient ruling diffusive phase spreading we find B = 2D
with:

D = − ~A ·M−1 ~X(0) , (6)

and for the constant term

C = −2 ~A ·M−2 ~X(0) . (7)

Remarkably ~X , and thus D and C, do not depend on
the energy fluctuations of the initial state, up to second
order in the relative energy fluctuations. We find that,
in the thermodynamic limit, the rescaled diffusion coef-
ficient ~VD/g is a universal function of kBT/ρg that we
show in Figure 1. This universal scaling was also found in
[26] in the frame of a classical field model. At low temper-
ature, we have shown analytically that ~DV /g scales as
the fourth power of kBT/ρg, while at high temperature
the rescaled diffusion coefficient grows approximately lin-
early with kBT/ρg (we expect logarithmic corrections to
this law). As made evident by the rescaling, D is pro-
portional to the inverse of the system volume and thus
vanishes in the thermodynamic limit. The same prop-
erty holds for C, and also for A in the case of canonical
ensemble energy fluctuations. In Fig.2 for the tempera-
ture value kBT/ρg = 10 we show the correlation function
of the condensate phase derivative C(t), that we calcu-
late integrating (4) in time. On the same plot we show
the variance of the condensate phase as a function of
time that is obtained from double time integration of

C(t) since ϕ(t) =
∫ t

0
ϕ̇(τ)dτ . The asymptotic behavior

of Varϕ(t) from equation (5) is reached after a transient
time that is typically the decay time of the correlation
function C(t).

In the high temperature regime kBT/ρg ≫ 1, we were
able to test our predictions against exact simulations
within a classical field model. In order to perform a quan-
titative comparison, we rephrased our kinetic theory for
a classical field on a cubic lattice. In both the classical
kinetic theory and the classical field simulations we intro-
duce an energy cut-off such that the maximum energy on
the cubic lattice is of order kBT [27]. We show the result
of the comparison in Fig.3. As expected the numerical
value of the diffusion coefficient Dcl is different from the
exact one given by the quantum theory and it depends
in particular on the value of the cut-off. From the figure
we find nevertheless a remarkable agreement between the
classical kinetic theory and the classical field simulations.

Our findings could have an immediate impact on
present experiments with atomic condensates. Phase
measurements have indeed already been successfully per-
formed within two main schemes. The first one is out of
equilibrium: starting from a condensate in a given inter-
nal state a, one uses two coherent short electromagnetic
pulses separated by an evolution period for the conden-
sate phase, to transfer a fraction of the atoms into an-
other internal state b, followed by a measurement of the
number of atoms in state b. In the original realization
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FIG. 2: (Color online) Variance of the condensate accumu-
lated phase as a function of time for kBT/ρg = 10. Black
full lines: Varϕ(t). Dashed lines: asymptotic behavior (5).
Red line (axis labels on the right): correlation function of the
phase derivative C(t). The upper curves for Varϕ(t) are ob-
tained in presence of canonical ensemble energy fluctuations
in the initial state. The lower curves, as well as C(t) cor-
respond to the microcanonical ensemble where A = 0. In
typical atomic condensates the healing length ξ such that
~

2/2mξ2 = ρg is at most in the µm range and the unit of
time ~ξ3/g is at most in the ms range.
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FIG. 3: Diffusion coefficient Dcl from the classical field theory
on a lattice as a function of the temperature. Crosses linked
by a line: results from the classical version of our kinetic
theory. Bullets with error bars: results from the classical
field simulations with 1000 stochastic realizations. In both
curves there is a a cutoff at energy kBT [27].

of this interferometric scheme [7], π/2 pulses were used
which produce a strongly out of equilibrium state of the
system with a complex phase dynamics. We propose to
transfer only a tiny fraction of atoms in each of the two
pulses, so that the depletion of the a condensate and the
interactions within b atoms may be neglected. Moreover
a spatial separation of a and b [29] or a Feshbach reso-
nance [15, 28] may be used to suppress the a− b interac-
tions. The ideal limiting case would be to transfer in b a
single atom which could be detected in a high finesse op-
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tical cavity [30]. Using linear response theory one finds
that the number of atoms in b after the second pulse

is proportional to N +ℜe(eiδt0〈a†0(t0)a0(0)〉), where a0 is
the condensate operator, δ is the detuning of the coherent
pulses from the a−b transition and t0 is the time interval
between the two pulses. This signal is directly dependent

on Varϕ(t). Indeed |〈a†0(t)a0(0)〉| ≃ N exp[−Varϕ(t)/2].
The second scheme uses a symmetric atomic Josephson
junction [13, 31], in which one would cut the link be-
tween the two condensates by raising the potential bar-
rier and measure the relative phase after an adjustable
delay time. In this case an additional source of ballis-
tic phase spreading is the partition noise proportional to
the variance of the relative atom number. For homoge-
neous systems with canonical ensemble energy fluctua-
tions on both sides of the Josephson junction, the ra-
tio between this undesired contribution and At2 scales
as ξ2N (ρa3)−1/2/Ã where ξ2N is the number squeezing
parameter of the Josephson junction, on the order of
0.35 in [13], and Ã = A/[(ρg/~)2(a2ξ/V )], where ξ is
the healing length, depends only on kBT/ρg [23]. For

kBT/ρg = 5 one has Ã ≃ 150 so that, for the typical
value (ρa3)1/2 = 2.5 × 10−3, the undesired contribution
is smaller than At2 [32].

III. EVOLUTION OF THE CONDENSATE

PHASE AND TIME CORRELATION

FUNCTIONS

We consider a spatially homogeneous spinless Bose gas
in a box of volume V with periodic boundary conditions.
The condensate forms in the lowest single particle energy
state, the plane wave with k = 0, and â0 is the corre-
sponding annihilation operator of a condensate particle.
At a temperature T much below the critical temperature
Tc and for weak interactions, we can neglect the possibil-
ity that the condensate is empty, and we can introduce
the modulus-phase representation of â0:

â0 = eiθ̂

√

N̂0 (8)

where the operator θ̂ represents the condensate phase and
N̂0, the number of condensate particles, is its conjugate

variable so that [N̂0, θ̂] = i. The total number of atoms
is fixed to N . Due to the interactions with the non-
condensed modes, the condensate phase fluctuates and

spreads out in time. Let us call ϕ̂(t) = θ̂(t) − θ̂(0) the
phase accumulated by the condensate from time 0 to time
t, then the variance Var ϕ̂(t) is an increasing function of
time.

Let us introduce the time correlation function of the
condensate phase derivative [33]:

C(t) = 〈 ˙̂ϕ(t) ˙̂ϕ(0)〉 − 〈 ˙̂ϕ(t)〉〈 ˙̂ϕ(0)〉 . (9)

By integrating formally ˙̂ϕ(t) over time and using time

translational invariance:

Var ϕ̂(t) = 2t

∫ t

0

C(τ)dτ − 2

∫ t

0

τC(τ)dτ . (10)

From equation (10) we see that two possible cases can
occur. If C(τ) is a rapidly decreasing function of τ so
that the integrals converge for t → ∞, the variance of
the phase will grow linearly in time for long times and
the condensate phase undergoes a diffusive motion with
a diffusion coefficient

D =

∫ ∞

0

C(τ)dτ . (11)

If C(τ) tends to a non zero constant value for τ → ∞,
the phase variance grows quadratically in time and the
phase undergoes a ballistic spreading. The two different
scenarios are illustrated in Figure 4. To determine the

Diffusive:      ∆ϕ2
 ~ 2t    C(τ) dτ

Ballistic:          ∆ϕ2
 ~ A t

2

t

t
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C
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)
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∞
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FIG. 4: Schematic view of the correlation function of the
condensate phase derivative C(t). If C(t) tends to zero fast
enough for t → ∞, the phase is diffusive. If C(t) tends to a
constant A, the phase is ballistic.

