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velocity. This method is nonintrusive and is based on optical interferometry for estimating the velocity of scatterers suspended in a fluid by means of the frequency analysis of the light scattered by the seeding particles [START_REF] Albrecht | Laser Doppler and Phase Doppler Measurement Techniques[END_REF].

For fluid mechanics measurements, the particle velocity can be considered as constant during the transit time of the seeding particle through the measurement volume (defined by the interferometry fringes volume) and the frequency of the LDV signal is constant during this period [START_REF] George | The measurement of turbulence with the laser-doppler anemometer[END_REF]. Typical order of magnitude of mean flow velocities are from a few meters per second up to higher than the acoustic celerity (supersonic flow). The data processing consists then to estimate the power spectral density (PSD) of the velocity signal, from Poisson-based randomly distributed samples. PSD may be estimated by interpolating the randomly distributed samples, by resampling the interpolating signal and by compensating the effect of interpolation in the Fourier domain [START_REF] Boyer | Random sampling : distortion and reconstruction of velocity spectra from fft analysis of the analog signal of laser doppler processor[END_REF]- [START_REF] Simon | An improved sample-and-hold reconstruction procedure for auto-power spectra estimation of lda data[END_REF]. The autocorrelation function (ACF) may also be reconstructed from the randomly distributed samples and the Fourier transform of the estimated ACF gives an estimation of the PSD [START_REF] Mller | Efficient estimation of power spectral density from laser doppler anemometer data[END_REF]. Lastly, Kalman filtering may be used for estimating the PSD [START_REF] Banning | Spectral analysis methods for poisson sampled measurements[END_REF].

For sine acoustic excitation, the particle velocity is no longer constant and the LDV signal is frequency modulated [START_REF] Taylor | Absolute measurement of acoustic particle velocity[END_REF]- [START_REF] Greated | Measurement of acoustic velocity fields[END_REF]. To estimate the particle velocity from these signals, specific signal processing techniques are used as spectral analysis [START_REF] Davis | Laser Doppler measurement of complex impedance[END_REF], [START_REF] Taylor | Absolute calibration of microphone by Laser Doppler technique[END_REF], [START_REF] Vignola | Laser detection of sound[END_REF], photon correlation [START_REF] Sharped | A stochastic model for photon correlation measurements in sound field[END_REF] or frequency demodulation associated to post-processing methods [START_REF] Gazengel | Measurement of acoustic particle velocities in enclosed sound field: Assessment of two laser doppler velocimetry measuring systems[END_REF], [START_REF] Valeau | Instantaneous frequency tracking of a sinusoidally frequency-modulated signal with low modulation index: application to laser measurements in acoustics[END_REF], [START_REF] Valière | Acoustic velocity measurements in the air by means of laser doppler velocimetry : dynamic and frequency range limitations and signal processing improvements[END_REF]. Typical order of magnitude of mean flow velocities are from a few micrometers per second up to 100 millimeters per second, for frequencies in [10 -4000] Hz.

On one hand, for most acoustic measurements, the particle velocity can be considered as the sum of an AC-component due to acoustic excitation and a weak DC-contribution due to flow. When the particle oscillates in the measurement volume during further acoustic periods, the effect of the flow can be reduced and usual post-processing methods may be used [START_REF] Valière | Acoustic velocity measurements in the air by means of laser doppler velocimetry : dynamic and frequency range limitations and signal processing improvements[END_REF]- [START_REF] Gazengel | Evaluation of the performances of two acquisition and signal processing systems for measuring acoustic particle velocities in air by means of laser doppler velocimetry[END_REF].

On the other hand, the DC-flow component prevents in many cases the use of the post-processing methods given by [START_REF] Gazengel | Measurement of acoustic particle velocities in enclosed sound field: Assessment of two laser doppler velocimetry measuring systems[END_REF], [START_REF] Valeau | Instantaneous frequency tracking of a sinusoidally frequency-modulated signal with low modulation index: application to laser measurements in acoustics[END_REF], [START_REF] Valière | Acoustic velocity measurements in the air by means of laser doppler velocimetry : dynamic and frequency range limitations and signal processing improvements[END_REF], because the signal time length is less or largely less than one acoustic period. The aim of this paper is to estimate both the dc (flow) and ac (acoustic) components from such LDV signals. [START_REF] Lazreq | Acoustic calibration of a pressure-velocity probe[END_REF] measured the acoustic velocity in presence of mean flow by means of a probe consisting in a hot wire and a microphone. Their results showed a good agreement between the theory and the experiment but this probe cannot be considered as nonintrusive. LDV has also been used by adapting the slotting technique to estimate the acoustic particle velocity in a turbulent flow [START_REF] Minotti | In-flow acoustic power and intensity field measurements with a 2D LDV system[END_REF] with a 2D-LDV velocimeter. The acoustic impedance was estimated by means of a LDV probe and with a microphone probe and the different results were compared. Finally, Boucheron et al [START_REF] Boucheron | Evaluation of acoustic velocity in mean flow by Laser Doppler Velocimetry[END_REF] has developed a new method of signal processing called 'perio-correlation' in order to estimate sine acoustic velocity in strong mean flow by LDV.

