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Abstract

We consider general models of Gibbs Delaunay-Voronoi tessellations, which can be
viewed as an extension of the Ord’s process. The interaction may occur on each cell of
the tessellation and between neighbour cells. The tessellation may also be subjected to
a geometric hardcore interaction, forcing the cells not to be too large, too small, or too
flat. This setting, natural for applications, implies some theoretical difficulties since the
interaction is not necessarily hereditary. We review the mathematical results available
for studying these models and provide further outcomes. They concern the existence, the
simulation and the estimation of such tessellations. Based on these results, we present tools
to handle these objects in practice : how to simulate them, estimate their parameters and
validate the fitted model. Some examples of simulated tessellations are deeply studied.
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1 Introduction

In the domains of physics and biology, some large-scale random geometric structures can
be mathematically modeled using Poisson-Voronoi or Poisson-Delaunay tessellations. In
cosmology for instance, since [18], modeling the large-scale galaxy distribution generally
relies on Voronoi tessellations (see [14] and [15]). In biology, Voronoi tessellations are often
used to model the cellular configuration of a tissue (since the seminal work of [13]). This
tool is also relevant to model the geometrical structure of proteins (cf. [21] for a state of
the art) or microstructures like foams. Mathematical properties of Poisson-Voronoi and
Poisson-Delaunay tessellations have been widely studied (see [17] for instance).

Unfortunately, these models have the disadvantage of yielding strong independent
properties due to the Poissonian nature of the underlying point process. In different biolog-
ical studies, the necessity to introduce an interaction between the cells of the tessellation
to reach more realism has indeed been emphasized. In [11] for instance, the interaction
between neighboring epithelial cells is dealt with a Hamiltonian energy. This Hamiltonian
is a function of the area of each cell of the Voronoi tessellation, but it involves also a pair-
interaction that depends on the length of the common vertex of two cells. Moreover, some
geometric hardcore interactions are sometimes demanded. As an example, Lautensack and
Sych ([16]) modeled foams by a tessellation built from a Matern model with hardcore in-
teraction. The resulting tessellation is then constrained to reach a desired regularity. The
study of the regularity of the tessellation is also at the heart of the article of Eglen and
Willshaw ([10]): their work shows the relevance of forcing the geometry of cells in order
to model retinal neurons.

It is thus natural to consider Gibbsian modifications of the Poisson-Voronoi or Poisson-
Delaunay tessellation, involving a smooth interaction but also a hardcore interaction, in
order to produce more realistic models of interacting random structures.

A first mathematical model has been proposed by Ord (see the discussion in [24]). In
this model, the interaction relies on each cell of the Voronoi tessellation. In particular, a
hardcore interaction forces the cells not to be too small. This model can be viewed as a
nearest neighbour Gibbs point process and was studied in [2]. Its existence on the infinite
support R

d is implied by the results in [3] and [4]. A Birth-Death simulation algorithm
for simulating such nearest neighbour Gibbs processes is presented in [5]. However, tes-
sellations involving hardcore interactions do generally not belong to a classical theoretical
framework as the previous one. They are in general not hereditary in the sense that, when
removing a point from an allowed tessellation, the resulting tessellation may become for-
bidden (see Section 4, or [9], about this property). Consider for instance a generalization
of the Ord process where the cells are forced not to be too large : this natural model is
not hereditary. The existence of a Gibbs Delaunay-Voronoi tessellation on R

d associated
to a large class of possible non-hereditary interactions has been proved recently in [7] and
[8]. For these processes, no simulation algorithm has been presented so far.

From a statistical point of view, the issue is the estimation of the interaction. Assuming
a parametric form, this may be achieved through the maximum likelihood or the pseudo-
likelihood procedure. The maximum likelihood estimator suffers from a lack of theoretical
justifications, except for restrictive examples of interacting point processes (see [19] for a
review), which do not concern tessellations models. On the other hand, some theoretical
results are available for the pseudo-likelihood estimator. Consistency and asymptotic nor-
mality are proved in [6] in a general framework including some Gibbs tessellations models,
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but without any hardcore interaction. A generalization to interactions involving a possible
non-hereditary hardcore part is considered in [9]. In this article, the consistency of the
estimation of both the hardcore part and the smooth part of the interaction is proved, in
a setting concerning a large class of tessellations models.

In this article, we rewrite these theoretical results, sometimes established in an abstract
setting, to the present framework of Gibbs Delaunay-Voronoi tessellations. Moreover, some
theoretical complements are given. In particular, a Birth-Death-Move algorithm is pre-
sented to simulate Gibbs tessellations with non-hereditary interactions, and a convergence
result is proved. We also extend the recent concept of residuals introduced in [1] to the
non-hereditary setting. Nevertheless, the aim of this article is mainly to clarify how to
handle (non-hereditary) Gibbs Delaunay-Voronoi tessellations in practice : what kinds of
models are available? How to simulate these tessellations? How to fit them to a data set
and validate the fitted model?

In a first part, the formal definition of Gibbs Delaunay-Voronoi tessellations is given.
We restrict ourselves to tessellations on the plane R

2 for simplicity. Three example mod-
els are then considered : a non stationary crystallized triangulation model, a stationary
interacting Delaunay model and a Voronoi tessellation model. According to the biolog-
ical applications cited before, we think that these models could be relevant. Moreover,
they are used all along the article to illustrate the proposed methods. In Section 3, we
explain how to simulate (non-hereditary) Gibbs Delaunay-Voronoi tessellations thanks to
a Birth-Death-Move Metropolis-Hastings algorithm. Some simulations of the three above
examples are presented. In Section 4, we consider the estimation issue. As explained there,
the pseudo-likelihood approach is preferred to the maximum likelihood procedure for prac-
tical reasons. As a matter of fact, the maximum likelihood estimator is prohibitively time-
consuming in our setting. However, if possible, maximum likelihood could be used in a
second step to refine the pseudo-likelihood estimation. A procedure is presented to esti-
mate both the hardcore parameters and the interaction, as considered in [9]. Finally, the
concept of residuals as recently introduced in [1] is generalized, which gives a method to
validate the fitted model. In Appendix, we present some theoretical justifications. They
concern the existence of Delaunay-Voronoi tessellations, the convergence of the simulation
algorithm, and the consistency of the estimation procedure.

2 The Gibbs Delaunay-Voronoi tessellations model.

2.1 The Poisson Delaunay-Voronoi tessellations.

In paragraph 2.1.1, we recall the basic definition of point configurations. In 2.1.2, some
regularity assumptions are given to ensure that the Delaunay-Voronoi tessellations are
well-defined. Randomness is introduced in paragraph 2.1.3, via Poisson point processes, to
define the well-known Poisson Delaunay-Voronoi tessellations which are models of random
tessellations without interaction between the cells. The interaction is introduced in the
next section.

