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1 INTRODUCTION 

Since early works by Sneddon (1952), the theoretical response of a half-space under a moving 
load with static and dynamic components has been largely investigated. Among all the applica-
tions covered by this field one can refer to seismic problems, road and high speed railways en-
gineering. In the pavement framework, three-dimensional Finite Element-based models have 
been proposed (e.g. Heck et al. 1998, Elseifi et al. 2006). However, these models may be hard to 
manipulate and to offer fast alternative tools, semi-analytical methods are still developed (Hop-
man 1996, Siddharthan et al. 1998). In France, at LCPC, Duhamel et al. (2005) developed such 
a model which is implemented in the ViscoRoute software. This program directly integrates the 
viscoelastic behavior of asphalt materials through the Huet-Sayegh model which is particularly 
well-suited for the modeling of asphalt overlays (Huet 1999, Sayegh 1965). The ViscoRoute 
kernel has been validated by comparison to analytical solutions (semi-infinite medium), Finite 
Element simulations (multilayered structure), and results obtained for multiple loads in the con-
text of the A380 pavement experimental program (Chabot et al. 2006). It has been shown that 
for bituminous wearing courses and thick flexible pavement structures, especially for aircraft 
structure and low traffic, other design concepts than usual ones need to be developed. Until 
now, all these developments have been done by considering perfectly bonded interfaces be-
tween layers of the structure. Nevertheless, due to the significant influence of the bonding qual-
ity at an interface on the pavement life at long term, different types of interlayer conditions must 
be investigated. This remark is especially true for composite pavements as those studied by 
Chea et al. (2008) and Chabot et al. (2008). 

In this framework, the present article is outlined as follows: the implementation of the sliding 
interlayer condition in ViscoRoute is first explained. Then, the effect of the sliding interlayer 
condition on the mechanical response of a composite pavement is analyzed. This analysis is 
conducted upon deflection, strains and normal stresses computed at different depths within the 
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structure. The influence of temperature is also studied since it affects the viscoelastic behavior 
of asphalt layers. 

2 RESPONSE OF A VISCOELASTIC PAVEMENT TO A MOVING LOAD 

This section briefly describes the modeling of the perfectly slip interface condition and its im-
plementation in the ViscoRoute kernel. 

2.1 Governing equations 
The pavement structure is assimilated to a semi-infinite multilayered medium composed of n 
horizontal layers that have either an elastic or a viscoelastic behavior. The structure is solicited 
by one or several loads moving at constant speed in the x-direction, and applied at the free sur-
face of the medium. Inertial forces are considered in the problem modeling which is governed 
by the elastodynamic equations. These equations are solved for each layer in a moving basis at-
tached to the load. One shifts from the fixed basis (x, y, z), tied to the medium, to the moving 
basis (X, Y, Z) by making the following change of variable: 

x X Vt; y Y; z Z= + = =  (1) 

The elastodynamic equations, with no body forces, expressed in the moving basis (X,Y,Z) reads 
for layer i: 
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ρi denotes the density of the ith layer. Boundary and interlayer conditions are required to solve 
Equation 2. These are detailed in section 2.2. 

2.2 Solution in the frequency domain and interlayer conditions 
Analytical solutions to Equation 2 are computed in the frequency domain in which the viscoe-
lastic constitutive law takes the same form as Hooke’s law. It reads: 
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i 1k Vμ , depend on the complex modulus 
( )*

i 1E k V  of the ith layer in the same way as in the elastic case. A Fourier transform applied in 
the X and Y directions to Equation 2 combined with Equation 3 yields: 
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where k1 and k2 are the wave numbers and j is the imaginary unit. u* is the displacement field 
expressed in the frequency domain. Matrices Ai, Bi and Ci are given by Equation 5: 
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where csi and cpi denote the dilatation and the shear wave velocities of layer i, respectively. 
These matrices gather the material properties of layer i. After some mathematical manipulation, 
the solution to Equation 4 is obtained and reads: 
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In Equation 6, κpi and κsi are the longitudinal and the shear wave numbers of layer i. Besides, 
the stress tensor is obtained from the displacement field and the constitutive law. The displace-
ment field depends on 6 parameters that are representative of a layer. The solution is completely 
defined once these parameters have been calculated. They are determined from the boundary 
and the interlayer conditions that yield the 6n equations required to set all the parameters. 
Boundary conditions on the free surface (imposed force vector on the loading area) and at infin-
ity (radiation condition) result in 6 equations. The remaining equations are provided by the in-
terlayer relations. 

