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Laser Doppler Velocimetry for Joint Measurements

of Acoustic and Mean Flow Velocities : LMS-based

Algorithm and CRB Calculation
Laurent Simon,Member, IEEE,Olivier Richoux, Anne Degroot and Louis Lionet

Abstract

This paper presents a least mean square (LMS) algorithm for the joint estimation of acoustic and mean flow velocities from

laser doppler velocimetry (LDV) measurements. The usual algorithms used for measuring with LDV purely acoustic velocity or

mean flow velocity may not be used when the acoustic field is disturbed by a mean flow component. The LMS-based algorithm

allows accurate estimations of both acoustic and mean flow velocities. The Cramér-Rao bound (CRB) of the associated problem

is determined. The variance of the estimators of both acoustic and mean flow velocities is also given. Simulation resultsof this

algorithm are compared with the CRB and the comparison leadsto validate this estimator.

Index Terms
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Laser Doppler Velocimetry for Joint Measurements

of Acoustic and Mean Flow Velocities : LMS-based

Algorithm and CRB Calculation

I. I NTRODUCTION

Laser Doppler Velocimeter (LDV) is an optical technique allowing direct measurement of local and instantaneous fluid

velocity. This method is nonintrusive and is based on optical interferometry for estimating the velocity of scattererssuspended

in a fluid by means of the frequency analysis of the light scattered by the seeding particles [1].

For fluid mechanics measurements, the particle velocity canbe considered as constant during the transit time of the seeding

particle through the measurement volume (defined by the interferometry fringes volume) and the frequency of the LDV signal

is constant during this period [16]. Typical order of magnitude of mean flow velocities are from a few meters per second up

to higher than the acoustic celerity (supersonic flow). The data processing consists then to estimate the power spectraldensity

(PSD) of the velocity signal, from Poisson-based randomly distributed samples. PSD may be estimated by interpolating the

randomly distributed samples, by resampling the interpolating signal and by compensating the effect of interpolationin the

Fourier domain [5]- [20]. The autocorrelation function (ACF) may also be reconstructed from the randomly distributed samples

and the Fourier transform of the estimated ACF gives an estimation of the PSD [11]. Lastly, Kalman filtering may be used for

estimating the PSD [2].

For sine acoustic excitation, the particle velocity is no longer constant and the LDV signal is frequency modulated [21]-

[10]. To estimate the particle velocity from these signals,specific signal processing techniques are used as spectral analysis [6],

[22], [25], photon correlation [18] or frequency demodulation associated to post-processing methods [8], [23], [24].Typical

order of magnitude of mean flow velocities are from a few micrometers per second up to100 millimeters per second, for

frequencies in[10 − 4000] Hz.

On one hand, for most acoustic measurements, the particle velocity can be considered as the sum of an AC-component due

to acoustic excitation and a weak DC-contribution due to flow. When the particle oscillates in the measurement volume during

further acoustic periods, the effect of the flow can be reduced and usual post-processing methods may be used [24]- [9].

On the other hand, the DC-flow component prevents in many cases the use of the post-processing methods given by [8],

[23], [24], because the signal time length is less or largelyless than one acoustic period. The aim of this paper is to estimate

both the dc (flow) and ac (acoustic) components from such LDV signals.

Lazreq and Ville [13] measured the acoustic velocity in presence of mean flow by means of a probe consisting in a hot wire

and a microphone. Their results showed a good agreement between the theory and the experiment but this probe cannot be

considered as nonintrusive. LDV has also been used by adapting the slotting technique to estimate the acoustic particlevelocity
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in a turbulent flow [15] with a 2D-LDV velocimeter. The acoustic impedance was estimated by means of a LDV probe and

with a microphone probe and the different results were compared. Finally, Boucheronet al [4] has developed a new method

of signal processing called ’perio-correlation’ in order to estimate sine acoustic velocity in strong mean flow by LDV.

In this work, the sine acoustic excitation is supposed to be perfectly known and a frequency demodulation technique [8]

is performed to estimate the particle velocity from the LDV signal. In this paper, we propose a new method to estimate

jointly the acoustic particle velocity (amplitude and phase) and the mean flow velocity from the velocity signal. This method

is based on the least mean square (LMS) algorithm. The mean flow velocity, the amplitude and phase of acoustic particle

velocity are estimated for each seeding particle crossing the measurement volume. Furthermore, the Cramér-Rao bound(CRB)

of the associated problem is calculated. The CRB gives the lowest variance of any unbiased estimator and consequently yields

theoretically the minimum uncertainties linked to the velocity estimations (acoustic and mean flow velocities). Lastly, simulated

data are processed, in order to validate the LMS-based algorithm and to compare the variance of the results with the Cram´er-Rao

bound.