Lazreq and Ville

In this work, the sine acoustic excitation is supposed to be perfectly known and a frequency demodulation technique [START_REF] Gazengel | Measurement of acoustic particle velocities in enclosed sound field: Assessment of two laser doppler velocimetry measuring systems[END_REF] is performed to estimate the particle velocity from the LDV signal. In this paper, we propose a new method to estimate jointly the acoustic particle velocity (amplitude and phase) and the mean flow velocity from the velocity signal. This method is based on the least mean square (LMS) algorithm. The mean flow velocity, the amplitude and phase of acoustic particle velocity are estimated for each seeding particle crossing the measurement volume. Furthermore, the Cramér-Rao bound (CRB) of the associated problem is calculated. The CRB gives the lowest variance of any unbiased estimator and consequently yields theoretically the minimum uncertainties linked to the velocity estimations (acoustic and mean flow velocities). Lastly, simulated data are processed, in order to validate the LMS-based algorithm and to compare the variance of the results with the Cramér-Rao bound.

Section II deals with the LDV principles including the velocity signal modeling and the associated signal processing for acoustic applications. In section III, the data processing based on the least mean square algorithm is explained and the Cramér-Rao bound of both the mean flow and acoustic velocities are determined. Finally, the results of the Monte Carlo simulation are shown and compared to the Cramér-Rao bounds in section IV, for acoustic frequencies in [125 -4000] Hz, for acoustic velocities in [0.05 -50] mm.s -1 and for mean flow velocities in [0.05 -5000] mm.s -1 .

II. FUNDAMENTALS OF LASER DOPPLER VELOCIMETRY

In this section, we consider time-varying signals such that t ∈ [t q -T q /2, t q + T q /2], t q being the central time of the signal, T q being a time of flight, and q being associated to a given seeding particle.

A. Laser Doppler Velocimetry Principle

In the differential mode, two coherent laser beams are crossed and focused to generate an ellipsoidal probe volume, in which the electromagnetic interferences lead to apparent dark and bright fringes [START_REF] Albrecht | Laser Doppler and Phase Doppler Measurement Techniques[END_REF].

The velocity v q (t) of the seeding particle denoted q is related to the scattered optical field due to the Doppler effect. The light intensity scattered by the particle crossing the probe volume is modulated in amplitude and frequency. The frequency of modulation F q (t) is called Doppler frequency and is given by

F q (t) = v q (t) i = 2v q (t) λ L sin(θ/2), (1) 
where v q (t) is the velocity of the particle along the x-axis, i the fringe-spacing expressed as a function of the angle θ between the incoming laser beams and their optical wavelength λ L (Fig. 1).

The diffused light is collected by a receiving optics and is converted into an electrical signal by a photomultiplier (PM).

This signal can then be modelled as [START_REF] Gazengel | Measurement of acoustic particle velocities in enclosed sound field: Assessment of two laser doppler velocimetry measuring systems[END_REF] s q (t) = A q (t)(M + cos φ q (t)),

Fig. 1. Optical setup of LDV system. When the particle q crosses the measurement volume, the light is scattered in all directions and the burst signal sq(t) is collected by the photo detector. Data processing of sq(t) allows then to estimate the mean flow and particle acoustic velocity.

where M takes into account the positive sign of Cramér-Rao Bound (CRB) the light intensity. In (2), the amplitude modulation linked to the normally distributed light intensity across the beam section is written as

A q (t) = K q e -(βdq(t)) 2 , (3) 
where K q is related to the laser beam, the PM sensitivity, the electronic amplification, the observation direction and the scattering efficiency of tracer q. Furthermore, β is related to the probe geometry and d q (t) is the projection of the time-varying particle displacement along the x-axis in the probe volume. Similarly, the phase modulation in (2) is described by

φ q (t) = 2π d q (t) i + φ 0 , (4) 
where φ 0 is the initial phase due to optical setup. Furthermore, we denote x q (t) the signal such that

x q (t) = s q (t) + w(t),

where w(t) is the additive noise [START_REF] Valière | Acoustic velocity measurements in the air by means of laser doppler velocimetry : dynamic and frequency range limitations and signal processing improvements[END_REF].