2.1.1 Point configurations.

Let us denote by R
2 the 2-dimensional Euclidean real space. B(R2) is the set of bounded

Borel sets in R
2. The state space M(R2) is the set of regular locally finite point configu-
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rations γ in R
2 defined by

M(R2) =







γ ⊂ R
2 such that

-a) for all Λ in B(R2), Card(γ ∩ Λ) < +∞
-b) four points of γ are not on a same circle
-c) for every half plane H in R

2, Card (γ ∩H) > 0







,

(1)
where Card(γ ∩∆) denotes the number of points from γ in the set ∆. Let γ be inM(R2)
and Λ a Borel set in R

2, we denote by γΛ the restriction of γ on Λ which is just the set
γ ∩Λ. For a point x in R

2, we denote by γ + x the configuration γ ∪ {x} and if x belongs
to γ, γ − x denotes the set γ\{x}.

2.1.2 Delaunay-Voronoi tessellations.

Let us recall the definition of Delaunay-Voronoi tessellations, which are given for example
in [17] page 15. For a point configuration γ in M(R2), a set of three points T = {x, y, z}
belonging to γ is a Delaunay triangle in γ if the open circumscribed ball B(T ) of T does
not contain any point of γ. The Delaunay tessellation Del(γ) is defined by the set of all
Delaunay triangles T in γ. By points b) and c) in (1), Del(γ) is a partition of the space
R

2.
Concerning the Voronoi tessellation coming from γ, for every x in γ, we define the

Voronoi cell C(x, γ) by

C(x, γ) =
{

z ∈ R
2 such that ∀y ∈ γ\{x} |z − x| ≤ |z − y|

}

.

From points a) and c) in (1), we remark that C(x, γ) is a bounded closed convex set in
R

2. The Voronoi tessellation Vor(γ) is defined by the set of all C(x, γ) for x in γ. Vor(γ)
is also a partition of the plane R

2.
There are some relations between these two tessellations. Indeed, T = {x, y, z} in γ is

a Delaunay triangle if and only if C(x, γ) ∩ C(y, γ) ∩ C(z, γ) 6= ∅.

2.1.3 Poisson Delaunay-Voronoi tessellations.

In this paragraph we define the Poisson Delaunay-Voronoi tessellations as in [17] or [26].
Let us recall that the space of point configurationsM(R2) is endowed with the σ-algebra
σ(M(R2)) generated by the sets {γ ∈ M(R2), γ(Λ) = n}, n ∈ N, Λ ∈ B(R2). The most
prominent probability measures onM(R2) are the Poisson processes. Let us denote them
by πν , where ν is a locally finite measure on R

2 and stands for the intensity measure (see
[17] page 83). When ν is equal to zλ (z > 0, λ the Lebesgue measure) we simply write
πz which represents the classical homogeneous Poisson Process with intensity z. Let us
remark that πν is not necessary stationary but obviously πz is.

For every Λ in B(R2), πν
Λ (respectively πz

Λ) denotes the Poisson process πν (respectively
πz) restricted on Λ.

The law of Del(γ) (respectively Vor(γ)) under the process πν is called the Poisson
Delaunay (respectively Voronoi) tessellation with intensity ν. These Poisson Delaunay-
Voronoi tessellations are well-studied in [17], Section 4.
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2.2 Random Delaunay-Voronoi tessellations with interaction.

This section is devoted to the presentation of interacting random Delaunay-Voronoi tes-
sellations. The interaction is introduced, via Gibbs modifications of the Poisson Delaunay-
Voronoi tessellations, by specifying the conditional densities. It is the classical strategy
used in physics and biology (see for example [25]).

For every Λ in B(R2), we consider the conditional density fΛ with respect to the
Poisson process πν

Λ defined by

fΛ(γΛ, γΛc) =
1

ZΛ(γΛc)
e−EΛ(γΛ,γΛc), (2)

where γΛ is a point configuration inside Λ, γΛc is a point configuration outside Λ and
EΛ(γΛ, γΛc) is the energy of γΛ given the outside configuration γΛc . EΛ is a functional from
Vor(γ) orDel(γ) to R∪{+∞}which we will precise later. ZΛ(γΛc) :=

∫

e−EΛ(γΛ,γΛc)πν
Λ(dγΛ)

is the normalization constant in order to have a probability density under πν
Λ.

Let us remark that the conditional densities favor the point configurations with low
energy and conversely penalize the point configurations with high energy. If the energy
EΛ(γΛ, γΛc) is equal to infinity then, with probability one, the configuration is even forbid-
den and does not appear. We denote byM∞(R2) the set of allowed configurations which
is defined by

M∞(R2) =
{

γ ∈M(R2) such that for all Λ in B(R2), EΛ(γΛ, γΛc) < +∞
}

. (3)

Now let us define the model of random Delaunay-Voronoi tessellations with interaction.

Definition 1. A probability measure P on M∞(R2) is a Gibbs Delaunay-Voronoi tessel-
lation for the energies (EΛ)Λ∈B(R2) and the intensity ν if for every Λ in B(R2) and for
P -almost every outside configuration γΛc, the law of P given γΛc is absolutely continuous
with respect to πν with the density fΛ(., γΛc).

This definition of Gibbs measures is the classical one that can be found for example
in [22].
Let us point out several problems about the existence of these Gibbs Delaunay-Voronoi
tessellations. First of all there are some conditions on the energies (EΛ)Λ∈B(R2) to ensure
that the conditional densities (fΛ)Λ∈B(R2) are well-defined and compatible. Moreover, even
if it is the case, it is not obvious that Gibbs Delaunay-Voronoi tessellations exist and
are unique (the non unicity of Gibbs processes is called phase transition in statistical
mechanics). In Section 5.1, we give some conditions to ensure the existence of Gibbs
Delaunay-Voronoi tessellations for energy functions given by (4) and (5) below.

Since we are interesting by models of random Delaunay-Voronoi tessellations, the en-
ergy functions have to depend on the local geometry of the Delaunay or Voronoi tessel-
lations. We need some notations. Let us first define the neigbour relations ∼Del, ∼Vor

between the cells in Del(γ) or Vor(γ).

For all T, T ′ ∈ Del(γ), T ∼Del T
′ if Card(T ∩ T ′) ≥ 2.

For all C,C ′ ∈ Vor(γ), C ∼Vor C
′ if C ∩ C ′ 6= ∅.