Section II deals with the LDV principles including the velocity signal modeling and the associated signal processing for

acoustic applications. In section III, the data processingbased on the least mean square algorithm is explained and theCramér-

Rao bound of both the mean flow and acoustic velocities are determined. Finally, the results of the Monte Carlo simulation

are shown and compared to the Cramér-Rao bounds in section IV, for acoustic frequencies in[125 − 4000] Hz, for acoustic

velocities in[0.05 − 50] mm.s−1 and for mean flow velocities in[0.05 − 5000] mm.s−1.

II. FUNDAMENTALS OF LASER DOPPLERVELOCIMETRY

In this section, we consider time-varying signals such thatt ∈ [tq −Tq/2, tq +Tq/2], tq being the central time of the signal,

Tq being a time of flight, andq being associated to a given seeding particle.

A. Laser Doppler Velocimetry Principle

In the differential mode, two coherent laser beams are crossed and focused to generate an ellipsoidal probe volume, in which

the electromagnetic interferences lead to apparent dark and bright fringes [1].

The velocityvq(t) of the seeding particle denotedq is related to the scattered optical field due to the Doppler effect. The

light intensity scattered by the particle crossing the probe volume is modulated in amplitude and frequency. The frequency of

modulationFq(t) is called Doppler frequency and is given by

Fq(t) =
vq(t)

i
=

2vq(t)

λL
sin(θ/2), (1)

wherevq(t) is the velocity of the particle along thex-axis, i the fringe-spacing expressed as a function of the angleθ between

the incoming laser beams and their optical wavelengthλL (Fig. 1).

The diffused light is collected by a receiving optics and is converted into an electrical signal by a photomultiplier (PM).

This signal can then be modelled as [8]

sq(t) = Aq(t)(M + cosφq(t)), (2)
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Fig. 1. Optical setup of LDV system. When the particleq crosses the measurement volume, the light is scattered in all directions and the burst signalsq(t)
is collected by the photo detector. Data processing ofsq(t) allows then to estimate the mean flow and particle acoustic velocity.

whereM takes into account the positive sign of Cramér-Rao Bound (CRB) the light intensity. In (2), the amplitude modulation

linked to the normally distributed light intensity across the beam section is written as

Aq(t) = Kqe
−(βdq(t))2 , (3)

where Kq is related to the laser beam, the PM sensitivity, the electronic amplification, the observation direction and the

scattering efficiency of tracerq. Furthermore,β is related to the probe geometry anddq(t) is the projection of the time-varying

particle displacement along thex-axis in the probe volume. Similarly, the phase modulation in (2) is described by

φq(t) = 2π
dq(t)

i
+ φ0, (4)

whereφ0 is the initial phase due to optical setup. Furthermore, we denotexq(t) the signal such that

xq(t) = sq(t) + w(t), (5)

wherew(t) is the additive noise [24].

In order to avoid any ambiguity on the sign of the velocity, a Bragg cell tuned to frequencyFB = 40 MHz is used to shift

the frequency of one of the lasers. The signalsq(t) is consequently written as

sq(t) = Aq(t)(M + cos(2πFBt + 2πdq(t)/i + φ0)). (6)

The offset componentM is then canceled by an high-pass filtering and the signalsq(t) is down shifted to zero thanks to a

quadrature demodulation (QD) technique [14]. The actual signal, called burst signal, can finally be written as

sq(t) = Aq(t) cos(2πdq(t)/i + φ0). (7)

B. Doppler Signal Modeling in Acoustics

Considering only pure sine acoustic waves and supposing that the mean flow velocity is constant inside the probe volume,

the projection along thex-axis of the velocity of a particleq subjected jointly to the sine acoustic wave and the mean flow

field can be expressed as

vq(t) = vc,q + Vac cos(2πFact + φac), (8)
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wherevc,q is the mean flow velocity of particleq, Vac andφac are the amplitude and phase of the acoustic particle velocity and

Fac is the known frequency of the pure sine acoustic excitation.The amplitude modulation of the burst signal (3) associated

to the particleq may be written as

Aq(t) = Kq exp[β(vc,q(t − tq) +
Vac

2πFac
sin(2πFact + φac))]

2. (9)

Similarly, the phase modulation (4) of the burst signal associated to the particleq is

φq(t) =
2π

i
vc,q(t − tq) +

Vac

2πFac
sin(2πFact + φac). (10)