In order to avoid any ambiguity on the sign of the velocity, a Bragg cell tuned to frequency F B = 40 MHz is used to shift the frequency of one of the lasers. The signal s q (t) is consequently written as

s q (t) = A q (t)(M + cos(2πF B t + 2πd q (t)/i + φ 0 )). (6) 
The offset component M is then canceled by an high-pass filtering and the signal s q (t) is down shifted to zero thanks to a quadrature demodulation (QD) technique [START_REF] Duff | Particle detection and velocity measurements in laser doppler velocimetry using Kalman filters[END_REF]. The actual signal, called burst signal, can finally be written as

s q (t) = A q (t) cos(2πd q (t)/i + φ 0 ). (7) 

B. Doppler Signal Modeling in Acoustics

Considering only pure sine acoustic waves and supposing that the mean flow velocity is constant inside the probe volume, the projection along the x-axis of the velocity of a particle q subjected jointly to the sine acoustic wave and the mean flow field can be expressed as

v q (t) = v c,q + V ac cos(2πF ac t + φ ac ), (8) 
where v c,q is the mean flow velocity of particle q, V ac and φ ac are the amplitude and phase of the acoustic particle velocity and F ac is the known frequency of the pure sine acoustic excitation. The amplitude modulation of the burst signal (3) associated to the particle q may be written as

A q (t) = K q exp[β(v c,q (t -t q ) + V ac 2πF ac sin(2πF ac t + φ ac ))] 2 . (9) 
Similarly, the phase modulation (4) of the burst signal associated to the particle q is

φ q (t) = 2π i v c,q (t -t q ) + V ac 2πF ac sin(2πF ac t + φ ac ). (10) 
We note that the flow velocity v c,q can change from a particle q to another while the acoustic parameters v ac and φ ac are independent of q. Thus, when the acoustic wave is disturbed by a mean flow, assuming that the particles q cross the measurement volume at different random central times t q , without time overlapping between bursts q and q + 1, the Doppler signal can be written as

s(t) = q s q (t) = A D (t) cos[φ D (t)], (11) 
where the amplitude and phase respectively express as

A D (t) =      A q (t), t ∈ [t q -T q /2, t q + T q /2] 0, otherwise, (12) 
and

φ D (t) =      φ q (t), t ∈ [t q -T q /2, t q + T q /2] 0, otherwise. (13) 
Furthermore, the time of flight of the tracer q is defined as [START_REF] Degroot | Doppler signal detection and particle time of flight estimation using wavelet transform for acoustic velocity measurement[END_REF] T

q = √ 2D x v c,q , (14) 
where D x is the length of the probe volume in the x-axis and the associated number of acoustic periods is

N per = √ 2D x v c,q F ac . (15) 
As expected, the fastest the particle crosses the probe volume, the lowest the time of flight and the number of acoustic periods.

An example of a typical Doppler signal is shown on Fig. 2(a), where the different particle times of flight are associated to different mean flow velocities.

C. Doppler signal processing

The aim of the signal processing developed after sampling the Doppler signal is to estimate jointly and burst-by-burst the acoustic particle velocity (amplitude V ac and phase φ ac ) and the mean flow velocity v c,q . This procedure is usually split into two stages. After a detection procedure [START_REF] Degroot | Doppler signal detection and particle time of flight estimation using wavelet transform for acoustic velocity measurement[END_REF], a frequency demodulation of the Doppler signal s(t) is performed by using a 
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´ ÙÖ×Ø 3µ time-frequency transform to estimate the instantaneous frequency F q (t), or equivalently (1) the velocity signal v q (t), burst by burst [START_REF] Valeau | Instantaneous frequency tracking of a sinusoidally frequency-modulated signal with low modulation index: application to laser measurements in acoustics[END_REF]. Note that the detector selects only bursts corresponding to one tracer in the measurement volume. Secondly, the data processing of the estimated velocity signal vq (t) allows to obtain both components of the acoustic and mean flow velocities for each burst. This first stage is described in this subsection and the second one (data LMS-based processing) is explained in the section IV.