In fact, T ∼Del T
′ if T and T ′ have a common edge and C ∼Vor C

′ if C and C ′ have a
common edge at their boundary.
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Now let us define the cells in Del(γ) or Vor(γ) which are inside or outside a given
bounded set Λ in B(R2). A triangle T ∈ Del(γ) (respectively a cell C ∈ Vor(γ)) is outside
Λ if for every configuration γ′Λ in Λ then T (respectively C) is in Del(γΛc ∪ γ′Λ) (respec-
tively Vor(γΛc ∪ γ′Λ)). In other words, T (or C) is outside Λ if T (or C) remains in Del(γ)
(or Vor(γ)) for any modification of the configuration γ inside Λ. T (or C) is inside Λ if
it is not outside Λ. We denote by DelΛ(γ) (respectively VorΛ(γ)) the cells T in Del(γ)
(respectively C in Vor(γ)) which are inside Λ.

a) A general form for the energy of a Delaunay tessellation
We define the energy EΛ of the Delaunay tessellation by

EΛ(γΛ, γΛc) =
∑

T∈DelΛ(γ)

V1(T ) +
∑

{T,T ′}⊂Del(γ)
T∼DelT

′

T or T ′ in DelΛ(γ)

V2(T, T
′) (4)

where V1 is a function from the space of triangles T to R∪{+∞} and V2 is a symetric func-
tion from T 2 to R∪{+∞}. In Section 2.3, we give precise examples of functions V1 and V2.

b) A general form for the energy of a Voronoi tessellation
Similarly, we define the energy EΛ of the Voronoi tessellation by

EΛ(γΛ, γΛc) =
∑

C∈VorΛ(γ)

V1(C) +
∑

{C,C′}⊂Vor(γ)
C∼VorC′

C or C′ in VorΛ(γ)

V2(C,C
′) (5)

where V1 is a function from the space of bounded convex sets C to R ∪ {+∞} and V2 is a
symmetric function from C2 to R ∪ {+∞}. In Section 2.3, a precise example of functions
V1 and V2 is provided.

2.3 Three explicit reference models

We present in this section three explicit examples of Gibbs Delaunay-Voronoi models,
that will be our reference models until the end of the paper. All the functions V1 and V2

given in this section satisfy the assumptions in Section 5.1 and so the associated Gibbs
Delaunay-Voronoi tessellations exist.

Model 1: a non stationary crystallized triangulations model.
In this model, we propose in defining a non stationary random triangulation in which the
angles of triangles are forced to be larger than a fixed real α in [0, π

3 [. If α is chosen close
to π

3 , the model produces rigid random triangulations. Moreover, it is possible to have a
non homogeneous density of points.
We assume that the intensity measure ν is absolutely continuous with respect to the
Lebesgue measure λ and the energy EΛ is defined by (4) with

V1(T ) =

{

+∞ if α(T ) ≤ α
0 otherwise

and V2 = 0,

where α(T ) is the minimal angle inside T . In fact, the energy EΛ is equal to plus infinity
if there exists a triangle inside Λ which is too flat.
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Model 2: a stationary interacting Delaunay model.
In this model, we propose in studying an example of stationary Delaunay triangulation

with interaction. It is a simple model in order to present different practical and theoretical
aspects in this work (modeling, simulation, estimation). This model has not the ambition
to be directly usable in physics or biology.

First of all, we fix the intensity measure ν to be equal to zλ. Via a hardcore interaction,
we force the edges not to be too small, the triangles not to be too large and via a smooth
interaction the large perimeters of triangles are favored or penalized (depending on the
sign of θ). More precisely, let 0 < ε < α and θ be in R, the energy EΛ is defined by (4)
with

V1(T ) =







+∞ if l(T ) ≤ ε
+∞ if R(T ) ≥ α

θPer(T ) otherwise
and V2 = 0,

where l(T ) is the minimal length of sides of T , R(T ) is the radius of the circumscribed
ball of T and Per(T ) is the perimeter of T .

Model 3: a Voronoi tessellation model.
In this third example, the interaction is defined as far as possible to fit with the bio-

logical applications evoked in the introduction (geometric regularities of cells, interaction
between cells), although other interactions could be chosen. We suppose that the model is
stationary so we fix the intensity ν to be equal to zλ. The geometry of cells is controlled
by a hardcore interaction V1 which forces the cells not to be too small, too large or too
flat. Moreover, we add a smooth interaction involving a competition between the volumes
of neighbors cells.
Let 0 < ε < α, B > 1/2

√
3 and θ be in R. The energy EΛ is defined by (5) with

V1 : C 7→ V1(C) =















+∞ if hmin(C) ≤ ε
+∞ if hmax(C) ≥ α
+∞ if h2

max(C) ≥ BVol(C)
0 otherwise

and

V2 : (C,C ′) 7→ V2(C,C
′) = θ

(

max(Vol(C),Vol(C ′))

min(Vol(C),Vol(C ′))
− 1

)
1

2

,

where hmin(C) is the minimal distance between the center x of the cell C and the edges
of the boundary of C. Similarly, hmax(C) is the maximal distance between x and the
boundary of C (see Figure 1).

The choice of the power 1
2 is arbitrary and may be changed. Nevertheless, it seems

to lead to more realistic simulations. The parameter B controls the form of the cell: the
smaller B, the more regular the cell. For instance, for a hexagonal cell, B = 1/2

√
3 ≈ 0.29.

Let us remark that if θ is positive the interaction V2 forces the neighbor cells to have the
same volume. Conversely, if θ is negative it forces the neighbour cells to have different
volumes. The sign of θ is crucial in this model.
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x

hmin

hmax

C

Figure 1: Example of Voronoi cell C with center x and distances hmin, hmax.

3 Simulations

3.1 Gibbs tessellations on a finite window

In this section, we deal with the simulation of our models. First of all, let us remark that
Gibbs Delaunay-Voronoi tessellations are processes on R

2 and so one has to restrict or
approximate them inside a fixed window Λ. The most natural choice would be to simulate
the restriction on Λ but it is very difficult and almost impossible to do it. Therefore the
common way is to consider the finite volume Gibbs approximations on Λ which is the
probability measure absolutely continuous with respect to the Poisson process πν

Λ with
the density fΛ given in (2). The outside point configuration γΛc is then fixed and chosen
arbitrarily. Results in statistical mechanics show, in general, that the thermodynamic
limits of these finite volume Gibbs measures, when the volume Λ goes to R

2, are Gibbs
measures (see [22]). Therefore, finite volume Gibbs measures are good approximations of
our models.

There are essentially three possibilities to fix the outside configurations. The first one
is to consider the empty outside configuration but it is not usable in our context because
it produces non bounded Delaunay-Voronoi cells and so non computable energies. The
second one is to fix an outside point configuration which has to be specified explicitly.
Again, it is not really usable because the strong hardcore interaction, which appears in
our three reference models, implies many difficulties to choose it correctly. The third one
is the periodic outside configuration which is built by periodization in the full plane R

2 of
the random configuration inside Λ. We choose this one because it seems relevant to deal
with the hardcore problems coming from the boundary effects. So let us give the precise
construction of the periodic finite volume Gibbs measure.