In the case of a bonded interface, the continuity relation (Equation 7) is used. This relation 
stipulates that the displacements and the traction vector from both sides of an interface are equal 
at the Z-coordinate of this interface. The continuity equation for an interface squeezed between 
layers i and i+1 reads: 
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On the other hand, the sliding interlayer condition states that the shear components of the trac-
tion vector are equal to zero at both side of an interface. In the same time, the conditions on the 
vertical displacement and the third component of the traction vector remain the same as in Equa-
tion 7. The sliding interlayer condition for an interface settled between layer i and i+1 reads: 
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Globally, the interlayer condition (bonded or sliding case) can be expressed as a function of the 
amplitude vectors βi and βi+1 whose components are the β−parameters of Equation 6: 

( ) ( )i i i 1 i 1+ +⋅ = ⋅M Nβ β  (9) 

where, 

{ }i 1i 2i 3i 1i 2i 3i, , , , ,− − − + + += β β β β β ββ  (10) 

The 6-by-6 matrices Mi and Ni+1 integrate the constitutive behavior of layers i and i+1 and de-
pend on the displacement or the stress components invoked by the interlayer relation. Mi and 
Ni+1 are the same for the continuity equation but not for the sliding interlayer relation. These 
matrices are not detailed herein. They are derived from Equations 6, 7, 8, and the traction vector 
ensued from the displacement field. 

To compute all the amplitude vectors, the boundary and the interlayer conditions are assem-
bled in a global matrix. A linear system of unknown the amplitude vector (Equation 11) is then 
solved. 
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D0 and Dn reflect the boundary conditions on the free surface and at infinity, respectively. f de-
notes the imposed force vector expressed in the frequency domain. Equation 11 is solved by us-
ing a pivoting method. 

We implemented the method developed in this section in the ViscoRoute kernel (Duhamel et 
al. 2005) which uses the C++ language programming. The implementation of the sliding inter-
face condition has been validated in elasticity by comparison with software ALIZE-LCPC that 
computes the Burmister solution of the elastic problem. 

2.3 Solution in the spatial domain 
Once a solution in displacement or stress is computed in the frequency domain, The Fast Fourier 
Transform (FFT) is utilized to evaluate the integral that leads to the response in the spatial do-
main. The FFT is run in two dimensions for all values of k1 and k2 but k1 equal zero. In the latter 
case, the integrand is singular, though still integrable, and a different method based on Gauss-
Legendre polynomials is used. For more details, see Duhamel et al. (2005).  

3 APPLICATION TO A COMPOSITE PAVEMENT 

In this section, the afore-developed method is used to analyze the mechanical response of a 
composite pavement under a single dual-wheel load. The effect of sliding interfaces and tem-
perature is analyzed. 

3.1 Material, structure and loading characteristics 
A composite pavement composed of four layers is studied. The different layers are defined as 
follows: a surface course of bituminous materials (BBSG), a base layer of bituminous materials 
(GB), a layer of materials treated with hydraulic binders (GC), and a pavement foundation. 
BBSG, GB and GC stand for semi-coarse bituminous concrete, base asphalt concrete and ce-
ment bound graded aggregates, respectively. 

 
Figure 1. Sketch of the composite pavement and the loading conditions. 



As shown in Figure 1, a slip interface condition can be introduced between layers 2 and 3, i.e. 
between the asphalt and the concrete cement layers. 

Layers of a composite pavement are initially bonded. However, due to repeated loading and 
differential expansion between the base of layer 2 and layer 3, the bonding between the asphalt 
concrete and the material treated with hydraulic binders may eventually fail (Setra-LCPC 1997). 
Consequently, the effects of the sliding interface condition on the mechanical response of the 
pavement structure is investigated by introducing sliding between these two layers. 

The loading is defined by a classical single dual-wheel configuration represented by two 
loads exerting a uniformly distributed pressure of 0.622 MPa onto two disks of radius 0.125 m, 
with a center-to-center distance of 0.375 m (see Fig. 1). 