According to (1), the velocity signal associated to the particle q expresses as

v q (t) = iF q (t), ( 16 
)
where i is the fringe spacing. Thus, the problem consists to estimate the mean value vc,q , the amplitude Vac and the phase φac of the estimated velocity signal associated to each burst q from the actual noisy burst signal x q (t). Fig. 2 shows an example of an noiseless simulated Doppler signal (a) and the associated velocity signal for three non-overlapping bursts (b).

In section III, the Cramér Rao bound of the problem is calculated. Then, a method based on a least mean square algorithm is presented in section IV and is applied to simulated velocity signals v q (t) in section V.

III. CRB CALCULATION

We recall that the Cramér-Rao bound (CRB) gives the lowest bound of the variance an unbiased estimator may reach (if it exists) [START_REF] Kay | Fundamentals of statistical signal processing[END_REF]. As explained in [START_REF] Kay | Fundamentals of statistical signal processing[END_REF], the CRB alerts us to the physical impossibility of finding an unbiased estimator whose variance is less than the bound. In the case of single tone signals, CRB were calculated by Rife and Boorstyn [START_REF] Rife | Single tone parameter estimation from discrete-time observations[END_REF] in 1974.

The CRB of LDV signals were also studied in the case of fluid mechanics [START_REF] Besson | Estimating particles velocity from laser measurements: maximum likelihood and cramer-rao bounds[END_REF]- [START_REF] Shu | Cramer-rao bound of laser doppler anemometer[END_REF]. In the case of sine acoustic excitation, the CRB of LDV signal were also studied by Le Duff [START_REF] Duff | Particle detection and velocity measurements in laser doppler velocimetry using Kalman filters[END_REF].

We focus here on the problem of calculating the Cramér-Rao bound (CRB) of the following problem. The velocity data are assumed to be such that

u[n] = v[n; θ] + w[n], (17) 
for n ∈ [n 0 , n 1 ], where w[n] is the WGN, w[n] ∼ N (0, σ 2 ), the data being modeled according to

v[n; θ] = v c + V ac cos(2πf ac n + φ ac ), (18) 
where f ac = F ac /F s , F s being the sampling frequency, v c ≡ v c,q , and where the unknown parameters are gathered in

θ = [v c V ac φ ac ] T . ( 19 
)
We furthermore suppose that f ac = 0 and f ac = 1 2 .

A. Cramér-Rao bound (CRB) for one burst

The CRB is given by the inverse of the Fisher information matrix J(θ), CRB(θ) = J(θ) -1 , where the Fisher information matrix is given by [START_REF] Kay | Fundamentals of statistical signal processing[END_REF] J(θ

) kl = 1 σ 2 n1 n=n0 ∂v[n; θ] ∂θ k ∂v[n; θ] ∂θ l , (20) 
for k, l ∈ [1, 3], for θ = [v c V ac φ ac ] T . The derivatives in [START_REF] Simon | An improved sample-and-hold reconstruction procedure for auto-power spectra estimation of lda data[END_REF], according to [START_REF] Sharped | A stochastic model for photon correlation measurements in sound field[END_REF], lead to

J(θ) = 1 σ 2       N cos(β)sin(γN) sin(γ) -Vacsin(β)sin(γN ) sin(γ) cos(β)sin(γN) sin(γ) N 2 + cos(2β)sin(2γN) 2sin(2γ) -Vacsin(2β)sin(2γN ) 2sin(2γ) -Vacsin(β)sin(γN ) sin(γ) -Vacsin(2β)sin(2γN ) 2sin(2γ) N V 2 ac 2 - V 2 ac cos(2β)sin(2γN) 2sin(2γ)       , (21) 
where N = n 1n 0 + 1, and where

γ = πf ac , (22) 
β = 2πf ac n 0 + πf ac (N -1) + φ ac . ( 23 
)
We define the linear signal-to-noise ratio (SNR) of the velocity signal as

SNR = V 2 ac 2σ 2 , (24) 
and we then have upon inversion

var(v c ) ≥ CRB(v c ) = V 2 ac 4 SNR N 2 -sin(2γN) sin(2γ) 2 N 3 2 -N 2 sin(2γN) sin(2γ) 2 -N sin(γN) sin(γ) 2 + sin(2γN) sin(2γ) sin(γN) sin(γ) 2 , (25) var 
(V ac ) ≥ CRB(V ac ) = V 2 ac 2 SNR N 2 -N cos(2β) sin(2γN) sin(2γ) -2sin 2 (β) sin(γN) sin(γ) 2 N 3 2 -N 2 sin(2γN) sin(2γ) 2 -N sin(γN) sin(γ) 2 + sin(2γN) sin(2γ) sin(γN) sin(γ) 2 , (26) var 
(φ ac ) ≥ CRB(φ ac ) = 1 2 SNR N 2 + N cos(2β) sin(2γN) sin(2γ) -2cos 2 (β) sin(γN) sin(γ) 2 N 3 2 -N 2 sin(2γN) sin(2γ) 2 -N sin(γN) sin(γ) 2 + sin(2γN) sin(2γ) sin(γN) sin(γ) 2 . (27) 