The simulation window Λ is chosen as the square [0, 1]2. Any other window in R
2 can

be considered in the same way. A simple rescaling procedure enables to come down to it.
For every point configuration γ in [0, 1]2, we denote by γ̄ the periodic configuration on R

2

defined by

γ̄ =
⋃

i∈Z2

τi(γ), (6)

where τi is the translation in R
2 with respect to the vector i.
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In the sums over the cells in (4) or (5), we must ensure that each collection of periodic
cells has a unique contribution in the computation of the periodic energies. A classical
way consists in selecting only the cells whom barycenters are in [0, 1]2. Therefore, for any
Voronoi cells C (respectively Delaunay triangle T ), we denote by < C > (respectively
< T >) the barycenter of the cell C (respectively triangle T ). Similarly, for any couple of
Voronoi cells (C,C ′) (respectively triangles (T, T ′)) we denote by < C,C ′ > (respectively
< T, T ′ >) the barycenter of the set C ∪ C ′ (respectively T ∪ T ′) .

The periodic energy Ē(γ) associated to the energy of a Delaunay tessellation (4) is
defined by

Ē(γ) =
∑

T∈Del(γ̄)
<T>∈[0,1]2

V1(T ) +
∑

{T,T ′}⊂Del(γ̄)
C∼DelC

′

<T,T ′>∈[0,1]2

V2(T, T
′). (7)

Similarly the periodic energy Ē(γ) associated to the energy of a Voronoi tessellation
(5) is defined by

Ē(γ) =
∑

C∈Vor(γ̄)
<C>∈[0,1]2

V1(C) +
∑

{C,C′}⊂Vor(γ̄)
C∼VorC′

<C,C′>∈[0,1]2

V2(C,C
′). (8)

Now let us define the Gibbs process on [0, 1]2 with periodic outside configuration.

Definition 2. The periodic Gibbs Delaunay-Voronoi tessellation P̄ is the point process
on [0, 1]2 which is absolutely continuous with respect to the the Poisson point process on
[0, 1]2 (denoted by πν

0), where the density f̄ is defined, for every γ in [0, 1]2, by

f̄(γ) =
1

Z̄
e−Ē(γ) and Z̄ =

∫

e−Ē(γ′)πν
0 (dγ′).

3.2 Algorithm of simulation

As explained above, to deal with the boundary effects, we choose to simulate periodic
tessellations. For sake of brevity, we confuse γ̄ and γ in this section, similarly we will use
f instead of f̄ . The window of simulation is Λ = [0, 1]2 and we omit the indexation by Λ
in the sequel. Moreover, the notationM∞(R2) is abusively extended in this section to the
periodic tessellations with finite energies.

There exist different algorithms to simulate finite volume Gibbs processes. Some perfect
simulation algorithms have been developped (see [12], [23]) but they seem not to be really
implementable in our context due to the strong rigidity of our hardcore models. So we
make the choice to simulate them via the classical Birth-Death-Move Metropolis-Hastings
algorithm, which we recall below (see also [19]).

For x ∈ [0, 1]2, N (x, σ2) denotes the Gaussian distribution on R
2 centered at x with

covariance matrix diag(σ2, σ2), where σ > 0. This law is the proposal density for moving
a point. Note that if the moved point falls outside [0, 1]2 (in step 5. below), it is replaced
inside [0, 1]2 by the periodic property. We assume that the intensity measure ν is absolutely
continuous with respect to the Lebesgue measure, and we denote by g its density. In
particular, in the stationary case, i.e. when ν = zλ with z > 0, then g is identically equal
to z.
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1. For γ0 ∈M∞(R2), let n = card(γ0).

2. Draw independently a and b uniformly on [0, 1].

3. If a < 1/3 then generate x uniformly on [0, 1]2 and set

γ1 =

{

γ0 + x if b < f(γ0+x)g(x)
(n+1)f(γ0) ,

γ0 otherwise.

4. If a > 2/3 then generate x uniformly on γ0 and set

γ1 =

{

γ0 − x if b < nf(γ0−x)
f(γ0)g(x) ,

γ0 otherwise.

5. If 1/3 < a < 2/3 then generate x uniformly on γ0, generate y ∼ N (x, σ2) and set

γ1 =

{

γ0 − x+ y if b < f(γ0−x+y)
f(γ0) ,

γ0 otherwise.

6. Iterate from 1. where γ0 ← γ1.

This algorithm can be refined: The probability of move, birth or death proposals may
differ and may depend on x, similarly the law for choosing a point before killing it, adding
it or moving it may be chosen properly (e.g. according to the intensity law ν). The idea of
this procedure is that, starting from an allowed configuration γ0, the iterations converge
to the realization of an invariant measure which is the Gibbs process we want to simu-
late. For classical Gibbs point processes, this convergence is proved for example in [19]
page 126. In our setting, the convergence is not obvious. It mainly relies on the following
connectivity property: from any allowed configuration γ, it is possible to reach another
allowed configuration γ′ thanks to an iterative birth-death-move procedure as above. Since
a hardcore Gibbs tessellation may be very rigid, this property does not always hold (con-
sider for instance the Delaunay tessellations where all the triangles are imposed to be
almost equilateral). Yet, in most situations, the connectivity exists. Let us note that the
moving step is crucial here, because it allows the connectivity of rigid tessellations that a
simple birth-death procedure would not.

We show in the appendix that, under some assumptions, the algorithm converges.
These assumptions are fulfilled for Model 2 when 2ε < α < 1

2 . For the Voronoi tessella-
tion presented in Model 3, we claim that the convergence holds for a large reasonable set
of parameters (ǫ, α, θ). However the theoretical justifications become tedious in this case,
so we decided to omit them in this article for sake of brevity.

3.3 Practical implementation

In the above algorithm, the choice of the initial configuration is crucial. We must start
from an allowed configuration γ0 in [0, 1]2, i.e. γ̄0 ∈ M∞(R2). For this reason, we cannot
start from the empty configuration. In our simulations, we chose to start from the point
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configuration whom Delaunay tessellation is a regular lattice of triangles (see its plot on
top left of Figure 2). This starting configuration is allowed by all our hardcore models,
provided the distance between each point is properly chosen.

The computation of the ratio in steps 3.-5. of the algorithm is time-consuming since
it supposes the computation of two tessellations plus a calculus on their cells to obtain
their respective density. But it is possible to simplify this computation by focusing on a
smaller window. Indeed, consider for instance step 3, i.e. the birth case (the same approach
remains true for the death or the move step). When one adds a point x in a configuration,
the new tessellation differs from the previous one only in a neighbourhood of x. Thus, the
ratio of the densities reduces to a difference of energies in this neighborhood. The size of
this neighborhood is determined by the size of cells around x. For instance in Model 2,
the diameter of cells is forced to be smaller than 2α, so it suffices to focus on a ball with
radius 2α around x to compute the difference of energies.