time behavior of the condensate phase and its spreading
we have to calculate the correlation function C(t). As
we showed in [23], to the leading order in Bogoliubov ex-
pansion the slowly varying part of the condensate phase
derivative is given by

˙̂ϕ ≃ −µ0

~
−
∑

k 6=0

Akn̂k (12)

where Ak = g
~V (Uk + Vk)2, with Uk and Vk the usual

Bogoliubov coefficients, n̂k is the number of Bogoliubov
quasiparticles with wave vector k and the constant term
µ0 is the ground state chemical potential of the gas which
does not contribute to the correlation function. We recall

Uk + Vk =
1

Uk − Vk
=

(

~
2k2/(2m)

2ρg + ~2k2/(2m)

)1/4

, (13)

where ρ = N/V is the gas mean density. From equation
(9) we see that the correlation function C(t) which rules
the spreading of the condensate phase can be expressed
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in terms of time correlation functions of the numbers n̂k

of Bogoliubov quasiparticles. Introducing the vector ~A of
components Ak and the vector ~x(t) of components xk(t):

xk(t) =
∑

k′ 6=0

Ak′〈δn̂k(t)δn̂k′(0)〉 , (14)

where δn̂k(t) = n̂k(t) − 〈n̂k〉, we simply have

C(t) = ~A · ~x(t) . (15)

IV. KINETIC EQUATIONS FOR THE

BOGOLIUBOV EXCITATIONS

At low temperature T ≪ Tc we assume that the state
of the gas can be approximated as a statistical mixture
of eigenstates of the Bogoliubov Hamiltonian ĤBog

ĤBog ≡ E0 +
∑

k 6=0

ǫkn̂k , (16)

where E0 is the energy of the ground state. The eigen-
states of ĤBog are Fock states |{nk}〉 with well defined
numbers of Bogoliubov quasiparticles. Whereas expec-
tation values of stationary quantities are expected to
be well approximated by Bogoliubov theory, this is no
longer the case for two-time correlation functions. This
is physically quite clear for the correlation function of the
Bogoliubov mode occupation numbers n̂k: whereas they
never decorrelate at the Bogoliubov level of the theory
(they are conserved quantities of ĤBog), they will experi-
ence some decorrelation for the full Hamiltonian dynam-
ics because of the interactions among Bogoliubov quasi-
particles, that are at the origin of the Beliaev-Landau
processes.

For a given initial state of the system characterized by
the occupation numbers {nk} = {nk(0)} the time evo-
lution, beyond Bogoliubov approximation, of the mean
mode occupation numbers

nq(t) ≡ 〈{nk(0)}|n̂q(t)|{nk(0)}〉 (17)

can be described in terms of quantum kinetic equations
of the form [25]:

ṅq = − g2ρ

~π2

∫

d3k {[nqnk − nq+k(1 + nk + nq)]

×
(

A|q+k|
k,q

)2

δ(ǫq + ǫk − ǫ|q+k|)

}

− g2ρ

2~π2

∫

d3k {[nq(1 + nk + nq−k) − nknq−k]

×
(

Aq
k,|q−k|

)2

δ(ǫk + ǫ|q−k| − ǫq)

}

. (18)

In (18), ρ is the gas density ρ = N/V , g is the coupling
constant for binary interactions between cold atoms and
is linked to the s-wave scattering length a, g = 4π~

2a/m

where m is the atomic mass. We have also introduced
in (18) the coupling amplitudes among the Bogoliubov
modes:

Aq
k,k′ = UqUkUk′ + VqVkVk′

+ (Uq + Vq)(VkUk′ + UkVk′ ) . (19)

Kinetic equations (18) describe Landau and Beliaev pro-
cesses in which the mode of wave vector q scatters an
excitation of wave vector k giving rise to an excitation
of wave vector k′ (Landau damping), the mode of wave
vector q decays into an excitation of wave vector k and
an excitation of wave vector k′ (Beliaev damping), and
inverse processes. In each process the final modes have
to satisfy energy and momentum conservation. Energy
conservation is ensured by the delta distributions in (18)
where ǫk is the Bogoliubov energy of the quasiparticle of
wave vector k,

ǫk =

[

~
2k2

2m

(

~
2k2

2m
+ 2ρg

)]1/2

. (20)

To calculate the correlation function C(t), equations
(18) can be linearized for small deviations [34], and lin-
ear equations for the correlation functions xq(t) can be
obtained:

~̇x = M~x . (21)

To obtain ẋq from ṅq, we connect expectation values in
an initially considered Fock state to expectation values in
the system state by an additional average. More details
on the derivation of (21), as well as the explicit form
of the equations, which are in fact integral equations, are
given in appendix A. In particular, the matrixM depends
on the Bose occupation numbers

n̄q =
1

eǫq/kBT − 1
. (22)

This constitutes a stationary solution of (18), with a tem-
perature T such that the mean energy of this solution is
equal to the mean energy of the system. The classical ver-
sion of kinetic equations that we used to test our results
against classical field simulations (that are exact within
the classical field model) are reported in appendix B.

V. SOLUTION OF THE LINEARIZED

EQUATIONS

The matrix M is real and not symmetric. It has right
and left eigenvectors M~uλ = mλ~uλ, t~vλM = mλ

t~vλ sat-
isfying ~vλ · ~uλ′ = δλλ′ . Due to the fact that the system is
isolated during its evolution, M has a pair of adjoint left
and right eigenvectors with zero eigenvalue [35]. Indeed

for any fluctuation ~δn:
∑

k

ǫknk = constant →
∑

k

ǫk ˙δnk = 0 → t~ǫM ~δn = 0 .

(23)
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Let us denote ~u0 the right eigenvector of M with eigen-
value 0 and ~v0 the corresponding left eigenvector. One
has clearly ~v0 = ~ǫ. On the other hand one can show that
~u0 = ~α [36] with :

αk =
ǫkn̄k(n̄k + 1)

∑

q 6=0 ǫ
2
qn̄q(n̄q + 1)

. (24)

It is useful to split the correlation vector ~x into a com-
ponent parallel to ~α and a zero-energy component, that
is a component orthogonal to the vector ~ǫ:

~x = γ~α+ ~X . (25)

For our normalization of ~α one simply has γ = ~ǫ ·~x. From
equations (21) and (25) we obtain

γ̇ = 0 (26)

~̇X = M ~X . (27)

Under the assumption that ~A · ~X(τ) = O(τ−(2+ν)) with
ν > 0 for τ → ∞, we obtain from (10) the asymptotic
expression for the condensate phase variance:

Var ϕ̂(t) ≃ At2 + Bt+ C + o(1) for t→ ∞ (28)

with

A = ~A · γ~α (29)

B = 2

∫ ∞

0

dτ ~A · ~X(τ) (30)

C = −2

∫ ∞

0

dτ τ ~A · ~X(τ) . (31)

As explained below Eq.(56) we have some reason to be-
lieve that ν = 1.