B. Cramér-Rao Bound (CRB) for N b bursts

We now assume that the algorithm developed in III-A is used for estimating the unknown parameters θ = [v c V ac φ ac ] T , in the case of N b bursts. The main difference between this problem and the one developed above is that the index n 0 is not anymore a constant, but might be modeled as a discrete random variable, uniformly distributed in [0, N ac ], where N ac = nint F s /F ac , nint[] being the nearest integer. As a consequence, the discrete random variable β given in ( 23), which appears in (26-27)

is uniformly distributed in [π(N -1)f ac + φ ac , π(N -1)f ac + φ ac + 2π].
Averaging the terms linked to β in ( 26) and ( 27) consequently leads to

< cos(2β) >=< sin(2β) >= 0, (28) 
and

< cos 2 (β) >=< sin 2 (β) >= 1 2 . ( 29 
)
This finally yields

var(V ac ) ≥ CRB(V ac ) = V 2 ac 2 SNR N 2 -sin(γN) sin(γ) 2 N 3 2 -N 2 sin(2γN) sin(2γ) 2 -N sin(γN) sin(γ) 2 + sin(2γN) sin(2γ) sin(γN) sin(γ) 2 (30) 
and

var(φ ac ) ≥ CRB(φ ac ) = 1 2 SNR N 2 -sin(γN) sin(γ) 2 N 3 2 -N 2 sin(2γN) sin(2γ) 2 -N sin(γN) sin(γ) 2 + sin(2γN) sin(2γ) sin(γN) sin(γ) 2 . ( 31 
)
In the following, we use the expressions [START_REF] Vignola | Laser detection of sound[END_REF] for v c and (30) for V ac for studying the CRB of the problem. We recall that N depends on v c (36). As a consequence, the CRB of v c (25) and the CRB of V ac (30) both depend on v c and V ac , while the CRB of φ ac (31) is independent of V ac .

C. Asymptotic behavior of Cramér-Rao Bound (CRB)

In Appendix II, we give the expressions of the asymptotic CRB of θ, for both cases 2γN ≪ 1 (N per ≪ 1/(2π)) and 2γN ≫ 1 (N per ≫ 1/(2π)).

In the asymptotic case 2γN ≪ 1, we prove (63-64) that the relative variance of v c and V ac are

var(v c ) v 2 c ≥ CRB(v c ) v 2 c = 1 SNR 45 π 4 2 7/2 1 D 5 x F s v 3 c V 2 ac F 4 ac , (32) var 
(V ac ) V 2 ac ≥ CRB(V ac ) V 2 ac = 1 SNR 45 π 4 2 9/2 1 D 5 x F s v 5 c F 4 ac . ( 33 
)
Both CRBs of v c and V ac are proportional to v 5 c V 2 ac and inversely proportional to F 4 ac . Consequently, doubling the mean flow velocity yields an 15 dB increase of the variance of both v c and V ac . Similarly, doubling the amplitude of the acoustic particle velocity V ac leads to a 6 dB increase of the variance of both v c and V ac . Lastly, doubling the frequency of the pure sine acoustic wave leads to a 12 dB decrease of the variance of both v c and V ac . We also note that doubling the length of the probe volume D x yields a 15 dB decrease of the variance of both v c and V ac .

In the asymptotic case 2γN ≫ 1, we prove that (72-73)

var(v c ) ≥ 1 SNR 1 2 3/2 D x F s v c V 2 ac , (34) 
and

var(V ac ) ≥ 1 SNR 1 √ 2D x F s v c V 2 ac . (35) 
Thanks to the exact [START_REF] Vignola | Laser detection of sound[END_REF]30,31) and asymptotic (32-35) expressions of the CRB, the minimum uncertainties linked to the velocity estimations (acoustic and mean flow velocities) are completely known. In section (IV), the LMS-based algorithm is introduced. It is then applied in section (V) to simulated data in order to be compared with the CRB.