When there is a hardcore interaction, the convergence of the algorithm may be slow.
Indeed, when one adds a point, the new tessellation can be forbidden. Hence, in presence
of a strong hardcore interaction, most of the new tessellations proposed by the birth or
death step in the algorithm will be refused. For this reason, we check the progress of
the algorithm by monitoring control. Every one thousand iterations, we point up the total
number of points in the configuration as well as the number of accepted birth steps (among
one thousand steps), the number of accepted death steps and the number of accepted move
steps. The plot of theses numbers all along the iterative algorithm helps us to check the
stabilization of the iterative process (though this is not a proof of the convergence to the
invariant measure).

3.4 Some examples

We present some simulations of the models introduced in Section 2.3. We use the Birth-
Death-Move algorithm presented before with σ = 0.015.

Figure 2 shows a simulated tessellation from Model 1 where α = π/6. Let us denote
by g the density of the inhomogeneous intensity measure ν. It is 1-periodic with respect
to each component, i.e. for all (x, y) ∈ R

2, g(x+ 1, y) = g(x, y) and g(x, y + 1) = g(x, y),
and for (x, y) ∈ [0, 1]2, we assume

g(x, y) = 100[(x − 0.5)2 + (y − 0, 5)2]−0.75.

The triangles of such a tessellation are forced not to be too flat and to be more dense
around the point (0.5, 0.5). The monitoring control seems to justify the convergence of the
algorithm after 5.105 iterations.

In Figure 3, two tessellations from Model 2 have been simulated with α = 0.08, z =
1000, and θ = ±5. We did not introduce in these simulations the hardcore parameter
ǫ. This parameter is necessary from a theoretical point of view, but in practice, we can
assume that ǫ has been chosen so small that it has no influence. When θ > 0 (on bottom),
the tessellation is more likely to exhibit a small number of vertices since the total sum
of perimeters is then low, which minimizes the energy. For θ < 0 (on top), this is the
contrary: the energy is minimal when the total sum of perimeters is high, inducing a lot
of vertices in the tessellation. In these two cases, the size of the triangles is controlled by
the hardcore parameter α, which might be unnecessary when θ < 0 but is certainly a big
constraint when θ > 0.
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Figure 2: Simulation of Model 1 with α = π/6 and g(x, y) = 100[(x − 0.5)2 + (y − 0.5)2]−0.75

(5.105 iterations). Top left: initial point configuration; Top right: monitoring control (from top to

bottom: number of moved points, number of birth points, number of killed points and total number

of points, pointed out every 1000 iterations); Bottom: final simulated tessellation.
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Model 3, involving Voronoi tessellation, has been simulated for α = 0.05, B = 0.625,
z = 100, and θ = −0.8, −0.5, 0.5, 0.8. The hardcore parameters α and B force the cell
not to be too large or too flat. We did not impose a minimal length of sides through
the hardcore parameter ǫ. The parameter θ quantifies the dependence between the size of
neighbour cells: when θ < 0 they are most likely to have different sizes, whereas for θ > 0
they tend to exhibit the same volume. These two opposite behaviors are clearly observable
in the two extreme cases θ = −0.8 and θ = 0.8 in Figure 4. When |θ| = 0.5, this difference is
more difficult to distinguish. A challenging task will be to properly estimate the parameters
α, B, z, and θ in both the apparently closed situation θ = −0.5 and θ = 0.5. This problem
is addressed in the next section.

In Figure 5, one can check the convergence of the algorithm for the four above simula-
tions. Note that in the very rigid case θ = 0.8, the iteration process needs a lot of time (tens
of thousands iterations) before starting a birth-death step. This shows the importance of
the moving step.

More simulations of Model 3 are presented in Figure 6 with their monitoring control
in Figure 7. They show the impact of B on the geometry of the cells. It plays a bigger role
when θ < 0, since in this case we note the cells may be very flat without this hardcore
parameter (B = +∞). Let us remark that some clusters of small cells appear when θ < 0.
This is more visible when B is not too constraining.
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θ = −5

θ = 5

Figure 3: Simulation of Model 2 with α = 0.08, z = 1000 and θ = −5 (top), θ = 5 (bottom) after

2.105 iterations. Top left: final simulated tessellation when θ = −5; Top right: monitoring control

when θ = −5 (with the same plots as for Figure 2); Bottom left: final simulated tessellation when

θ = 5; Bottom right: monitoring control when θ = 5 (with the same plots as before).
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θ = −0.8 θ = −0.5

θ = 0.5 θ = 0.8

Figure 4: Simulation of Model 3 with α = 0.05, B = 0.625, z = 100 and θ = −0.8 (top left),

θ = −0.5 (top right), θ = 0.5 (bottom left) and θ = 0.8 (bottom right). These are the final

simulated tessellations after 2.105 iterations when |θ| = 0.5 and 5.105 iterations when |θ| = 0.8

(see the monitoring control in Figure 5).
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Figure 5: Monitoring control for the simulations of Model 3 presented in Figure 4, in the same

order (from top left to bottom right : θ = −0.8, −0.5, 0.5, 0.8). They consist in the same plots as

for Figure 2.
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B = +∞, θ = −0.5 B = 1, θ = −0.5

B = +∞, θ = 0.5 B = 1, θ = 0.5

Figure 6: Simulation of Model 3 with α = 0.05, z = 100, B = +∞ (left), B = 1 (right), θ = −0.5

(top), θ = 0.5 (bottom). These are the final simulated tessellations after 1.5.105 iterations (see the

monitoring control in Figure 7).
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Figure 7: Monitoring control for the simulations of Model 3 presented in Figure 6, in the same

order (B = +∞ (left), B = 1 (right), θ = −0.5 (top), θ = 0.5 (bottom)). They consist in the same

plots as for Figure 2.
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4 Estimation

In this section, we focus on stationary Gibbs tessellations, i.e. we suppose that the under-
lying Poisson process is πz, the homogeneous Poisson process with intensity zλ where λ is
the Lebesgue measure. This is the case of Model 2 and 3 presented before. We may apply
in particular our estimation procedure to parameters z, ǫ, α, B and θ involved in these
models. An interesting generalization would be to include the estimation of an inhomoge-
neous intensity (as in Model 1) to the estimation of the parameters of the interaction. We
do not deal with this task in this paper.

Let us precise some notations. We assume that we observe a tessellation coming from
a point configuration γ on a window Λn = [−n, n]2. This tessellation is defined through an

energy function EΛ(γΛ, γΛc) as in (4) or (5). In the following, we denote it by Eβ,θ
Λ (γΛ, γΛc),

since we assume a parametric form. We actually suppose that it depends on parameters
(β, θ): β is the hardcore parameter (parameterizing the finiteness of the energy function),
while θ is the smooth interaction parameter. For instance, in Model 2: β = (ǫ, α), θ = θ;
in Model 3: β = (ǫ, α,B), θ = θ. This distinction is presented clearly in Section 5.3, where
some theoretical results for the asymptotic consistency of our estimators are given.