VI. RESULTS FOR THE PHASE VARIANCE

State of the system and quantum averages: In the
general case, we assume that the state of the system is
a statistical mixture of microcanonical states. For any
operator Ô one then has

〈Ô〉 =

∫

dE P (E) 〈Ô〉mc(E) , (32)

where 〈. . .〉mc(E) is the microcanonical expectation value
for a system energyE. Furthermore we make the hypoth-
esis that the width of the energy distribution P (E) is
small. Formally, in the thermodynamic limit we assume

σ(E)

E
= O

(

1√
N

)

for N → ∞ . (33)

Besides microcanonical averages 〈Ô〉mc(E), we introduce

canonical averages 〈Ô〉can(T ) where the temperature T

is chosen such that 〈ĤBog〉can(T ) = 〈ĤBog〉 ≡ Ē. Useful

relations among the quantum averages in the different
ensembles are derived in Appendix C.
Quadratic term: First we calculate the quadratic term
A of the condensate phase variance given in (29). We
introduce the “chemical potential” operator

µ̂ ≡ µ0 + ~

∑

k 6=0

Akn̂k (34)

so that −µ̂/~ = ˙̂ϕ according to equation (12). The con-
stant γ appearing in (29) can then be expressed as

γ = ~ǫ · ~x(0) = 〈
(

ĤBog − Ē
)

µ̂〉 (35)

so that, using (32),

γ =

∫

dE P (E) (E − Ē)〈µ̂〉mc(E) . (36)

We now expand the function 〈µ̂〉mc(E) around its value
for the average energy:

〈µ̂〉mc(E) = 〈µ̂〉mc(Ē) + (E − Ē)
d〈µ̂〉mc

dE
(Ē) + . . . (37)

Inserting the expansion (37) in (36) one gets to leading
order in the energy fluctuations:

γ ≃ d〈µ̂〉mc

dE
(Ē)VarE . (38)

Using equation (C4) of Appendix C for Ô = µ̂, we finally
obtain

γ ≃
d

dT 〈µ̂〉can
d

dT Ē
VarE . (39)

According to (29) we also need the value of ~A · ~α that we
can rewrite

~A · ~α =

∑

k 6=0Ak
d

dT n̄k

d
dT Ē

=
d

dT 〈µ̂〉can
d

dT Ē
. (40)

Finally

A =

(

d
dT 〈µ̂〉can

d
dT Ē

)2

VarE . (41)

We then recover, by a different method and in a more
general case, the main result of [23] for super diffusive
phase spreading when energy fluctuations are present in
the initial state of the gas.
Linear term: The linear term B in (30) represents a
diffusion of the condensate phase with a diffusion coeffi-
cient D = B/2. Integrating equation (27) from zero to

infinity and assuming ~X(∞) = 0, we obtain

D = − ~A ·M−1 ~X(0) (42)
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where the inverse of the matrix M has to be understood
in a complementary subspace to the kernel of matrix M ,
that is in the subspace of vectors ~x satisfying ~ǫ · ~x = 0.
We can then write

D = −(P ~A) ·M−1 ~X(0) (43)

where the matrix P † projects onto this subspace in a
parallel direction to ~α. This corresponds to a matrix P
given by

Pk,k′ = δk,k′ − ǫkαk′ . (44)

As a consequence, one simply has

~X(0) = P †~x(0) = ~x(0) − ~α (~ǫ · ~x(0)) . (45)

0.01 0.1 1 10 100
k

B
T/ρg

10
0

10
1

10
2

-C
 V

/ξ
3

FIG. 5: Constant C as a function of the rescaled tempera-
ture. Full line: numerical result from the solution of (54).
Dashed line: analytical prediction at low temperature: y =
(2π2)0.010298x−1 . Dotted line naive prediction for the high

temperature scaling: y ∝ x1/2.

We show here that D does not depend on the width of
the energy distribution P (E) of the initial state. To this
end it is sufficient to show that the same property holds

for ~X(0). We apply the relation (C10) to n̂k and n̂kn̂k′

to obtain after some calculations

〈δn̂kδn̂k′〉 = δkk′ n̄k(1 + n̄k)

+ (η − 1)kBT
2

(

d
dT n̄k

) (

d
dT n̄k′

)

d
dT Ē

+ . . .(46)

where the dots indicate higher order terms in the ther-
modynamic limit that will be neglected. Here η is the
ratio of the variance of the system energy to the energy
variance in the canonical ensemble, η = VarE/VarcanE.

Eq.(46) shows that ~x(0) and hence ~X(0) are affine func-

tions of η. ~X(0) can then be determined from its values
in η = 0 (microcanonical ensemble) and η = 1 (canonical
ensemble):

~X(0) = η ~Xcan(0) + (1 − η) ~Xmc(0) . (47)

On the other hand one can show explicitly for a large

system that ~Xcan(0) = ~Xmc(0) [37]. As a consequence

~X(0) = ~Xmc(0) (48)

does not depend on η. Note that this relation extends

to all positive times, ~X(t) = ~Xmc(t), since the matrix M
does not depend on the energy fluctuations.

The expression of ~Xmc(0) has been derived in [26]. In-
troducing the covariance matrix of Bogoliubov occupa-
tion numbers

Qmc
k,k′(t) = 〈δn̂k(t)δn̂k′(0)〉 , (49)

one has in the microcanonical ensemble

~Xmc(0) = Qmc(t = 0) ~A . (50)
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t [ /hξ3
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FIG. 6: (Color online) Top: For a system prepared in the
microcanonical ensemble, variance of the condensate accu-
mulated phase as a function of time for kBT/ρg = 0.2. Black
full line: Var ϕ̂ obtained from (10): Dashed line: asymptotic
behavior (28). Red line: correlation function C(t) defined
in (9). Bottom: Full red line: The same correlation func-
tion C(t) in log-log scale. Dotted line: Exponential function
f(t) = C(0) exp(−t/τc), where τc is defined in (56). Dashed
dotted line: law y = x−3 predicted by the Gaussian model of
[26]. ξ is the healing length: ~

2/2mξ2 = ρg.
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As we showed in [26], for a large system, the t = 0
covariance matrix in the microcanonical ensemble can be
obtained by the one in the canonical ensemble by projec-
tion:

Qmc(t = 0) ≃ P †Qcan(t = 0)P , (51)

where Qcan is the covariance matrix in the canonical en-
semble, that can be calculated using Wick’s theorem

Qcan
k,k′(t = 0) = n̄k(n̄k + 1)δk,k′ . (52)

Using (43) we can then calculate the diffusion coefficient
D already discussed in the paper. Some details about
the low temperature and high temperature limits of D
are given in appendix D and in appendix E respectively.
The constant term: We now come to the constant term
C defined in (31). By integrating formally (d/dt)(t ~X)
between zero and infinity and by using (27), we obtain

0 =

∫ ∞

0

dt ~X(t) +M

∫ ∞

0

dt t ~X(t) (53)

and finally

C = −2(P ~A) ·M−2 ~X(0) . (54)

We show in Fig.5 the constant C obtained from (54) as a
function of temperature. At low temperature we get

CV
ξ3

∼ c2

(

kBT

ρg

)−1

for
kBT

ρg
→ 0 (55)

The constant c2/(2π
2) = −0.010298 is calculated numer-

ically. Note that, contrarily to the coefficients A and B,
the coefficient C does not tend to zero for T → 0, on the
contrary it diverges. However, the typical decoherence
time τc also diverges in this limit, as we shall see in what
follows.
The correlation function C(t): The phase derivative
correlation function C(t) was defined in (9). Restricting
for simplicity to the system being prepared in the mi-
crocanonical ensemble (as we have seen, in the general
case, C(t) deviates from the microcanonical value Cmc(t)
by an additive constant), we show in Fig.6-Top the func-
tion Cmc(t) in the low temperature case kBT/ρg = 0.2.
Cmc(t) is obtained by (15), integrating equation (21) in
time by Euler’s method. Correspondingly, we calculate
the variance of the condensate phase as a function of
time from (10) and we compare it to its asymptotic be-
havior (28). On the same figure, see Fig.6-Bottom, we
show Cmc(t) in log-log scale to point out significant devi-
ations from the exponential behavior: C(t) rather decays
as a power law; the Gaussian model of [26] at large times
gives Cmc(t) ∝ 1/t3 which we also plot in the figure for
comparison.
Characteristic time to reach the asymptotic

regime: The asymptotic regime for the phase variance
is reached after a transient that is the typical decay time

of the correlation function C(t). An estimation of this
time is

τc ≡ D

Cmc(0)
. (56)

This is only an estimation since, as we have seen, Cmc(t)
is not an exponential function ∝ exp(−t/τc). A plot of
τc as a function of temperature is shown in Fig.7. At low
temperature

gτc
~ξ3

∼ c3

(

kBT

ρg

)−5

for
kBT

ρg
→ 0 (57)

The constant c3/(2π
2) = 0.002772 is calculated numeri-

cally.
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τ c [/ h 
ξ3 /g

] 

FIG. 7: Typical decay time of the correlation function C(t),
after which the asymptotic behavior of the phase is ob-
served. Full line: numerical result from the solution of
(56). Dashed line: analytical prediction at low temperature:
y = (2π2)0.002772x−5 . Dotted line: naive prediction for the

high temperature scaling: y ∝ x−1/2. The healing length ξ is
such that ~

2/2mξ2 = ρg.