IV. LEAST MEAN SQUARE ALGORITHM

From a practical point of view, the actual velocity signal is uniformly sampled. Consequently, the number of samples N q associated to the particle q is derived from ( 14), as

N q = √ 2D x F s v c,q , ( 36 
)
and the associated number of acoustic periods ( 15) is now defined as

N per = √ 2D x v c,q F ac . ( 37 
)
The sine-wave fit is then solved by minimizing the cost function V (θ),

V (θ) = 1 N n1 n=n0 (u[n] -v[n; θ]) 2 , ( 38 
)
with respect to the unknown parameters θ [START_REF] Shu | Cramer-rao bound of laser doppler anemometer[END_REF], where u[n] and v[n; θ] are respectively given by ( 17) and ( 18), and where (39)

N = n 1 -n 0 + 1. In the

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we compare the CRB with the LMS-based algorithm developed in IV. According to the values of the acoustic and mean flow velocities to be analyzed, the following values for F ac and V ac are chosen :

F ac ∈ [125 250 500 1000 2000 4000] Hz, (40)

V ac ∈ [0.05 1.58 50] mms -1 . ( 41 
)
The phase φ ac is supposed to be equal to π/4, and we use an adimensional parameter α v for the value of v c , such that

α v = V ac v c ∈ [0.01 0.05 0.1 0.5 1]. ( 42 
)
For each numerical simulation, the sampling frequency is F s = 350 kHz, the probe volume length along the x-axis is D x = 0.1 mm and 10000 bursts are analyzed. The simulator is performed by Matlab. Furthermore, for each value of F ac , three sets of signals are analyzed, each set corresponding to one of the bursts of Fig. 2, respectively N per ≫ 1 (Burst 1), N per > 1 (Burst 2) and N per 1 (Burst 3), where N per is the number of acoustic periods, ´ µ

N per = N f ac .
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´ ÙÖ×Ø 1µ First of all, the LMS-based estimator is near the theoretical CRB, so that we can maintain that this estimator is efficient.

Moreover, the relative variance of v c is weaker than the one of V ac (except for α v = 1). Indeed, for values of v c and V ac such ´ µ
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α v = V ac /v c ≤ 1/ √ 2 as CRB(v c ) ≃ CRB(V ac )/2, we have CRB(v c ) v 2 c ≤ CRB(V ac ) V 2 ac . (43) 
Moreover, the values of the relative variances of v c and V ac drastically depend on the values of v c , V ac and F ac as shown by ( 25) and (30).

-For N per > 1 (Burst 1), the relative variances of v c and V ac are respectively in [-70, -42] dB and [-52, -30] dB.

Such estimations may consequently be considered as very accurate.

-For N per ≪ 1 (Burst 2), the relative variances of v c and V ac are respectively in [-27, 1] dB and [START_REF] Greated | Measurement of acoustic velocity fields[END_REF][START_REF] Simon | An improved sample-and-hold reconstruction procedure for auto-power spectra estimation of lda data[END_REF] dB. The estimation of v c is accurate enough for low values of v 3 c V 2 ac /F 4 ac (32), while the estimation of V ac is clearly unacceptable, whatever the parameters v c , V ac and F ac (33).

-For N per 1 (Burst 3), the relative variances of v c and V ac are respectively in [-70, -30] dB and [-30, -23] dB. Such estimations may also be considered as very accurate.

Furthermore, for velocity signals with time length largely lower than one acoustic period, we can use the asymptotic case expression of CRB of v c and V ac . Giving a maximum value of relative error, respectively E vc for v c and E vac for V ac , we consequently have

CRB(v c ) v 2 c = 1 SNR 45 π 4 2 7/2 1 D 5 x F s v 3 c V 2 ac F 4 ac ≤ E vc (44) and CRB(V ac ) V 2 ac = 1 SNR 45 π 4 2 9/2 1 D x F s v 5 c F 4 ac ≤ E vac . ( 45 
)
As a consequence, for a given set of setup known parameters D x , F s and F ac , we may give the maximum values v 3 c V 2 ac and v 5 c have to reach for yielding an error less than respectively E vc and E vac .

Lastly, from the expressions of the CRB of v c (25) and V ac (30), we can calculate the number of acoustic periods the time length of the velocity signals may have, for leading to an error less than a given value E. Tables I-III give a summary of such results. Each table corresponds to a given burst of Fig. 2. 