We note that the flow velocityvc,q can change from a particleq to another while the acoustic parametersvac and φac

are independent ofq. Thus, when the acoustic wave is disturbed by a mean flow, assuming that the particlesq cross the

measurement volume at different random central timestq, without time overlapping between burstsq andq + 1, the Doppler

signal can be written as

s(t) =
∑

q

sq(t) = AD(t) cos[φD(t)], (11)

where the amplitude and phase respectively express as

AD(t) =











Aq(t), t ∈ [tq − Tq/2, tq + Tq/2]

0, otherwise,
(12)

and

φD(t) =











φq(t), t ∈ [tq − Tq/2, tq + Tq/2]

0, otherwise.
(13)

Furthermore, the time of flight of the tracerq is defined as [7]

Tq =

√
2Dx

vc,q
, (14)

whereDx is the length of the probe volume in thex-axis and the associated number of acoustic periods is

Nper =

√
2Dx

vc,q
Fac. (15)

As expected, the fastest the particle crosses the probe volume, the lowest the time of flight and the number of acoustic periods.

An example of a typical Doppler signal is shown on Fig. 2(a), where the different particle times of flight are associated to

different mean flow velocities.

C. Doppler signal processing

The aim of the signal processing developed after sampling the Doppler signal is to estimate jointly and burst-by-burst the

acoustic particle velocity (amplitudeVac and phaseφac) and the mean flow velocityvc,q. This procedure is usually split into

two stages. After a detection procedure [7], a frequency demodulation of the Doppler signals(t) is performed by using a
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Fig. 2. (a) Example of a Doppler signal. (b) Associated velocity signal. Burst1 is associated with a low mean flow velocity corresponding toNper acoustic
periods largely higher than1. Burst 2 is associated with a high mean flow velocity corresponding toNper acoustic period largely lower than1. Burst 3 is
associated to a mean flow velocity corresponding toNper . 1 acoustic period.

time-frequency transform to estimate the instantaneous frequencyFq(t), or equivalently (1) the velocity signalvq(t), burst by

burst [23]. Note that the detector selects only bursts corresponding to one tracer in the measurement volume. Secondly,the data

processing of the estimated velocity signalv̂q(t) allows to obtain both components of the acoustic and mean flowvelocities

for each burst. This first stage is described in this subsection and the second one (data LMS-based processing) is explained in

the section IV.

According to (1), the velocity signal associated to the particle q expresses as

vq(t) = iFq(t), (16)

wherei is the fringe spacing. Thus, the problem consists to estimate the mean valuêvc,q, the amplitudêVac and the phasêφac

of the estimated velocity signal associated to each burstq from the actual noisy burst signalxq(t). Fig. 2 shows an example

of an noiseless simulated Doppler signal (a) and the associated velocity signal for three non-overlapping bursts (b).

In section III, the Cramér Rao bound of the problem is calculated. Then, a method based on a least mean square algorithm

is presented in section IV and is applied to simulated velocity signalsvq(t) in section V.

III. CRB CALCULATION

We recall that the Cramér-Rao bound (CRB) gives the lowest bound of the variance an unbiased estimator may reach (if

it exists) [12]. As explained in [12], the CRB alerts us to thephysical impossibility of finding an unbiased estimator whose
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variance is less than the bound. In the case of single tone signals, CRB were calculated by Rife and Boorstyn [17] in 1974.

The CRB of LDV signals were also studied in the case of fluid mechanics [3]- [19]. In the case of sine acoustic excitation,

the CRB of LDV signal were also studied by Le Duff [14].

We focus here on the problem of calculating the Cramér-Rao bound (CRB) of the following problem. The velocity data are

assumed to be such that

u[n] = v[n; θ] + w[n], (17)

for n ∈ [n0, n1], wherew[n] is the WGN,w[n] ∼ N (0, σ2), the data being modeled according to

v[n; θ] = vc + Vac cos(2πfacn + φac), (18)

wherefac = Fac/Fs, Fs being the sampling frequency,vc ≡ vc,q, and where the unknown parameters are gathered in

θ = [vc Vac φac]
T
. (19)

We furthermore suppose thatfac 6= 0 andfac 6= 1
2 .