In table I we give the numerical values of the rele-
vant parameters for 10 reduced temperatures in the range
0.1 − 100.

VII. INFLUENCE OF PARTICLE LOSSES ON

THE SUPER-DIFFUSIVE PHASE SPREADING

For an isolated system with energy fluctuations in the
initial state, we have seen that the correlation function
C(t) of the condensate phase derivative does not vanish
at long times and the condensate phase spreading is super
diffusive. In presence of particle losses, unavoidable in
real experiments, the system is not isolated and the total
energy is not conserved so that one may wonder whether
the super diffusive term is still present. We show in this
section that this is indeed the case, in a regime where the
fraction of particles lost during the decay time τc of the
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TABLE I: Numerical values of the relevant quantities. ξ is
the healing length: ~

2/2mξ2 = ρg. A is given for energy
fluctuations of the canonical ensemble, and C(0) for the mi-
crocanonical ensemble.

kBT
ρg

~DV
g

CV
ξ3

Cmc(0)V ~
2ξ3

g2

gτc

~ξ3

A
1/2

can~V 1/2

(ρg)aξ1/2

0.1 2.130 × 10−5 −2.227 1.784 × 10−9 11940 0.02397

0.2 2.142 × 10−4 −1.426 2.046 × 10−7 1046 0.1092

0.5 3.163 × 10−3 −1.286 3.105 × 10−5 101.9 0.6037

1 1.911 × 10−2 −1.726 6.337 × 10−4 30.16 1.7557

2 9.626 × 10−2 −2.886 7.939 × 10−5 12.12 4.3682

5 0.638 −6.691 0.134 4.746 12.276

10 2.280 −12.95 0.880 2.590 24.542

20 7.323 −24.48 4.971 1.473 46.598

50 30.14 −53.35 42.06 0.716 103.10

100 81.60 −91.59 195.8 0.417 182.94

correlation function C(t) is small, a condition satisfied in
typical experimental conditions.

We first perform a classical field simulation with one
body losses of rate constant Γ: during the infinitesimal
time interval dt, a quantum jump may occur with a prob-
ability ΓNdt where N is the number of particles just
before the jump. If the jump occurs, a particle is lost
which corresponds in the classical field model to a renor-
malization of the field ψ(r) → [(N − 1)/N ]1/2ψ(r). In
between jumps the field evolves with the usual non-linear
Schrödinger equation:

i~∂tψ = − ~
2

2m
∆ψ + g|ψ|2ψ. (58)

The result for the condensate phase standard deviation
as a function of time is shown in Fig. 8, in the absence
(dashed line) and in presence (solid line) of losses. It is
apparent that, for the parameters taken in this figure, the
spreading of the phase up to a standard deviation of order
unity is only weakly affected by the particle losses. We
also find that the phase spreading is in fact accelerated by
the losses and becomes effectively super-ballistic. As we
now show, this is due to the fact that the losses introduce
fluctuations in the particle number that grow in time.

In order to understand the numerical results we use a
heuristic extension of the ergodic model in presence of
losses. In the model there are two dynamical variables:
the total energy and the total number of particles. We
assume that in between to loss events the condensate
phase evolves according to

θ̇(t) = −µmc(E,N)

~
(59)

where µmc is the chemical potential in the microcanon-
ical ensemble of energy E for a system with N parti-
cles. When a loss event occurs, N is obviously changed
into N − 1. For the energy change one has to con-
sider separately the kinetic and the interaction energies:

0 1000 2000 3000 4000 5000
t [/hξ3

/g]

0

0.5

1

1.5
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[V
ar

 ϕ
] cl1/

2

FIG. 8: Condensate accumulated phase standard devia-
tion as a function of time with and without one body
losses in a classical field model. Solid line: simulation for
Γ = 1.555 × 10−5g/(~ξ3). Dashed line: simulation with-
out losses. Black discs: lossy ergodic model (see text) for
Γ = 1.555 × 10−5g/(~ξ3). Circles: prediction of the ergodic
theory (no losses). The initial atom number is N(0) = 4×105,

ρ(0)g = 1798.47~
2/(mV 2/3), kBT/ρ(0)g = 2.95. A spatial

box of sizes L1, L2, L3 and volume V = L1L2L3 box is used
with periodic boundary conditions. The squared box sizes are
in the ratio

√
2 : (1 +

√
5)/2 :

√
3. Note that here, contrarily

to previous figures, the variance is directly given and was not
divided by the factor ξ3/V (here ξ3/V ≃ 4.64 × 10−6). For
a typical atomic density of ρ(0) = 1.2 × 1020 atoms/m3, tak-
ing the 87Rb mass and scattering length a = 5.3 nm, our
parameters correspond to 1/Γ = 20s, ρ(0)g/(2π~) ≃ 950
kHz, T ≃ 0.14µK or T ≃ 0.3Tc, and the temporal unit
~ξ3/g ≃ 0.31ms. A number of 1200 realizations is performed
in each simulation, and the energy cut-off corresponds to a
maximal Bogoliubov eigenenergy equal to kBT . The variance
of the total energy in the initial state is 1.5×1011

~
4/(mV 2/3)2,

resulting from sampling the canonical ensemble in the Bo-
goliubov approximation. This value is larger than the one
predicted by the Bogoliubov theory by a factor 1.3 due to
non negligible interactions among the Bogoliubov modes. A
lossless relaxation phase of a duration 500~ξ3/g is performed
after the sampling.

Ekin is a quadratic function of ψ and is changed into
[(N−1)/N ]Ecin. The interaction energy is a quartic func-
tion of ψ and is changed into [(N − 1)/N ]2Eint. When a
jump occurs we then take

E′ =
N − 1

N
〈Ekin〉mc(E,N)

+

(

N − 1

N

)2

〈Eint〉mc(E,N) (60)

N ′ = N − 1 (61)

where the prime indicates the quantities after the jump
and where 〈Ekin〉mc and 〈Eint〉mc are the mean kinetic
and interaction energies in the microcanonical ensemble
[38]. To calculate the microcanonical averages and the
chemical potential, we rely on Bogoliubov theory. In the
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classical field model:

µmc(E,N) =
gN

V
+
g

V

E − E0

M
∑

k 6=0

(

~
2k2

2m
+

2gN

V

)−1

(62)

〈Eint〉mc(E,N) = E0 +
gN

V

E − E0

M
∑

k 6=0

(

~
2k2

2m
+

2gN

V

)−1

(63)

〈Ekin〉mc(E,N) = E − 〈Eint〉mc(E,N) , (64)

where M is the number of Bogoliubov modes and E0 =
gN2/2V is the ground state energy.

We have performed a Monte Carlo simulation of this
model. The initial energy is obtained sampling a Gaus-
sian distribution with a mean energy given by Bogoliubov
theory and with the same variance as in the classical field
simulations (see caption of Fig.8). The results for the
condensate phase variance (symbols) are compared with
the classical field simulation with and without losses in
Fig.8. A good agreement is found.