We consider a classical two-step estimation procedure. We first estimate β, then we
estimate θ and z by pseudo-likelihood where β is replaced by its estimator.

The choice of the pseudo-likelihood approach instead of the classical maximum likeli-
hood estimator is mainly imposed by practical reasons. Indeed, maximum likelihood re-
quires the estimation, by simulations, of an unknown normalizing constant. This approach
demands to simulate several tessellations according to the model, which is extremely time-
consuming in the situation when a hardcore interaction is involved (see previous section).
Moreover, the pseudo-likelihood procedure has the advantage of being asymptotically con-
sistent for a large class of models (see [9]), which is not the case for the maximum likelihood
estimator. However, when the hardcore interaction is not too strong, the maximum like-
lihood estimation may constitute a second step to refine a pseudo-likelihood approach.

There is a major difficulty to face with to implement the pseudo-likelihood estimation
in our case: the hardcore interactions are not necessarily hereditary. An interaction is
hereditary if, for every forbidden point pattern γ, then, for every point x, the configuration
γ + x remains forbidden. This is equivalent to: for every allowed point configuration γ,
then for every point x ∈ γ, the configuration γ − x remains allowed. In other words, an
interaction is hereditary if one can remove any point from γ. This property concerns only
the hardcore interaction. So every interaction involving no hardcore part is necessarily
hereditary. The models presented in Section 2.3 are not hereditary. Indeed, if one removes
a point from an allowed tessellation, the new tessellation may contain too large cells (for
instance). As a consequence, we must modify the classical pseudo-likelihood contrast to
take into account the so-called removable points as introduced in [9] (see Definition 3).

4.1 The two-step procedure

The first step consists in estimating the hardcore parameter β. Let us first assume that β
is a one-dimensional parameter. We suppose the following inclusion

if β < β′ then ∀Λ, Eβ,θ
Λ (γΛ, γΛc) = +∞⇒ Eβ′,θ

Λ (γΛ, γΛc) = +∞. (9)
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In this case, a consistent estimator of β is

β̂ = inf{β > 0, Eβ,θ
Λn

(γΛn , γΛc
n
) < +∞}. (10)

If instead of (9), the converse implication holds, then it suffices to replace the infimum by
a supremum in (10).

In the case of a multi-dimensional hardcore parameter β, we estimate each of its
components as above.

For instance, for Models 2 and 3 presented in Section 2.3, Property (9) is satisfied
by the hardcore parameters α and B, while the converse holds for ǫ. As a consequence,
following (10), natural estimators for these examples are (the notations are the same as
in 2.3):

• For Model 2 :

ǫ̂ = min{l(T ), T ∈ DelΛn(γ)},
α̂ = max{R(T ), T ∈ DelΛn(γ)}.

• For Model 3 :

ǫ̂ = min{hmin(C), C ∈ VorΛn(γ)},
α̂ = max{hmax(C), C ∈ VorΛn(γ)},
B̂ = max{h2

max(C)/Vol(C), C ∈ VorΛn(γ)}.

The second step consists in estimating the smooth interaction parameter θ and the
intensity parameter z. We use the pseudo-likelihood procedure for the reasons explained
before. To deal with the non-hereditary problem, we must introduce the concept of re-
movable points.

Definition 3. Let γ be in M(R2) and x be a point of γ, then x is removable from γ if
there exists Λ ∈ B(R2) such that x ∈ Λ and

Eβ,θ
Λ (γΛ − x, γΛc) < +∞. (11)

The following proposition, proved in [9], gives a more intuitive approach and justifies
the name of removable points.

Proposition 1. Let γ be in M∞(R2) and x be a point of γ, then x is removable from γ
if and only if γ − x is in M∞(R2).

From the definition, it is clear that the property of being a removable point from γ
depends only on the hardcore parameter β and not on θ or z. Thus, we denote by Rβ(γ)
the set of removable points in γ.

The more rigid the tessellation, the less removable points there are. In particular, if
there is no hardcore part in the interaction function, every point of γ is removable. In
Figure 8, the removable points of previous simulations are encircled.

We are now in position to introduce the pseudo-likelihood contrast function, adapted
to the non-hereditary case:
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Figure 8: Removable points (encircled) from: The Delaunay tessellation simulated in Figure 3

where θ = 5 (left); The Voronoi tessellation simulated in Figure 4 where θ = −0.5 (right).

PLLΛn(γ, z, β, θ) =

∫

Λn

z exp
(

−hβ,θ(x, γ)
)

dx+
∑

x∈Rβ(γ)∩Λn

(

hβ,θ(x, γ − x)− ln(z)
)

,

where hβ,θ(x, γ − x) is the local energy of x in γ, defined for every x ∈ Rβ(γ) by

hβ,θ(x, γ − x) = Eβ,θ
Λ (γΛ, γΛc)− Eβ,θ

Λ (γΛ − x, γΛc), (12)

where Λ is a set containing x as in Definition 3. Let us point out that hβ,θ(x, γ) is just
equal to hβ,θ(x, (γ + x)− x) and is always well-defined for γ in M∞(R2).

The parameters θ and z are estimated by minimizing PLLΛn , where the hardcore
parameter β is replaced by its estimator β̂ obtained in the first step:

(ẑ, θ̂) = argminz,θPLLΛn(γ, z, β̂, θ). (13)

The consistency of this estimation procedure is considered in Section 5.3.

4.2 Practical implementation

The optimization of PLLΛn requires the calculus of the local energy hβ,θ(x, γ) for any
x ∈ Λn. This is the same calculus as the one needed in step 3 of the algorithm presented in
Section 3.2 and, as explained there, it can be achieved by focusing on a window around x.
Moreover, this computation requires the knowledge of γΛc , the configuration outside this
window. To prevent boundary problems, it is actually necessary to compute PLL on a
sub-window of the initial observation window Λn. We denote abusively Λn this sub-window
in the following.
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The derivative of PLLΛn with respect to z yields the following estimator for z:

ẑ =

∫

Λn
exp

(

−hβ̂,θ(x, γ)
)

dx

card(Rβ̂(γ) ∩ Λn)
, (14)

where card(Rβ̂(γ)∩Λn) is the number of removable points from the observed point pattern
γ in Λn.