A. Craḿer-Rao bound (CRB) for one burst

The CRB is given by the inverse of the Fisher information matrix J(θ), CRB(θ) = J(θ)−1, where the Fisher information

matrix is given by [12]

J(θ)kl =
1

σ2

n1
∑

n=n0

∂v[n; θ]

∂θk

∂v[n; θ]

∂θl
, (20)

for k, l ∈ [1, 3], for θ = [vc Vac φac]
T . The derivatives in (20), according to (18), lead to

J(θ) =
1

σ2













N cos(β)sin(γN)

sin(γ)
−Vacsin(β)sin(γN)

sin(γ)

cos(β)sin(γN)

sin(γ)

N
2 + cos(2β)sin(2γN)

2sin(2γ)
−Vacsin(2β)sin(2γN)

2sin(2γ)

−Vacsin(β)sin(γN)

sin(γ)
−Vacsin(2β)sin(2γN)

2sin(2γ)

NV 2

ac

2 − V 2

ac
cos(2β)sin(2γN)

2sin(2γ)













, (21)

whereN = n1 − n0 + 1, and where

γ = πfac, (22)

β = 2πfacn0 + πfac(N − 1) + φac. (23)

We define the linear signal-to-noise ratio (SNR) of the velocity signal as

SNR=
V 2

ac

2σ2
, (24)
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and we then have upon inversion

var(vc) ≥ CRB(vc) =
V 2

ac

4 SNR

N2 −
(

sin(2γN)

sin(2γ)

)2

N3

2 − N
2

(

sin(2γN)

sin(2γ)

)2

− N

(

sin(γN)

sin(γ)

)2

+ sin(2γN)

sin(2γ)

(

sin(γN)

sin(γ)

)2 , (25)

var(Vac) ≥ CRB(Vac) =
V 2

ac

2 SNR

N2 − Ncos(2β)sin(2γN)

sin(2γ)
− 2sin2(β)

(

sin(γN)

sin(γ)

)2

N3

2 − N
2

(

sin(2γN)

sin(2γ)

)2

− N

(

sin(γN)

sin(γ)

)2

+ sin(2γN)

sin(2γ)

(

sin(γN)

sin(γ)

)2 , (26)

var(φac) ≥ CRB(φac) =
1

2 SNR

N2 + Ncos(2β)sin(2γN)

sin(2γ)
− 2cos2(β)

(

sin(γN)

sin(γ)

)2

N3

2 − N
2

(

sin(2γN)

sin(2γ)

)2

− N

(

sin(γN)

sin(γ)

)2

+ sin(2γN)

sin(2γ)

(

sin(γN)

sin(γ)

)2 . (27)

B. Craḿer-Rao Bound (CRB) forNb bursts

We now assume that the algorithm developed in III-A is used for estimating the unknown parametersθ = [vc Vac φac]
T , in

the case ofNb bursts. The main difference between this problem and the onedeveloped above is that the indexn0 is not anymore

a constant, but might be modeled as a discrete random variable, uniformly distributed in[0, Nac], whereNac = nint

[

Fs/Fac

]

,

nint[] being the nearest integer. As a consequence, the discrete random variableβ given in (23), which appears in (26-27)

is uniformly distributed in[π(N − 1)fac + φac, π(N − 1)fac + φac + 2π]. Averaging the terms linked toβ in (26) and (27)

consequently leads to

< cos(2β) >=< sin(2β) >= 0, (28)

and

< cos2(β) >=< sin2(β) >=
1

2
. (29)

This finally yields

var(Vac) ≥ CRB(Vac) =
V 2

ac

2 SNR

N2 −
(

sin(γN)

sin(γ)

)2

N3

2 − N
2

(

sin(2γN)

sin(2γ)

)2

− N

(

sin(γN)

sin(γ)

)2

+ sin(2γN)

sin(2γ)

(

sin(γN)

sin(γ)

)2 (30)

and

var(φac) ≥ CRB(φac) =
1

2 SNR

N2 −
(

sin(γN)

sin(γ)

)2

N3

2 − N
2

(

sin(2γN)

sin(2γ)

)2

− N

(

sin(γN)

sin(γ)

)2

+ sin(2γN)

sin(2γ)

(

sin(γN)

sin(γ)

)2 . (31)

In the following, we use the expressions (25) forvc and (30) forVac for studying the CRB of the problem. We recall that

N depends onvc (36). As a consequence, the CRB ofvc (25) and the CRB ofVac (30) both depend onvc andVac, while the

CRB of φac (31) is independent ofVac.



8

C. Asymptotic behavior of Craḿer-Rao Bound (CRB)

In Appendix II, we give the expressions of the asymptotic CRBof θ, for both cases2γN ≪ 1 (Nper ≪ 1/(2π)) and

2γN ≫ 1 (Nper ≫ 1/(2π)).