To go further, we analytically solve this model to first
order in the loss rate constant Γ. As detailed in appendix
F, we obtain the simple result:

Var ~φ(t) ≃ (Varµ)t2 + (〈µ δµ〉 − 〈µ〉〈δµ〉) ΓNt3

+
1

3
〈δµ2〉ΓNt3. (65)

Here N is the initial atom number, µ is the initial chem-
ical potential, and δµ = µ′ − µ is its change after the
first loss event. After an explicit calculation, in the limit
kBT ≫ ρg, this reduces to

Varφ(t) ≃
(

∂µmc

∂E

)2

(Ē,N)VarE
t2

~2

+
1

3
ΓNt3

( g

~V

)2

+ ΓNt3
( g

~V

)2

O

( 〈δN〉
N

)

, (66)

where 〈δN〉/N ≪ 1 is the fraction of non condensed par-
ticles. The first term in the right hand side of (66) is
the classical field version of the result (1) without losses.
The third term is negligible as compared to the second
one in the present regime of a small non condensed frac-
tion. The second term, independent of the temperature,
is the result that one would have at zero temperature in
presence of losses at short times (Γt ≪ 1). This term has
a simple physical interpretation: in presence of fluctua-
tions in the initial number of particles for a lossless pure
condensate, the condensate accumulated phase grows
quadratically in time with a variance (dµ/dN)2t2VarN ,
where µ = gN/V . For a lossy pure condensate with ini-
tially exactly N particles, VarN ≃ ΓNt so that one in-
deed expects Varφ(t) ∝ (g/V )2ΓNt3. Actually, at T = 0
it is possible to calculate exactly Varφ(t) in presence of
losses (see appendix F):

[Varφ(t)]T=0 =
( g

V ~Γ

)2

N
[

1 − 2Γt e−Γt − e−2Γt
]

.

(67)

This zero temperature result even extends to the quan-
tum case for a pure condensate, see appendix G, so that
one may hope that the form of the classical field result
(66) extends to the quantum reality.

VIII. CONCLUSIONS

In conclusion we have presented a full quantitative
quantum solution to the long standing problem of the
decoherence of a condensate due to its interactions with
quasi-particles in the non-condensed modes: the growth
of the variance of the condensate accumulated phase in-
volves in general both a quadratic term and a linear term
in time, with coefficients that we have determined within
a single theoretical frame, quantum kinetics. As we have
discussed, our findings may be directly tested with state-
of-the-art technology, and they may stimulate systematic
experimental investigation of this problem, both funda-
mental and crucial for future applications of condensates
in matter wave interferometry.
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APPENDIX A: EQUATIONS FOR xq(t)

We detail here the derivation of equation (21) for the
correlation functions xq(t). We assume that (i) the den-
sity matrix ρ of the gas is a statistical mixture of eigen-
states of the Bogoliubov Hamiltonian ĤBog given by (16)

ρ =
∑

P({nk})|{nk}〉〈{nk}| , (A1)

and (ii) for a given initial Fock state |{nk}〉,
the evolution of the expectation values nq(t) =
〈{nk(0)}|n̂q(t)|{nk(0)}〉 are given by the kinetic equa-
tions (18). We then have

〈n̂q1
(t)n̂q2

(0)〉 =
∑

{nk(0)}

P({nk(0)})nq2
(0)

× 〈{nk(0)}|n̂q1
(t)|{nk(0)}〉 , (A2)

and

d

dt
〈δn̂q1

(t)δn̂q2
(0)〉 =

∑

{nk(0)}

P({nk(0)})δnq2
(0)

×
∑

q′

Mq1,q′δnq′(t) , (A3)
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where the matrix M is obtained by linearization of equa-
tions (21). We have introduced

δnq(t) = 〈{nk(0)}|n̂q(t)|{nk(0)}〉 − 〈n̂q〉 (A4)

where we recall that 〈. . .〉 is the expectation value in the
state of the system. By multiplying (A3) by Aq2

, sum-
ming over q2, and approximating 〈n̂q〉 with n̄q of (22),
which is justified in the present regime of large system
size and weak relative energy fluctuations, we obtain (21).

Using the rotational invariance of xk as a function of k

and the delta of conservation of energy we can explicitly
integrate over the angular variables and we obtain the
simple integral equations that we now detail. We intro-
duce dimensionless quantities Q̌. Momenta are rescaled
by the inverse of the healing length ξ = (~2/2mρg)1/2,
energies are rescaled by the Gross-Pitaevskii chemical po-
tential ρg, and rates are expressed in units of g/(2π2ξ3~):

q̌ = q

(

~
2

2mρg

)1/2

= qξ, (A5)

ǫ̌q =
ǫq
ρg

= [q̌2(q̌2 + 2)]1/2 (A6)

Γ̌q =
2π2ξ3~

g
Γq . (A7)

As a consequence, the mean occupation number n̄q is a
function of q̌ and of the ratio kBT/ρg only, and the mode
amplitudes Uq, Vq are functions of q̌ only. We then have

ẋq(t) = −Γ̌qxq(t) + Ǐ . (A8)

The integral Ǐ is:

Ǐ

2π
=

∫ ∞

0

dǩ
(

Ak′

k,q

)2 ǩ(ǫ̌k + ǫ̌q)(n̄k′ − n̄q)

q̌(ǩ′2 + 1)
xk(t)

+

∫ ∞

q

dǩ
(

Ak
k′′,q

)2 ǩ(ǫ̌k − ǫ̌q)(1 + n̄k′′ + n̄q)

q̌(ǩ′′2 + 1)
xk(t)

+

∫ q

0

dǩ
(

Aq
k,k′′

)2 ǩ(ǫ̌q − ǫ̌k)(n̄k′′ − n̄q)

q̌(ǩ′′2 + 1)
xk(t) ,(A9)

with

ǩ′2 =
√

1 + (ǫ̌k + ǫ̌q)2 − 1 (A10)

ǩ′′2 =
√

1 + (ǫ̌k − ǫ̌q)2 − 1 . (A11)

The damping rate Γq is the sum of the Beliaev and Lan-
dau damping rates already given in [26]:

Γ̌q = Γ̌L
q + Γ̌B

q (A12)

with

Γ̌L
q

2π
=

∫ +∞

0

dǩ
(

Ak′

k,q

)2 ǩ(ǫ̌k + ǫ̌q)(n̄k − n̄k′)

q̌(ǩ′2 + 1)
(A13)

and

Γ̌B
q

π
=

∫ q̌

0

dǩ
(

Aq
k,k′′

)2 ǩ(ǫ̌q − ǫ̌k)(1 + n̄k + n̄k′′)

q̌(ǩ′′2 + 1)
.

(A14)
Introducing

M̌ =
2π2ξ3~

g
M (A15)

~̌A =
~V

g
~A (A16)

~̌X(0) =
~V

g
~X(0) (A17)

one has

~DV

g
= −

∫ ∞

0

ǩ2dǩ(P ~̌A)k(M̌−1 ~̌X(0))k (A18)

CV
2π2ξ3

= −2

∫ ∞

0

ǩ2dǩ(P ~̌A)k(M̌−2 ~̌X(0))k (A19)

C(t) =
g2

2π2V ~2ξ3

∫ ∞

0

ǩ2dǩ(P ~̌A)kX̌(t)k . (A20)

APPENDIX B: CASE OF A CLASSICAL FIELD

We consider a discrete model for a classical field ψ(r) in
three dimensions. The lattice spacing is l along the three
directions of space. We enclose the field in a spatial box
of volume V with periodic boundary conditions. Then
the field can be expanded over the plane waves

ψ(r) =
∑

k

ak
e i k·r

√
V

, (B1)

where k is restricted to the first Brillouin zone, k ∈ D ≡
[−π/l, π/l[3. The lattice spacing corresponds to an en-
ergy cut-off such that the highest Bogoliubov energy on
the lattice is ǫkmax

= kBT .
The classical limit in the kinetic equations is obtained

by taking: n̄k + 1 ≃ n̄k → n̄cl
k = kBT/ǫk in the equation

(A8) for xq. In the units already introduced in Appendix
A one then has:

ẋq(t) = −Γ̌cl
q xq(t) + Ǐcl. (B2)

We have introduced

Ǐcl
2

=

∫

D

d3k
(

Aq
k,k′

)2

(n̄cl
k′ − n̄cl

q )δ(ǫ̌k + ǫ̌k′ − ǫ̌q)xk(t)

+

∫

D

d3k
(

Ak′′

k,q

)2

(n̄cl
k′′ − n̄cl

q )δ(ǫ̌k + ǫ̌q − ǫ̌k′′)xk(t)

+

∫

D

d3k
(

Ak
k′,q

)2
(n̄cl

k′ + n̄cl
q )δ(ǫ̌k′ + ǫ̌q − ǫ̌k)xk(t) .