In the simple case where θ is a one-dimensional parameter and hβ,θ(x, γ) is a sufficiently
regular function, the minimization of PLLΛn in θ can be reduced to a zero approximation.
Indeed, from the derivative of PLLΛn with respect to θ, we obtain in this case that θ̂ is
the solution of

z

∫

Λ′
n

∂hβ̂,θ

∂θ
(x, γ) exp

(

−hβ̂,θ(x, γ)
)

dx =
∑

x∈Rβ̂(γ)∩Λn

∂hβ̂,θ

∂θ
(x, γ − x), (15)

where Λ′
n = {x ∈ Λn, γ + x ∈M∞(R2)}.

Moreover, when hβ,θ(x, γ) depends linearly on θ (as in Models 2 and 3), for all x such
that γ + x ∈M∞(R2),

∂hβ̂,θ

∂θ
(x, γ) = θhβ̂,1(x, γ),

which simplifies equation (15) above.
From a practical point of view, we first estimate θ thanks to (15), where z is replaced

by ẑ given by (14). Then we deduce ẑ by plugging θ̂ into (14). In both these estimations,
the involved integrals are approximated by Monte Carlo (this is the most time-consuming
step of the estimation procedure).

4.3 Some examples

4.3.1 For Model 2

We implement the estimation procedure on simulations of Model 2. We do not introduce
the hardcore parameter ǫ here. The estimation of α, θ and z has been done from 200
replications of Model 2 when α = 0.08, z = 1000 and θ = ±5, simulated as in Section
3.2. The results are shown in Figure 9 and 10. We have distinguished two cases: first
estimating θ by supposing z = 1000 known, then estimating both θ and z. In this last
case, one can note in the bottom left plot of these figures the closed relation between ẑ
and θ̂. Although the models that we consider are well identifiable, it is not surprising to
observe this closed relation: it is implied by the Euler’s formula, which connects linearly the
number of cells and the number of vertices in a tessellation (see 3.2.11 in [17]). Therefore,
if z is under-estimated, θ will tend to be under-estimated as well, in order to respect this
linear relation.

When θ = −5 (Figure 9), the simulated tessellations rely on about 1500 points and
all of them are removable. The estimation of α when θ = −5 actually shows that this
hardcore parameter is useless in this case: the cells of the tessellation naturally satisfy the
hardcore condition. It is interesting to note that this misspecification does not affect the
estimation of the smooth interaction parameter θ. The average of θ̂ is about −5, while its
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Example of tessellation α̂ θ̂ when z is known

θ̂ when z is estimated ẑ Joint repartition of (θ̂, ẑ)

Figure 9: Estimation of Model 2 when α = 0.08, θ = −5, z = 1000, from 200 replications.

Example of tessellation α̂ θ̂ when z is known

θ̂ when z is estimated ẑ Joint repartition of (θ̂, ẑ)

Figure 10: Estimation of Model 2 when α = 0.08, θ = 5, z = 1000, from 200 replications.
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standard deviation is 0.4 when z is known and 1.6 when z is estimated. The average of ẑ
is 1002 and its standard deviation 145.

When θ = 5 (Figure 10), the hardcore plays an important role in the model. It is well
estimated with a standard deviation of 3.10−2. The standard deviation of θ̂ is 0.3 when z
is known and 1.9 when z is estimated. The average of ẑ is 1049 and its standard deviation
313. These estimations seem less accurate than when θ = −5. This certainly comes from
the fact that, when θ = 5, our simulated tessellations on [0, 1] × [0, 1] rely only on 500
points. Most of these points are removable (more than 90%), as showed in the left example
of Figure 8.

4.3.2 For Model 3

Two hundred replications of Model 3 where α = 0.05, B = 0.625, z = 100 and θ = ±0.5
have been simulated according to the algorithm presented in Section 3.2 (see Figure 4
for an example). As above, the hardcore parameter ǫ was introduced here. The results of
the estimations are shown in Figure 11 when θ = −0.5 and in Figure 12 when θ = 0.5.
Two situations are considered, assuming z = 100 is known or not. The particularity
of these simulated Voronoi tessellations is their rigidity. The hardcore interactions are
strong, forcing the cells not to be too large (through α) neither too flat (through B).
This is confirmed by the accuracy of their estimation in both cases θ = ±0.5 (see the
histograms in Figures 11 and 12). But, as a consequence, there are only a few removable
points, making the estimation of the smooth interaction parameters more difficult. Yet, it
appears from these simulations that, in spite of the apparent similarity of the tessellations
when θ = −0.5 and θ = 0.5 (see Figure 4) and in spite of the few number of removable
points, the estimation procedure is mostly available to properly distinguish them.

When θ = −0.5 (Figure 11), there are in average 45 removable points on 265 points.
The estimation of θ remains correct: the average and the standard deviation of θ̂ are
respectively −0.52 and 6.4 10−2 when z is known, and −0.56 and 14.5 10−2 when z is
estimated. The average of ẑ is 94 while its standard deviation is 45.

When θ = 0.5 (Figure 12), there are only 3.5 removable points in average on about 215
points. In this latest extreme case, some estimations of θ and z were even impossible since
there were no removable points at all (in 5 percent of the simulations). This shows the limit
of the estimation procedure in presence of a very rigid tessellation. The average of θ̂ is 0.55
and its standard deviation is 22.8 10−2 when z is estimated. This is surprisingly reasonable
in view of the few numbers of removable points. When both z and θ are estimated, the
results become bad: the average of θ̂ is 0.53 with a standard deviation of 48 10−2 and the
average of ẑ is 189 with a standard deviation of 345. Their joint distribution is plotted
on bottom left of Figure 12. A zoom in is plotted on bottom middle, where more than
90% of the points are remaining. The last plot on bottom right shows the repartition of θ̂
according to the number of removable points in the tessellation, when z = 100 is assumed
to be known. There is a clear bias when the number of removable points is low. Since
z = 100 is fixed, this low number of removable points is associated with a strong rigidity,
so θ is most likely to be high. Moreover, the standard deviation of θ̂ seems to decrease with
the number of removable points. This is confirmed by Table 1 which contains, for a fixed

number of removable points card(Rβ̂(γ)), the number of tessellations from our simulations
having this number of removable points (named replications) and the standard deviation
of θ̂n calculated from these tessellations (denoted sd(θ̂)).
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α̂ B̂ θ̂ when z is known

θ̂ when z is estimated ẑ Joint repartition of (θ̂, ẑ)

Figure 11: Estimation of Model 3 when α = 0.05, B = 0.625, θ = −0.5, z = 100, from 200

replications.

card(Rβ̂(γ)) 1 2 3 4 5 6 7 8 9 10

sd(θ̂) (×10−2) 27.6 14.9 18.4 15.1 9.6 10.3 8.8 12.3 5.2 1.7

replications 23 37 37 41 27 14 8 2 2 2

Table 1: Standard deviation of θ̂ according to the number of removable points, from replications

of Model 3 with θ = 0.5.