In the asymptotic case2γN ≪ 1, we prove (63-64) that the relative variance ofvc andVac are

var(vc)

v2
c

≥ CRB(vc)

v2
c

=
1

SNR
45

π427/2

1

D5
xFs

v3
cV 2

ac

F 4
ac

, (32)

var(Vac)

V 2
ac

≥ CRB(Vac)

V 2
ac

=
1

SNR
45

π429/2

1

D5
xFs

v5
c

F 4
ac

. (33)

Both CRBs ofvc and Vac are proportional tov5
cV 2

ac and inversely proportional toF 4
ac. Consequently, doubling the mean

flow velocity yields an15 dB increase of the variance of bothvc andVac. Similarly, doubling the amplitude of the acoustic

particle velocityVac leads to a6 dB increase of the variance of bothvc andVac. Lastly, doubling the frequency of the pure

sine acoustic wave leads to a12 dB decrease of the variance of bothvc andVac. We also note that doubling the length of the

probe volumeDx yields a15 dB decrease of the variance of bothvc andVac.

In the asymptotic case2γN ≫ 1, we prove that (72-73)

var(vc) ≥
1

SNR
1

23/2DxFs
vcV

2
ac, (34)

and

var(Vac) ≥
1

SNR
1√

2DxFs

vcV
2
ac. (35)

Thanks to the exact (25, 30, 31) and asymptotic (32-35) expressions of the CRB, the minimum uncertainties linked to the

velocity estimations (acoustic and mean flow velocities) are completely known. In section (IV), the LMS-based algorithm is

introduced. It is then applied in section (V) to simulated data in order to be compared with the CRB.

IV. L EAST MEAN SQUARE ALGORITHM

From a practical point of view, the actual velocity signal isuniformly sampled. Consequently, the number of samplesNq

associated to the particleq is derived from (14), as

Nq =

√
2DxFs

vc,q
, (36)

and the associated number of acoustic periods (15) is now defined as

Nper =

√
2Dx

vc,q
Fac. (37)

The sine-wave fit is then solved by minimizing the cost function V (θ),

V (θ) =
1

N

n1
∑

n=n0

(u[n] − v[n; θ])2, (38)
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with respect to the unknown parametersθ (19), whereu[n] and v[n; θ] are respectively given by (17) and (18), and where

N = n1 − n0 + 1. In the Appendix 1, the equations (50-52) respectively givethe expression ofvc, aac = Vac cos(φac) and

bac = Vac sin(φac) as a function ofu andfac. Onceaac andbac are estimated, the unknown acoustical parameters ofθ express

as 









V̂ac =

√

â2
ac + b̂2

ac,

φ̂ac = atanb̂ac

âac

.
(39)

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we compare the CRB with the LMS-based algorithm developed in IV. According to the values of the acoustic

and mean flow velocities to be analyzed, the following valuesfor Fac andVac are chosen :

Fac ∈ [125 250 500 1000 2000 4000] Hz, (40)

Vac ∈ [0.05 1.58 50] mms−1. (41)

The phaseφac is supposed to be equal toπ/4, and we use an adimensional parameterαv for the value ofvc, such that

αv =
Vac

vc
∈ [0.01 0.05 0.1 0.5 1]. (42)

For each numerical simulation, the sampling frequency isFs = 350 kHz, the probe volume length along thex−axis is

Dx = 0.1 mm and10000 bursts are analyzed. The simulator is performed by Matlab.

Fig. 3 to Fig. 5 show typical results of the relative variances var(vc)/v2
c (a) and var(Vac)/V 2

ac (b), for the different values

of Fac with comparison to the theoretical CRB ofvc (25) and ofVac (26). Each figure is related to a given value ofFac.

Furthermore, for each value ofFac, three sets of signals are analyzed, each set correspondingto one of the bursts of Fig. 2,

respectivelyNper ≫ 1 (Burst 1), Nper > 1 (Burst 2) andNper . 1 (Burst 3), whereNper is the number of acoustic periods,

Nper = Nfac.
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First of all, the LMS-based estimator is near the theoretical CRB, so that we can maintain that this estimator is efficient.

Moreover, the relative variance ofvc is weaker than the one ofVac (except forαv = 1). Indeed, for values ofvc andVac such
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vc = 1000 mm.s−1. (Burst 3) : Vac = 1.58 mm.s−1, αv = 0.1, vc = 15.8 mm.s−1.
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Fig. 5. Comparison of the relative variances ofvc (a) andVac (b) estimated by a LMS algorithm (continuous) with the theoretical CRB (dashed), for
Fac = 4000 Hz. Bursts (1 − 3) refer to Fig. 2. (Burst1) : Vac = 50 mm.s−1, αv = 0.1, vc = 500 mm.s−1. (Burst 2) : Vac = 50 mm.s−1 , αv = 0.01,
vc = 5000 mm.s−1. (Burst 3) : Vac = 50 mm.s−1, α = 0.05, vc = 1000 mm.s−1.

that αv = Vac/vc ≤ 1/
√

2 as CRB(vc) ≃ CRB(Vac)/2, we have

CRB(vc)

v2
c

≤ CRB(Vac)

V 2
ac

. (43)

Moreover, the values of the relative variances ofvc andVac drastically depend on the values ofvc, Vac andFac as shown

by (25) and (30).