(B3)
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The integrals are restricted to the domain D and

k′ = q − k +
2π

l
n , n ∈ Z

3 (B4)

k′′ = q + k +
2π

l
m , m ∈ Z

3, (B5)

where m and n are such that k′,k′′ ∈ D. Indeed the
presence of the lattice implies the existence of unphysical
Umklapp processes, such that n 6= 0 or m 6= 0 (see [26]),
that we include in the classical kinetic theory.

The damping rate in the classical field model Γ̌cl
q is the

sum of Beliaev and Landau damping rates Γ̌cl
q = Γ̌cl,B

q +

Γ̌cl,L
q with:

Γ̌cl,B
q =

∫

D

d3k
(

Aq
k,k′

)2

(n̄cl
k + n̄cl

k′)δ(ǫ̌k + ǫ̌k′ − ǫ̌q) , (B6)

Γ̌cl,L
q =

∫

D

d3k
(

Ak′′

k,q

)2

(n̄cl
k − n̄cl

k′′)δ(ǫ̌k + ǫ̌q− ǫ̌k′′) . (B7)

From the kinetic equations in the classical model,
~̇x(t) = Mcl~x(t), one has the classical diffusion coefficient
in the form:

~DclV

g
= −

∫

D

d3k (P ~̌A)k (M̌−1
cl

~̌X(0))k . (B8)

Paradoxically the lattice with the relatively low energy
cut-off breaks the spherical symmetry of the problem
making the numerical solution heavier than in the quan-
tum case. The classical field simulations were performed
as in [26] except for the free dispersion relation of the
matter wave on the grid: here the usual parabolic dis-
persion relation Ek = ~

2k2/2m was used.

APPENDIX C: STATE OF THE SYSTEM AND

QUANTUM AVERAGES

In this appendix we establish some useful relations
among different averages. In particular we wish to ex-
press the expectation value of Ô defined in equation (32)
in terms of canonical averages where the temperature T
is chosen such that 〈ĤBog〉can(T ) = 〈ĤBog〉 ≡ Ē. First

of all we expand the function 〈Ô〉mc(E) around its value
for the average energy:

〈Ô〉mc(E) = 〈Ô〉mc(Ē) + (E − Ē)
d〈Ô〉mc

dE
(Ē)

+
1

2
(E − Ē)2

d2〈Ô〉mc

dE2
+ . . . (C1)

We then take the average of (C1) over the energy distri-
bution P (E) and obtain

〈Ô〉 = 〈Ô〉mc(Ē) +
1

2

d2〈Ô〉mc

dE2
Var(ĤBog) + . . . (C2)

The coefficient in front of Var(ĤBog) in the second term
in (C2) appears in a first order correction, it can thus be
calculated to lowest order in the inverse system size. By
writing explicitly

〈Ô〉mc(Ē(T )) ≃ 〈Ô〉can(T ) (C3)

and deriving this relation with respect to the temperature
T , we obtain

d〈Ô〉mc

dE
(Ē(T )) ≃

d
dT 〈Ô〉can(T )

dĒ(T )
dT

, (C4)

and

d2〈Ô〉mc

dE2
(Ē(T )) ≃ 1

dĒ(T )
dT

d

dT

(

d
dT 〈Ô〉can(T )

dĒ(T )
dT

)

. (C5)

On the other hand we know that

dn̄k

dT
=

1

kBT 2
ǫkn̄k(1 + n̄k) (C6)

Varcan(HBog) =
∑

k 6=0

ǫ2kn̄k(1 + n̄k)

= kBT
2dĒ

dT
. (C7)

We then obtain the equation

〈Ô〉 ≃ 〈Ô〉mc(Ē) +
kBT

2

2
η
d

dT

(

d
dT 〈Ô〉can(T )

dĒ(T )
dT

)

, (C8)

with

η =
Var(ĤBog)

Varcan(ĤBog)
. (C9)

In the particular case in which the average 〈Ô〉 is taken
in the canonical ensemble, η = 1 and we recover equa-
tion (B7) of [23]. If we now eliminate the microcanonical
average in (C8) in favor of the canonical one, we obtain
the final formula

〈Ô〉 ≃ 〈Ô〉can(T ) +
kBT

2

2

d

dT

(

d
dT 〈Ô〉can(T )

dĒ(T )
dT

)

(η − 1) .

(C10)

APPENDIX D: LOW TEMPERATURE

EXPANSION

Let us consider the limit

kBT

ρg
= ε≪ 1 . (D1)

In this case the occupation numbers n̄q are exponentially
small unless ǫ̌q . ε: indeed

n̄q =
1

eβǫq − 1
=

1

eǫ̌q/ε − 1
. (D2)
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We can then restrict to low energies and low momenta
where the spectrum is linear

ǫ̌q ∼
√

2q̌ for q̌ → 0 . (D3)

We thus introduce

q̃ =
q̌

ε
≃ ǫq√

2kBT
(D4)

that is a dimensionless momentum of order unity for typ-
ical Bogoliubov mode energies of order kBT . To obtain
an expansion for ε≪ 1, we then expand the relevant di-
mensionless quantities in powers of q̌ which is of order
ε:

ǫ̌q =
√

2q̃ ε+

√
2

4
q̃3ε3 +O(ε5) (D5)

(Uq + Vq)
2 =

√
2

2
q̃ ε−

√
2

8
q̃3ε3 +O(ε5) . (D6)

For a general function F (βǫq), as for example a function
of n̄q,

F (ǫ̌q/ε) = F (
√

2q̃) +

√
2

4
q̃3F ′(

√
2q̃)ε2 +O(ε4) , (D7)

and for the coefficients A in equation (A9)

Ak′

k,q =
3

27/4

√

q̃k̃(q̃ + k̃) ε3/2 +O(ε5/2) (D8)

Aq
k,k′′ =

3

27/4

√

q̃k̃(q̃ − k̃) ε3/2 +O(ε5/2) . (D9)

On can then write the low temperature version of equa-
tions (A9), (A13) and (A14):

Ǐ ∼ ε5
9π

4

∫ ∞

0

dk̃k̃2(k̃ + q̃)2(n̄k+q − n̄q)xk

+ ε5
9π

4

∫ ∞

q

dk̃k̃2(k̃ − q̃)2(n̄k−q + n̄q + 1)xk

+ ε5
9π

4

∫ q

0

dk̃k̃2(q̃ − k̃)2(n̄q−k − n̄q)xk (D10)

Γ̌L ∼ ε5
9π

4

∫ ∞

0

dk̃k̃2(k̃ + q̃)2(n̄k − n̄k+q) (D11)

Γ̌B ∼ ε5
9π

8

∫ q

0

dk̃k̃2(q̃ − k̃)2(n̄k + n̄q−k + 1) ,(D12)

where ∼ stands for mathematical equivalence in the limit
ǫ → 0 (f ∼ g if f/g → 1). In order to obtain the scal-
ing with ε of the diffusion coefficient D and of the other

quantities, we expand P ~A and ~X(0):

(P ~̌A)q =

√
2

4

[

q̃R− q̃3
]

ε3 +O(ε5) (D13)

X̌(0)q =

√
2

4
F (

√
2q̃)
[

q̃R− q̃3
]

ε3 + O(ε5) (D14)

with

F (βǫq) = n̄q(n̄q + 1) (D15)

R =

∫∞

0 dk̃k̃6F (
√

2k̃)
∫∞

0 dk̃k̃4F (
√

2k̃)
. (D16)

We then conclude that for ε→ 0

~DV

g
∼ c1 ε

4 (D17)

CV
ξ3

∼ c2 ε
−1 (D18)

gτc
~ξ3

∼ c3 ε
−5 (D19)

C(0)~2V ξ3

g2
∼ c4 ε

9 . (D20)

In (D17)-(D20) a factor ε3 comes from dk̃k̃2 in the Ja-
cobian. The numerical coefficients c1 to c4 can be calcu-
lated numerically using the expanded expressions (D10)-
(D14), or using the original expressions and extrapolating
the result for kBT/ρg → 0.