Asphalt layers are modeled according to the Huet-Sayegh model (Huet 1963, Sayegh 1965) 
while other layers follow Hooke’s law. In the frequency domain, the complex modulus of the 
Huet-Sayegh model depends on the load speed and the temperature. It is given by Equation 12: 
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E0 is the static elastic modulus, E∞  is the instantaneous elastic modulus, k and h are exponents 
of the parabolic dampers (1 h k 0> > > ), and δ is a positive non-dimensional coefficient balanc-
ing the contribution of the first damper in the global behavior. θ denotes the temperature and τ 
is a response time parameter governed by Equation 13: 

( ) ( )2
0 1 2exp A A Aτ θ = + θ + θ  (13) 

where A0, A1 and A2 are constant parameters. A schematic representation of the Huet-Sayegh 
rheological model is given in Figure 2. Parameters of this model are determined based on ex-
perimental data stemming from complex modulus tests performed at different temperatures and 
frequencies, and by using software Viscoanalyse (Chailleux et al. 2006). The parameter values 
corresponding to the materials involved in this study are summarized in Table 1.  

Table 1. Parameters of the Huet-Sayegh model for layers 1 and 2.  
 Einf E0 δ k h A0 A1 A2 
 Mpa MPa       
[1] : BBSG 40995 18 2.356 0.186 0.515 2.2387 -0.3996 0.00152 
[2] : GB 38814 31 1.872 0.178 0.497 2.5320 -0.3994 0.00175 

 
Figure 2. Schematic representation of the Huet-Sayegh model. 

3.2 Effects of sliding interfaces on the computed fields 
In this section, the mechanical response of the structure is computed for two types of the inter-
layer condition between layers 2 (BB) and 3 (GC): either a full bonded or a perfectly slip inter-
face is considered at this location. The other interfaces within the structure are assumed to be 
bonded. 

Mechanical fields computed for the bonded condition are compared to those obtained for the 
sliding interlayer condition. The vertical displacement (or deflection, uz) on the free surface of 
the pavement, the longitudinal/transversal strains in the X and Y directions (εxx, εyy), at the base 



of the asphalt layers (Z=0.199 m), the vertical strain (εzz) in soil, and the normal stresses (σxx, 
σyy) at the base of the concrete layer (Z=0.399 m) are investigated. In this analysis, the load ve-
locity and the temperature are set to 20 m/s and 15°C, respectively. 

Figure 3 is dedicated to the vertical displacement on the free surface of the structure. Fig-
ure 3a shows the comparison between the longitudinal section (in Y=0) of the vertical displace-
ment computed in the sliding (triangular markers) and the bonded (circular markers) cases. See 
Figure 1 for the definition of the X and the Y axis. Figure 3b displays similar quantities but in 
the Y-direction (in X=0). The curves plotted in Figure 3a and 3b show that the maximum of the 
deflection is twice larger for a slip interface between layers 2 and 3. The order of magnitude of 
the deflection is quite the same in the X and Y directions. Based on these observations, the de-
fection could be proposed as an indicator to evaluate layer-debonding of a pavement. 

Figure 4 shows the longitudinal strains at the base of the concrete layer. Positive values relate 
to extension and negative values to contraction. On the left (Fig. 4a), εxx is plotted against X (in 
Y=0) because the maximum value of this strain component is situated on the X-axis. In the 
bonded case (circular markers), the deformation along the X-axis is in contraction and the curve 
is asymmetric due to viscoelastic effects. When a slip interface is introduced between layers 2 
and 3, extension appears and, as expected, the maximum of εxx is largely greater than in the 
bonded case. Similar trends are observed for εyy which is plotted versus Y (in X=0) in Figure 4b. 

(a) (b) 
Figure 3. (a) Comparison of the deflection obtained for the bonded and the sliding condition: longitudinal 
section in the X direction (Y=0). (b) The same as (a) but in the Y direction (X=0). 

(a) (b) 

Figure 4. (a) Longitudinal section (in Y=0 and Z=0.199 m) of εxx computed in the sliding and the bonded 
cases. (b) The same as (a) but for εyy plotted in the Y direction (X=0). 



 

Figure 5. Comparison between εzz computed with the sliding and the bonded interface condition: longitu-
dinal section in the X direction (Y=0). 