- For Nper > 1 (Burst 1), the relative variances ofvc andVac are respectively in[−70,−42] dB and[−52,−30] dB.

Such estimations may consequently be considered as very accurate.

- ForNper ≪ 1 (Burst2), the relative variances ofvc andVac are respectively in[−27, 1] dB and[10, 20] dB. The estimation

of vc is accurate enough for low values ofv3
cV 2

ac/F 4
ac (32), while the estimation ofVac is clearly unacceptable, whatever

the parametersvc, Vac andFac (33).

- For Nper . 1 (Burst 3), the relative variances ofvc andVac are respectively in[−70,−30] dB and[−30,−23] dB. Such

estimations may also be considered as very accurate.

Furthermore, for velocity signals with time length largelylower than one acoustic period, we can use the asymptotic case

expression of CRB ofvc and Vac. Giving a maximum value of relative error, respectivelyEvc
for vc and Evac

for Vac, we
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consequently have

CRB(vc)

v2
c

=
1

SNR
45

π427/2

1

D5
xFs

v3
cV 2

ac

F 4
ac

≤ Evc
(44)

and
CRB(Vac)

V 2
ac

=
1

SNR
45

π429/2

1

DxFs

v5
c

F 4
ac

≤ Evac
. (45)

As a consequence, for a given set of setup known parametersDx, Fs and Fac, we may give the maximum valuesv3
cV 2

ac

andv5
c have to reach for yielding an error less than respectivelyEvc

andEvac
.

Lastly, from the expressions of the CRB ofvc (25) andVac (30), we can calculate the number of acoustic periods the time

length of the velocity signals may have, for leading to an error less than a given valueE. Tables I-III give a summary of such

results. Each table corresponds to a given burst of Fig. 2.

TABLE I

NUMBER OF ACOUSTIC PERIODSNper (FORvc AND FOR Vac) LEADING TO AN ERROR LESS THANE(%) FORFac = 125 HZ AND Vac = 50 MM .S−1.

SNR (dB) 10 20 30
E (%) 0.1 1 10 0.1 1 10 0.1 1 10

Nper (vc) ≥ 0.8 ≥ 0.3 ≥ 0.2 ≥ 0.45 ≥ 0.2 ≥ 0.09 ≥ 0.3 ≥ 0.12 ≥ 0.05
Nper (Vac) ≫ 10 ≥ 0.75 ≥ 0.25 ≫ 5 ≥ 0.5 ≥ 0.2 ≥ 0.8 ≥ 0.25 ≥ 0.1

TABLE II

NUMBER OF ACOUSTIC PERIODSNper (FORvc AND FOR Vac) LEADING TO AN ERROR LESS THANE(%) FORFac = 500 HZ AND Vac = 1.58 MM .S−1.

SNR (dB) 10 20 30
E (%) 0.1 1 10 0.1 1 10 0.1 1 10

Nper (vc) ≥ 0.4 ≥ 0.16 ≥ 0.06 ≥ 0.25 ≥ 0.1 ≥ 0.04 ≥ 0.18 ≥ 0.06 ≥ 0.02
Nper (Vac) ≫ 10 ≥ 6 ≥ 0.4 ≫ 10 ≥ 0.75 ≥ 0.25 ≫ 5 ≥ 0.9 ≥ 0.15

TABLE III

NUMBER OF ACOUSTIC PERIODSNper (FORvc AND FOR Vac) LEADING TO AN ERROR LESS THANE(%) FORFac = 4000 HZ AND Vac = 50 MM .S−1.

SNR (dB) 10 20 30
E (%) 0.1 1 10 0.1 1 10 0.1 1 10

Nper (vc) ≥ 0.6 ≥ 0.25 ≥ 0.1 ≥ 0.4 ≥ 0.15 ≥ 0.05 ≥ 0.25 ≥ 0.1 ≥ 0.03
Nper (Vac) ≫ 20 ≫ 5 ≥ 0.6 ≫ 10 ≥ 4.5 ≥ 0.04 ≫ 10 ≥ 0.7 ≥ 0.25

For example, table I may be read as follows. To obtain a relative error forvc less than0.1 % for SNR= 10 dB, the minimum

number of acoustic period for the velocity signal is0.8. In the same way, to obtain a relative error forVac less than1 % for