APPENDIX E: HIGH TEMPERATURE

Let us now consider the high temperature limit

kBT

ρg
≫ 1 . (E1)

A naive approach then consists in replacing the disper-
sion relation of quasiparticles by the free particle one

ǫ̌q =
√

q̌2(q̌ + 2) ≃ q̌2 for q̌ → ∞ , (E2)

and introduce the rescaled dimensionless momentum

˜̃q =
q̌

√

kBT
ρg

(E3)

so that ˜̃q2 ≃ ǫq/kBT. In this limit Uq → 1, Vq → 0,
Aq

k,k′ → 1, and

n̄q =
1

eβǫq − 1
→ 1

e ˜̃q2 − 1
. (E4)

To lowest order, the integral Ǐ and the rate Γ̌ are

∝ (kBT/ρg)
1/2 while X(0) and P ~A do not depend on

kBT/ρg. Similarly to the low temperature limit one
could then deduce the high temperature scaling of the
relevant quantities. However, in this naive approach in-
frared logarithmic divergences appear in the integrals.
By general arguments we then expect logarithmic cor-
rections to the deduced scaling for kBT/ρg → ∞. We
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can then only say that roughly

~DV

g
≈ kBT

ρg
(E5)

CV
ξ3

≈
(

kBT

ρg

)1/2

(E6)

gτc
~ξ3

≈
(

kBT

ρg

)−1/2

(E7)

C(0)~2V ξ3

g2
≈
(

kBT

ρg

)3/2

, (E8)

where in (E5)-(E8) a factor (kBT/ρg)
3/2 comes from the

Jacobian. A consequence of (E5) would be that at high
temperature the diffusion coefficient is independent on g.

This is compatible with the naive expectation that at
high temperature the damping rate is proportional to
the scattering cross section σ = 8πa2 ∝ g2, with a pro-
portionality factor independent of a (as is the case for
a classical gas where Γ ≃ nσv where n is the density
and v the average velocity). In this naive expectation,

Γ−1 ∝ g−2 compensates the contribution of ~A2 ∝ g2,
and D is independent of g. This is actually too naive
and neglects logarithmic corrections. For example, for
the Landau damping rate, we were able to show that, in
the limit of a vanishing ρg for fixed temperature T and
momentum q:

Γ̌L
q =

π

qξ

kBT

ρg

[

ln

(

kBT

2ρg

)

+ ln
(

1 − e−β~
2q2/2m

)

+O

(

ρg

kBT

)]

. (E9)

APPENDIX F: SOLUTION OF THE LOSSY

CLASSICAL FIELD ERGODIC MODEL

We first derive (67), by solving the lossy ergodic model
exactly at zero temperature, and we derive (65), by solv-
ing the lossy ergodic model to first order in the loss rate
constant Γ. After an explicit calculation we then obtain
(66).

To this end, we start with the fully quantum model,
defined by a Lindblad form master equation including
one body losses, and we use the formulation given in
[39] of the Monte Carlo Wavefunction method for the

expectation value of an observable Ô:

〈Ô〉(t) =
∑

k∈N

∫

0<t1<...<tk<t

dt1 . . . dtk

∑

α1,...,αk

〈ψ(t)|Ô|ψ(t)〉 (F1)

where the first sum is taken over the number k of jumps,
the integrals are taken over the jump times ti, the remain-
ing sums are taken over all possible types of jumps, and

the |ψ(t)〉 is the unnormalized Monte Carlo wavefunction
obtained from the initial wavefunction by the determin-
istic non hermitian Hamiltonian evolution interrupted at
times ti by the action of the jump operators of type αi.
Here, for one body losses, the jump operators may be

taken as Cr = dV 1/2Γ1/2ψ̂(r), where r is any point on
the grid of the lattice model (of unit cell volume dV ).
The jump associated to Cr then describes the loss of a
particle in point r. The non hermitian Hamiltonian is
Heff = H − i~

2

∑

r C
†
rCr = H − i~ΓN̂/2, where N̂ is the

total number operator.
The lossy ergodic model is based on a classical field

model, where the state vector of the system is ap-
proximated by a Fock state with N(t) particles in the
mode φ(r) linked to the classical field ψ(r) by ψ(r) =

N1/2(t)φ(r). Then the action of ψ̂(r) on this Fock state
simply pulls out a factor dV 1/2Γ1/2ψ(r) in front of a Fock
state withN(t)−1 particles in the mode φ. One may thus
easily take the sum over the jumps in (F1), with produces
factors equal to Γ times the updated atom number after
successive jumps. Also, in the lossy ergodic model, the
condensate accumulated phase φ(t) is a classical quantity,

evolving with the rate φ̇(t) = −µmc[E(t), N(t)]/~.

At zero temperature, one then simply has φ̇(t) =
−gN(t)/~V so that, after a sequence of k jumps at times
ti:

φ(t) = − g

~V
[Nt1 + (N − 1)(t2 − t1) + . . .

+(N − k)(t− tk)] (F2)

= − g

~V

[

(N − k)t+
k
∑

i=1

ti

]

(F3)

where N is here the initial atom number N(0). Similarly
the squared norm of the Monte Carlo wavefunction after
that sequence of jumps is

〈ψ(t)|ψ(t)〉 = ΓkN(N − 1) . . . (N − k + 1)

× e−Γ[Nt1+...+(N−k)(t−tk)] (F4)

= Γk N !

(N − k)!
e−Γ[(N−k)t+

Pk
i=1

ti]. (F5)

The expectation value of φn(t), n positive integer, is thus

〈φn(t)〉 =

N
∑

k=0

Ck
NΓke−Γ(N−k)t

∫

[0,t]k
dt1 . . . dtkφ

n(t)

k
∏

i=1

e−Γti

(F6)
where Ck

N = N !/[k!(N − k)!] is the binomial coefficient
and where we used the fact that the integrand was a
symmetric function of the times ti to extend the integra-
tion domain to [0, t]k after division by k!. After lengthy
calculations, and using the values of the binomial sums

N
∑

k=0

Ck
Ne

λkkn = ∂n
λ (eλ + 1)N , (F7)
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we obtain the zero temperature results of the model:

〈φ(t)〉 = − gN

~ΓV

(

1 − e−Γt
)

(F8)

Varφ(t) =
( g

~ΓV

)2

N
(

1 − 2Γt e−Γt − e−2Γt
)

.(F9)

This gives (67).
Next, we solve the lossy ergodic model to first order

in Γ, at a non-zero temperature. To this order, one
can restrict to the contributions of the zero-jump and
of the single-jump trajectories. Calling µ the initial mi-
crocanonical chemical potential, a function of the initial
(random) energyE and (fixed) atom number N , and call-
ing µ + δµ the value of the chemical potential after the
first jump, we have −~φ(t) = µt for the zero-jump trajec-
tory and −~φ(t) = µt1 +(µ+δµ)(t− t1) = µt+δµ(t− t1)
for the single-jump trajectory with a jump at time t1.
Thus

〈[−~φ(t)]n〉 = 〈(µt)n〉e−ΓNt +

∫ t

0

dt1
{

e−ΓNt1

×ΓNe−Γ(N−1)(t−t1)〈[µt+ δµ(t− t1)]
n〉
}

+O(Γ2),

(F10)

where 〈. . .〉 in the right hand side stands for the expec-
tation value over the initial system energy E. To first
order in Γ, the exponential factors in the integral may be
replaced by unity. Performing the integral over t1 gives

〈−~φ(t)〉 = 〈µ〉t+ 〈δµ〉1
2
ΓNt2 +O(Γ2) (F11)

〈[−~φ(t)]2〉 = 〈µ2〉t2 + 〈(δµ)2〉1
3
ΓNt3

+ 〈µδµ〉ΓNt3 +O(Γ2). (F12)

This leads to (65). Note that the final result here is valid
for Γt ≪ 1, even if our derivation seems to request the
stronger condition ΓNt≪ 1.