(a) (b) 

Figure 6. (a) Longitudinal section (in Y=0 and Z=0.399 m) of σxx computed in the sliding and the bonded 
cases. (b) The same as (a) but for σyy plotted in the Y direction (X=0). 

Similar qualitative results, i.e. higher deformation for the perfect-slip condition, are observed for 
εzz which is plotted in Figure 5. In the present example, switching from a bonded to a sliding in-
terface condition results in vertical strains in soil that are multiplied by two at maximum. 

Figure 6 is devoted to the normal stress at the base (Z=0.399 m) of the concrete layer. Posi-
tive values of the normal stress characterize a tensile stress whereas negative values relate to a 
compressive stress. Figure 6a displays σxx along a longitudinal section (in Y=0) for both bonded 
(circular markers) and sliding (triangular markers) cases. The shape of the curves is similar for 
the two types of interface although the slip interface leads to higher values of σxx. Tensile 
stresses are much larger than compressive stresses that develop away from the imposed loads. 
Similar remarks also apply to σyy which is plotted along the Y-axis (in X=0) in Figure 6b. Note 
that the maximum of σyy is located on this axis. 

3.3 Influence of temperature 
Asphalt layers have a thermo-viscoelastic behavior modeled by the Huet-Sayegh model. The 
mechanical response of the whole structure is thus dependent of the temperature within these 
layers. To quantify the influence of temperature on the pavement response, the deflection is 
computed for two different temperatures: 15°C and 35°C. The higher the temperature the more 
viscous get the asphalt layers. In this section, the load velocity is kept equal to 20 m/s.  



 

(a) 

 

(b) 

Figure 7. Isovalues of the deflection at 15°C (a) and 35°C (b) obtained in the case of sliding interfaces. 

(a) (b) 

Figure 8. (a) Comparison of the deflection computed for a temperature of 15°C and 35°C (sliding case): 
longitudinal section in the X-direction (Y=0). (b) The same as (a) but plotted along the Y-direction 
(X=0). 

Figure 7 displays isovalues of the deflection computed for the slip interface between layers 2 
and 3. At the top (Fig. 7a), isovalues of the deflection obtained at T=15°C are plotted in the X-Y 
plan. Most of these isovalues have a circular shape and exhibit a quite symmetrical response of 
the vertical displacement (close to an elastic response). The highest values of the deflection are 



obviously located next to the applied load. At this location, the shape of the isovalues are differ-
ent and let us perceive the presence of the two separate loads applied on the pavement. The 
maximum value of the vertical displacement is about 0.24 mm. On the other hand, Figure 7b 
shows isovalues of the deflection at a temperature equal to 35°C. As expected, the magnitude of 
the deflection is higher for a temperature of 35°C. Moreover, the isovalues are not circular at 
this temperature. The two wheels leave some sort of a trail at the rear of the loading indicating 
that the deflection is significantly affected by the viscoelastic behavior of the pavement. 

The order of magnitude of the deflection is the same in both directions at a temperature of 
15°C. However, the deflection is higher in the Y direction than in the X direction as the tem-
perature increases. The prints left by the separate wheels are also more pronounced at a tem-
perature of 35°C, especially in the Y direction (Fig. 8b). To complete these observations, the ef-
fect of a non uniform loading have to be analyzed. 

4  CONCLUSION 

The perfect-slip condition has been successfully implemented in the ViscoRoute program that 
solves the mechanical problem of a multilayered viscoelastic pavement under moving loads. 
Multilayered structures with bonded and/or sliding interfaces can now be treated by the ex-
tended version of this program. Quantitative results on the influence of the slip interlayer condi-
tion have been presented in terms of deflection and designing fields commonly used in France. 
These results have been obtained for a particular composite pavement. As expected, the intro-
duction of a slip interface within a multilayered pavement led to higher values of the aforemen-
tioned fields. Due to the thermo-viscoelastic behavior of asphalt layers, these fields also in-
creased with temperature. These effects are quite noticeable on the deflection. 

Modeling the response of pavement structures that incorporate slip interfaces could help the 
development of methods for the detection of interface flaws. The analysis presented herein 
should be deepened to achieve this goal. If needed in forthcoming developments, a friction law 
at interfaces could also be easily implemented. 
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