SNR= 20 dB, the minimum number of acoustic period for the velocity signal is0.5. Tables II-III give the minimum number

of acoustic periods the velocity signal should have for obtaining relative errors less than0.1 %, 1 % and10 %, for SNR equals

to 10 dB, 20 dB and30 dB for 500 Hz and4000 Hz respectively.
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As expected, the mean flow velocityvc is estimated with a great accuracy from a very low number of acoustic period. For

example, to obtain a relative error of1 % for vc, the number of acoustic period is always less than0.3 whatever the SNR,Fac

andVac. On contrary, the results for the estimation of the acousticvelocity are much more contrasted. For a SNR of30 dB,

the estimation ofVac associated with a relative error less than1 % is possible for a number of acoustic periodNper > 0.9.

But, when the SNR is less than30 dB, the number of acoustic periods associated with a relative error less than1 % may be

largely bigger than1.

The tables also show the influence of the acoustic frequency on the estimation of the particle acoustic velocity. The higher

the frequency, the higher the number of acoustic periods foran accurate estimation ofVac. For a relative error equals to10

%, the number of acoustic periods are the same whatever the frequency. But for a relative error equals to1 % or 0.1 % the

estimation of the particle acoustic velocity is easier for alow frequency. On contrary, the influence of the frequency onthe

estimation of the mean flow velocity is the opposite. The higher the frequency, the lower the number of the acoustic periods

for an accurate estimation.

With regard to the results of these study, a three-steps new approach can be proposed to improve the estimation of the

acoustic particle velocity in presence of mean flow. The firststep consists in the estimation of the mean flow velocity for each

burst with the least mean square (LMS) algorithm. Then, the estimation of the mean flow velocity may be subtracted from

the velocity signal. Finally, a ”rotating machinery” technique associated with a synchronous detection allows to estimate the

acoustic particle velocity with a great accuracy [9].

VI. CONCLUSION

A new method for estimating jointly the acoustic particle and the mean flow velocities from a LDV signal is presented. It

is based on the least mean square (LMS) algorithm and it performs well in the estimation of the velocities. The performance

of the method has been investigated by means of numerical tests and the results of the simulation have been compared to the

Cramér-Rao bounds of the associated problem. It is shown that the LMS-based estimator is near the theoretical CRB, so that

the estimator is efficient.
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APPENDIX I

DERIVATION OF LMS PROBLEM

Inserting (18) into (38) leads to

V (θ) =
1

N

n1
∑

n=n0

(

un − (vc + aaccos(2πfacn) + bacsin(2πfacn)

)2

, (46)

where 









aac = Vaccos(φac),

bac = Vacsin(φac).
(47)

Solving the following linear problem























∂V (θ)
∂vc

= 0,

∂V (θ)
∂Vac

= 0,

∂V (θ)
∂φac

= 0,

(48)

allows to write analytically the unknown parameters. In thefollowing, we note

D =
1

N2

n=n1
∑

n=n0

cos2(2πfacn)

n=n1
∑

n=n0

sin2(2πfacn) − 1

N2

( n=n1
∑

n=n0

cos(2πfacn)sin(2πfacn)

)2

− 1

N3

n=n1
∑

n=n0

sin2(2πfacn)

( n=n1
∑

n=n0

cos(2πfacn)

)2

− 1

N3

n=n1
∑

n=n0

cos2(2πfacn)

( n=n1
∑

n=n0

sin(2πfacn)

)2

+
2

N3

n=n1
∑

n=n0

cos(2πfacn)sin(2πfacn)

n=n1
∑

n=n0

cos(2πfacn)

n=n1
∑

n=n0

sin(2πfacn). (49)

The mean flow velocitȳv may then be written as

vc =
1

N3D

( n=n1
∑

n=n0

sin(2πfacn)

n=n1
∑

n=n0

cos(2πfacn)sin(2πfacn) −
n=n1
∑

n=n0

cos(2πfacn)

n=n1
∑

n=n0

sin2(2πfacn)

) n=n1
∑

n=n0

uncos(2πfacn)

+
1

N3D

( n=n1
∑

n=n0

cos(2πfacn)

n=n1
∑

n=n0

cos(2πfacn)sin(2πfacn) −
n=n1
∑

n=n0

sin(2πfacn)

n=n1
∑

n=n0

cos2(2πfacn)

) n=n1
∑

n=n0

unsin(2πfacn)

+
1

N3D

( n=n1
∑

n=n0

cos2(2πfacn)

n=n1
∑

n=n0

sin2(2πfacn) −
( n=n1

∑

n=n0

cos(2πfacn)sin(2πfacn)