Explicit expressions may be obtained from
(60),(61),(62),(63),(64), and in the thermodynamic
limit, where in particular one may approximate f(N−1)
by f(N) − df(N)/dN . Setting

S(N) =
1

M
∑

k 6=0

(

~
2k2

2m
+

2gN

V

)−1

(F13)

Σ(N) =
dS

dN
(N) +

g

V
S2(N) +

1

N
S(N), (F14)

and noting that S(N) = O(V 0) and Σ(N) = O(1/V ) in
the thermodynamic limit, we have

µ =
g

V
[N + (E − E0)S(N)] (F15)

δ(E − E0) = −E − E0

N
− (µ− µ0) +O(V −1)(F16)

δµ = − g

V
[1 + (E − E0)Σ(N)]

+ O(V −2) (F17)

where δE is the energy change after the first jump and
µ0 = gN/V is the zero temperature (classical field) chem-
ical potential. Taking the expectation value in (65) over
the initial system energy E gives

Var ~φ(t) ≃
( g

V

)2

S2(N)t2Var (E − E0)

+
1

3
ΓNt3

( g

V

)2

[1 − 3S(N)Σ(N)Var (E − E0)

+ 2〈E − E0〉Σ(N) + 〈E − E0〉2Σ2(N)
]

. (F18)

Here one simply has Var (E−E0) = VarE since the initial
particle number is fixed so that the ground state energy
E0 does not fluctuate. For a classical field model in the
canonical ensemble, 〈E − E0〉 = MkBT and Var (E −
E0) = M(kBT )2.

In the limit kBT ≫ Ng/V , which is natural for a clas-
sical field model, the above expression for Var ~φ(t) may
be greatly simplified. Taking a momentum cut-offK such
that ~

2K2/2m = kBT , and ignoring numerical factors,
we obtain in the thermodynamical limit and high tem-
perature limit:

M ≈ V K3 (F19)

S(N) ≈ 1

kBT
(F20)

N
dS

dN
(N) ≈ −S(N)

Kξ
≪ S(N)(F21)

Ng

V
S2(N) ≈ S(N)

(Kξ)2
≪ S(N) (F22)

Σ(N) ≈ S(N)

N
≈ 1

NkBT
(F23)

S(N)Σ(N)Var (E − E0) ≈ K3

ρ
(F24)

〈E − E0〉Σ(N) ≈ K3

ρ
. (F25)

Since K3/ρ is of the order of the non condensed fraction
〈δN〉/N , supposed to be ≪ 1 here, we recover (66).

APPENDIX G: QUANTUM SINGLE MODE

MODEL WITH ONE BODY LOSSES

We show here that (67), obtained at zero temperature
within a classical field model, extends to the quantum
case of a pure condensate with a large atom number and
in an initial number state with N particles.

The master equation for the single mode quantum
model density operator ρ̂ with one body losses is

dρ̂

dt
=

1

i~
[Ĥ, ρ̂] + Γâ0ρ̂â

†
0 −

Γ

2
{â†0â0, ρ̂} (G1)

where â0 annihilates a particle in the condensate mode,

and Ĥ = gâ†20 â
2
0/(2V ). A useful consequence is that the
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mean value of a not explicitly time dependent operator
Ô evolves as

d

dt
〈Ô〉 ≡ d

dt
Tr[Ôρ̂] = 〈 1

i~
[Ô, Ĥ ]〉

+
Γ

2
〈â†0[Ô, â0] + [â†0, Ô]â0〉. (G2)

Neglecting the possibility that the condensate mode
is empty, we use the modulus-phase representation â0 =

eiθ̂n̂1/2 where the phase operator θ̂ and the number oper-

ator n̂ = â†0â0 obey the commutation relation [θ̂, n̂] = −i.
In Heisenberg picture, the incremental evolution of the
phase operator during an infinitesimal time step dt in-
volves, in addition to the usual commutator with the
Hamiltonian Ĥ , a deterministic term Â and a quantum
stochastic term dB̂ scaling as dt1/2 due to the losses [40]:

dθ̂ =
dt

i~
[θ̂, H ] + Â dt+ dB̂. (G3)

Applying (G2) to Ô = θ̂ gives

Â ≡ 0. (G4)

Applying (G2) to Ô = θ̂2 gives

〈dB̂2〉 = Γdt〈[â†0, θ̂][θ̂, â0]〉 = 〈Γdt
4n̂

〉. (G5)

In the large occupation number limit, we may thus ne-
glect dB̂ and take

d

dt
θ̂ ≃ [θ̂, Ĥ ]/i~ = −g(n̂− 1/2)/~V. (G6)

This justifies the assumption in the classical field model
that the condensate phase is not affected by a jump. In
the quantum model, the variance of the condensate ac-

cumulated phase φ̂(t) =
∫ t

0
dτ [dθ̂(τ)/dτ ] is thus

Var φ̂(t) ≃
( g

~V

)2
∫ t

0

dτ

∫ t

0

dτ ′ [〈n̂(τ)n̂(τ ′)〉

− 〈n̂(τ)〉〈n̂(τ ′)〉] . (G7)

To calculate the one time averages of n̂ and n̂2 we use
(G2) with Ô = n̂ and Ô = n̂2:

d〈n̂〉/dt = −Γ〈n̂〉 (G8)

d〈n̂2〉/dt = −2Γ〈n̂2〉 + Γ〈n̂〉 (G9)

that are straightforward to integrate with initial condi-
tions 〈n̂(t = 0)〉 = N and 〈n̂2(t = 0)〉 = N2.

To calculate the two time averages, we can restrict to
τ ≥ τ ′ by hermitian conjugation. Then we use the quan-
tum regression theorem: setting σ̂(τ ′) = n̂(0)ρ̂(τ ′), the
“density operator” σ̂(τ) evolves at later times τ ≥ τ ′ with
the same master equation as ρ̂, and

〈n̂(τ)n̂(τ ′)〉 = Tr[n̂(0)σ̂(τ)] (G10)
for τ ≥ τ ′. As a consequence

d

dτ
〈n̂(τ)n̂(τ ′)〉 = −Γ〈n̂(τ)n̂(τ ′)〉 (G11)

for τ ≥ τ ′, which is straightforward to integrate with
the initial condition at τ = τ ′, 〈n̂2(τ ′)〉. We obtain for
τ ≥ τ ′ ≥ 0, and for an initial number state with N
particles:

〈n̂(τ)〉 = Ne−Γτ (G12)

〈n̂2(τ)〉 = N2e−2Γτ +Ne−Γτ
(

1 − e−Γτ
)

(G13)

〈n̂(τ)n̂(τ ′)〉 = e−Γ(τ−τ ′)〈n̂2(τ ′)〉. (G14)

Mapping the double integral in (G7) to the integration
domain 0 ≤ τ ′ ≤ τ leads to

Var φ̂(t) ≃
( g

V ~Γ

)2

N
[

1 − 2Γt e−Γt − e−2Γt
]

, (G15)

which coincides with the zero temperature classical field
model result (67).
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