(v c ) ≥ 0.6 ≥ 0.25 ≥ 0.1 ≥ 0.4 ≥ 0.15 ≥ 0.05 ≥ 0.25 ≥ 0.1 ≥ 0.03 N per (V ac ) ≫ 20 ≫ 5 ≥ 0.6 ≫ 10 ≥ 4.5 ≥ 0.04 ≫ 10 ≥ 0.7 ≥ 0.25
For example, table I may be read as follows. To obtain a relative error for v c less than 0.1 % for SNR= 10 dB, the minimum number of acoustic period for the velocity signal is 0.8. In the same way, to obtain a relative error for V ac less than 1 % for SNR= 20 dB, the minimum number of acoustic period for the velocity signal is 0.5. Tables II-III give the minimum number of acoustic periods the velocity signal should have for obtaining relative errors less than 0.1 %, 1 % and 10 %, for SNR equals to 10 dB, 20 dB and 30 dB for 500 Hz and 4000 Hz respectively.

As expected, the mean flow velocity v c is estimated with a great accuracy from a very low number of acoustic period. For example, to obtain a relative error of 1 % for v c , the number of acoustic period is always less than 0.3 whatever the SNR, F ac and V ac . On contrary, the results for the estimation of the acoustic velocity are much more contrasted. For a SNR of 30 dB, the estimation of V ac associated with a relative error less than 1 % is possible for a number of acoustic period N per > 0.9.

But, when the SNR is less than 30 dB, the number of acoustic periods associated with a relative error less than 1 % may be largely bigger than 1.

The tables also show the influence of the acoustic frequency on the estimation of the particle acoustic velocity. The higher the frequency, the higher the number of acoustic periods for an accurate estimation of V ac . For a relative error equals to 10 %, the number of acoustic periods are the same whatever the frequency. But for a relative error equals to 1 % or 0.1 % the estimation of the particle acoustic velocity is easier for a low frequency. On contrary, the influence of the frequency on the estimation of the mean flow velocity is the opposite. The higher the frequency, the lower the number of the acoustic periods for an accurate estimation.

With regard to the results of these study, a three-steps new approach can be proposed to improve the estimation of the acoustic particle velocity in presence of mean flow. The first step consists in the estimation of the mean flow velocity for each burst with the least mean square (LMS) algorithm. Then, the estimation of the mean flow velocity may be subtracted from the velocity signal. Finally, a "rotating machinery" technique associated with a synchronous detection allows to estimate the acoustic particle velocity with a great accuracy [START_REF] Gazengel | Evaluation of the performances of two acquisition and signal processing systems for measuring acoustic particle velocities in air by means of laser doppler velocimetry[END_REF].

VI. CONCLUSION

A new method for estimating jointly the acoustic particle and the mean flow velocities from a LDV signal is presented. It is based on the least mean square (LMS) algorithm and it performs well in the estimation of the velocities. The performance of the method has been investigated by means of numerical tests and the results of the simulation have been compared to the Cramér-Rao bounds of the associated problem. It is shown that the LMS-based estimator is near the theoretical CRB, so that the estimator is efficient.

Using (36) and ( 22), we note that (57-59) may respectively be written as var(v c ) ≥ σ 2 45 π 4 2 5/2 1 D 5

x F e 

where SNR is the linear signal-to-noise ratio.

Secondly, we now suppose that 2γN ≫ 1 which means that the actual velocity signal corresponds to largely great than one acoustic period. The asymptotic CRB is then such that 

var(v c ) ≥ σ 2 N , (66) 

Laser
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Fig. 2 .

 2 Fig. 2. (a) Example of a Doppler signal. (b) Associated velocity signal. Burst 1 is associated with a low mean flow velocity corresponding to Nper acoustic periods largely higher than 1. Burst 2 is associated with a high mean flow velocity corresponding to Nper acoustic period largely lower than 1. Burst 3 is associated to a mean flow velocity corresponding to Nper 1 acoustic period.

Appendix 1 ,

 1 the equations (50-52) respectively give the expression of v c , a ac = V ac cos(φ ac ) and b ac = V ac sin(φ ac ) as a function of u and f ac . Once a ac and b ac are estimated, the unknown acoustical parameters of θ express as

Fig. 3 to

 3 Fig. 3 to Fig. 5 show typical results of the relative variances var(v c )/v 2 c (a) and var(V ac )/V 2 ac (b), for the different values of F ac with comparison to the theoretical CRB of v c (25) and of V ac (26). Each figure is related to a given value of F ac .

Fig. 3 .