)2) n=n1
∑

n=n0

un. (50)

Similarly, the acoustic parameters express as

aac =
1

N3D

( n=n1
∑

n=n0

sin2(2πfacn)

( n=n1
∑

n=n0

sin(2πfacn)

)2) n=n1
∑

n=n0

uncos(2πfacn)

+
1

N3D

( n=n1
∑

n=n0

cos(2πfacn)

n=n1
∑

n=n0

sin(2πfacn) −
n=n1
∑

n=n0

cos(2πfacn)sin(2πfacn)

) n=n1
∑

n=n0

unsin(2πfacn)
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+
1

N3D

( n=n1
∑

n=n0

sin(2πfacn)

n=n1
∑

n=n0

cos(2πfacn)sin(2πfacn) −
n=n1
∑

n=n0

cos(2πfacn)sin2(2πfacn)

) n=n1
∑

n=n0

un, (51)

and

bac =
1

N3D

( n=n1
∑

n=n0

cos2(2πfacn)

( n=n1
∑

n=n0

cos(2πfacn)

)2) n=n1
∑

n=n0

unsin(2πfacn)

+
1

N3D

( n=n1
∑

n=n0

cos(2πfacn)

n=n1
∑

n=n0

sin(2πfacn) −
n=n1
∑

n=n0

cos(2πfacn)sin(2πfacn)

) n=n1
∑

n=n0

uncos(2πfacn)

+
1

N3D

( n=n1
∑

n=n0

cos(2πfacn)

n=n1
∑

n=n0

cos(2πfacn)sin(2πfacn) −
n=n1
∑

n=n0

sin(2πfacn)cos2(2πfacn)

) n=n1
∑

n=n0

un. (52)

APPENDIX II

ASYMTOTIC CRB

In this Appendix, we write the CRB ofvc (25), Vac (30) andφac (31) respectively in both asymptotic cases

2γN ≪ 1, (53)

and

2γN ≫ 1, (54)

whereγ andN ≡ Nq are given by (22) and (36). Using (36) and (22), we note that (53) and (54) are respectively equivalent

to

2
√

2πDxFac ≪ vc, (55)

and

2
√

2πDxFac ≫ vc. (56)

Firstly, we suppose that2γN ≪ 1 and thatγ ≪ 1 which means that the actual velocity signal corresponds to largely less

than one acoustic period. The Taylor expansion at the 7th order of the sine functions in (25), (30) and (31) respectively yields

var(vc) ≥ σ2 45

π4f4
ac

1

N5
, (57)

var(Vac) ≥
σ2

2

45

π4f4
ac

1

N5
, (58)

var(φac) ≥
σ2

2V 2
ac

45

π4f4
ac

1

N5
. (59)
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Using (36) and (22), we note that (57-59) may respectively bewritten as

var(vc) ≥ σ2 45

π425/2

1

D5
xFe

v5
c

F 4
ac

, (60)

var(Vac) ≥ σ2 45

π427/2

1

D5
xFe

v5
c

F 4
ac

, (61)

var(φac) ≥ σ2 45

π427/2

1

D5
xFe

v5
c

F 4
acV

2
ac

. (62)

Writing (24) into (60-62) leads to

var(vc) ≥
1

SNR
45

π427/2

1

D5
xFe

v5
cV 2

ac

F 4
ac

, (63)

var(Vac) ≥
1

SNR
45

π429/2

1

D5
xFe

v5
cV 2

ac

F 4
ac

, (64)

var(φac) ≥
1

SNR
45

π429/2

1

D5
xFe

v5
c

F 4
ac

, (65)

where SNR is the linear signal-to-noise ratio.

Secondly, we now suppose that2γN ≫ 1 which means that the actual velocity signal corresponds to largely great than one

acoustic period. The asymptotic CRB is then such that

var(vc) ≥
σ2

N
, (66)

var(Vac) ≥
2σ2

N
(67)

and

var(φac) ≥
2σ2

NV 2
ac

. (68)

Using (36), we note that (66-68) may respectively be writtenas

var(vc) ≥
σ2

√
2DxFe

vc, (69)

var(Vac) ≥
√

2σ2

DxFe
vc (70)
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and

var(φac) ≥
√

2σ2

DxFe

vc

V 2
ac

. (71)

Lastly, inserting (24) into (69-71) finally leads to

var(vc) ≥
1

SNR
1

23/2DxFe
vcV

2
ac, (72)

var(Vac) ≥
1

SNR
1√

2DxFe

vcV
2
ac (73)

and

var(φac) ≥
1

SNR
1√

2DxFe

vc (74)
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