 3 Fig. 3. Comparison of the relative variances of vc (a) and Vac (b) estimated by a LMS algorithm (continuous) with the theoretical CRB (dashed), for Fac = 125 Hz. Bursts (1 -3) refer to Fig. 2. (Burst 1) : Vac = 1.58 mm.s -1 , αv = 0.1, vc = 15.8 mm.s -1 . (Burst 2) : Vac = 50 mm.s -1 , αv = 0.1, vc = 500 mm.s -1 . (Burst 3) : Vac = 50 mm.s -1 , αv = 1, vc = 50 mm.s -1 .

Fig. 4 .

 4 Fig. 4. Comparison of the relative variances of vc (a) and Vac (b) estimated by a LMS algorithm (continuous) with the theoretical CRB (dashed), for Fac = 500 Hz. Bursts (1 -3) refer to Fig. 2. (Burst 1) : Vac = 50 mm.s -1 , αv = 1, vc = 50 mm.s -1 . (Burst 2) : Vac = 50 mm.s -1 , αv = 0.05, vc = 1000 mm.s -1 . (Burst 3) : Vac = 1.58 mm.s -1 , αv = 0.1, vc = 15.8 mm.s -1 .

Fig. 5 .

 5 Fig. 5. Comparison of the relative variances of vc (a) and Vac (b) estimated by a LMS algorithm (continuous) with the theoretical CRB (dashed), for Fac = 4000 Hz. Bursts (1 -3) refer to Fig. 2. (Burst 1) : Vac = 50 mm.s -1 , αv = 0.1, vc = 500 mm.s -1 . (Burst 2) : Vac = 50 mm.s -1 , αv = 0.01, vc = 5000 mm.s -1 . (Burst 3) : Vac = 50 mm.s -1 , α = 0.05, vc = 1000 mm.s -1 .

TABLE I NUMBER

 I OF ACOUSTIC PERIODS Nper (FOR vc AND FOR Vac) LEADING TO AN ERROR LESS THAN E(%) FOR Fac = 125 HZ AND Vac = 50 MM.S -1 .

	SNR (dB)		10			20			30	
	E (%)	0.1	1	10	0.1	1	10	0.1	1	10
	N per (v c ) N per (V ac ) ≫ 10 ≥ 0.75 ≥ 0.25 ≫ 5 ≥ 0.8 ≥ 0.3 ≥ 0.2 ≥ 0.45 ≥ 0.2 ≥ 0.09 ≥ 0.3 ≥ 0.12 ≥ 0.05 ≥ 0.5 ≥ 0.2 ≥ 0.8 ≥ 0.25 ≥ 0.1

TABLE II NUMBER

 II OF ACOUSTIC PERIODS Nper (FOR vc AND FOR Vac) LEADING TO AN ERROR LESS THAN E(%) FOR Fac = 500 HZ AND Vac = 1.58 MM.S -1 .

	SNR (dB)		10			20			30	
	E (%)	0.1	1	10	0.1	1	10	0.1	1	10
	N per (v c ) N per (V ac ) ≫ 10 ≥ 6 ≥ 0.4 ≥ 0.16 ≥ 0.06 ≥ 0.25 ≥ 0.1 ≥ 0.4 ≫ 10 ≥ 0.75 ≥ 0.25 ≫ 5 ≥ 0.04 ≥ 0.18 ≥ 0.06 ≥ 0.02 ≥ 0.9 ≥ 0.15

TABLE III NUMBER

 III OF ACOUSTIC PERIODS Nper (FOR vc AND FOR Vac) LEADING TO AN ERROR LESS THAN E(%) FOR Fac = 4000 HZ AND Vac = 50 MM.S -1 .

	SNR (dB)		10			20			30	
	E (%)	0.1	1	10	0.1	1	10	0.1	1	10
	N per									

APPENDIX I DERIVATION OF LMS PROBLEM

Inserting [START_REF] Sharped | A stochastic model for photon correlation measurements in sound field[END_REF] into (38) leads to

where      a ac = V ac cos(φ ac ), b ac = V ac sin(φ ac ).

(47)

Solving the following linear problem

allows to write analytically the unknown parameters. In the following, we note

The mean flow velocity v may then be written as

Similarly, the acoustic parameters express as

In this Appendix, we write the CRB of v c (25), V ac (30) and φ ac (31) respectively in both asymptotic cases

and

where γ and N ≡ N q are given by ( 22) and (36). Using (36) and ( 22), we note that (53) and ( 54) are respectively equivalent to

and

Firstly, we suppose that 2γN ≪ 1 and that γ ≪ 1 which means that the actual velocity signal corresponds to largely less than one acoustic period. The Taylor expansion at the 7th order of the sine functions in ( 25 (59)