4.4 Analysis of residuals

When fitting a model to a data set, the analysis of the residuals is a standard way to check
the quality of the model. The concept of residuals for spatial point processes is not simple.
A general definition is proposed in [1], where the authors also present several diagnostic
tools based on residuals. The definition relies on the Campbell equilibrium equation due
to Nguyen and Zessin (see [20]), where the Papangelou conditional intensity is involved.
In our context, the Papangelou conditional intensity does not always exist, because the
hardcore interactions are not necessarily hereditary (see Remark 2 in [9]). Yet, a Campbell
equilibrium equation still holds, provided we restrict the support to the set of removable
points.

Proposition 2. Let P be a Gibbs Delaunay-Voronoi tessellation as defined in Definition
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Example of tessellation α̂ B̂

θ̂ when z is known θ̂ when z is estimated ẑ

Joint repartition of (θ̂, ẑ) (θ̂, ẑ) zoomed in
`

card(Rβ̂(γ)), θ̂
´

, z known

Figure 12: Estimation of Model 3 when α = 0.05, B = 0.625, θ = 0.5, z = 100, from 200

replications. On top left: A typical tessellation which is estimated. Bottom right: Repartition of θ̂

according to the number of removable points observed in the tessellation (see also Table 1).
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1. For every bounded non negative measurable function ψ from R
2×M(R2) to R, we have

EP





∑

x∈Rβ(γ)

ψ(x, γ − x)



 = EP

(∫

R2

ψ(x, γ)e−hβ,θ(x,γ)ν(dx)

)

,

where hβ,θ is defined in (12) and EP denotes the expectation under P .

This proposition is proved in [9]. From this equation, following [1], we can define the
innovation process, for any bounded set ∆ in R

2 and for every function ψ as above:

I
(

∆, ψ, hβ,θ, ν
)

=
∑

x∈Rβ(γ)∩∆

ψ(x, γ − x)−
∫

B

ψ(x, γ)e−hβ,θ(x,γ)ν(dx).

The residuals are then defined as an estimation of the innovations:

R
(

∆, ψ, hβ̂,θ̂, ν̂
)

=
∑

x∈Rβ̂(γ)∩∆

ψ(x, γ − x)−
∫

B

ψ(x, γ)e−hβ̂,θ̂(x,γ)ν̂(dx),

where ν̂ is an estimation of the intensity measure ν, which is simply ẑλ in the stationary
case.

This generalization of the residuals to the setting of possible non-hereditary inter-
actions allows to perform several diagnostic plots. We refer to [1] for a presentation of
different relevant choices for ψ, and for some diagnostic tools. A smoothed version of the
residuals is also proposed, leading to more appealing graphics. The main purpose of the
residuals analysis is to check whether the fitted model is misspecified.

As an illustration, let us assess the effect of a misspecified model to the tessellation
simulated in top left of Figure 6. It actually corresponds to a sample from Model 3 where
α = 0.05, B = +∞, z = 100 and θ = −0.5. But we will improperly fit a homogeneous
Poisson process to this sample, then we will fit Model 2 (where the interaction relies
on the Delaunay triangulation). Finally the correct Model 3 will be fitted for a sake of
comparison. Figure 13 represents the sample according to these three points of view.

Voronoi Points Delaunay

Figure 13: Voronoi tessellation (left) and Delaunay tessellation (right) from the same point con-

figuration (middle), coming from a simulation of Model 3 (top right of Figure 6).

We consider the simple case when ψ = 1. This corresponds to the so-called raw resid-
uals, which have the following form in the stationary case:

R
(

∆, 1, hβ̂,θ̂, ẑ
)

= card
(

Rβ̂(γ) ∩∆
)

− ẑ
∫

B

e−hβ̂,θ̂(x,γ)dx.
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To check the fitted model, we use the QQ-plot diagnostic presented in [1]. It consists
in comparing the empirical quantiles of the fitted residuals to the empirical quantiles of
bootstrapped residuals.

If we fit a homogeneous Poisson process to the sample, we obtain an estimated intensity
ẑ = 833. The raw residuals, computed on squares ∆ with side 0.01, are shown in top left of
Figure 14. The same kind of residuals have then been computed on 100 simulated Poisson
process with intensity ẑ. A QQ-plot of these residuals with a 95%-confidence interval is
shown on top right of Figure 14, where the residuals of the original sample have been added
(crosses). An example of raw residuals from a simulated Poisson process is represented in
the middle of this plot. It appears that the residuals of our sample do not behave as
those from the simulated Poisson point processes. The homogeneous Poisson model is
then misspecified.

Similarly, if we fit Model 2 to the same sample, we obtain α̂ = 0.055 and θ̂ = 4.49
when z = 1000. The raw residuals for this model are shown in bottom left of Figure 14.
We have bootstrapped residuals from 100 simulated samples from Model 2 with the same
parameters. One example of such residuals is shown on bottom middle. The QQ-plot, in
bottom right, shows that the original sample does not seem to follow Model 2.

Finally, Model 3 is fitted. The estimation gives α̂ = 0.049, B̂ = 97.8 and θ̂ = −0.56
when z = 100. The same plots as before are represented in Figure 15. According to the
QQ-plot, one should not reject the fitted model. Let us remark that the estimation of θ is
rather bad for our sample: the error is −0.06 although other simulations shows that the
standard deviation of the errors is about 0.02. This is the reason why the distribution of
the residuals is on the edge of the confidence interval in the QQ-plot. The two residuals
images represented on the left show that some residuals may be very negative on some
squares (the black ones). This is confirmed by the dispersion of the lowest quantiles in
the QQ-plot. Thus, the distribution of the residuals can not be Gaussian in this example.
This differs from the asymptotic gaussianity of most residuals conjectured in [1].

5 Appendix.

5.1 Existence of Gibbs Delaunay-Voronoi tessellations.

The existence results presented here are published in [7] and [8]. They are slightly modified
to be adapted to the setting of this paper. We suppose that the energy functions have the
forms (4) or (5). The three following assumptions H1-H3 are almost necessary to define
the conditional densities fΛ in (2).

H1 M∞(R2) 6= ∅.

For every γ inM∞(R2) and every Λ in B(R2), γ′ inM(R2) is called a (r,Λ)-modification
of γ (with r > 0) if there exists y1, y2, . . . , yn in Λ satisfying |yi−xi| < r for every 1 ≤ i ≤ n
(with γΛ = {x1, x2, . . . , xn}) such that γ′ = {y1, y2, . . . , yn} ∪ γΛc .

H2 M∞(R2) is a locally open set inM(R2) which means that for every γ in M∞(R2),
every Λ in B(R2) there exists rΛ(γ) > 0 such that any (rΛ(γ),Λ)-modification of γ
is in M∞(R2).
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Residuals when fitting a Poisson Simulated Poisson residuals QQplot from bootstrap

Residuals when fitting Model 2 Simulated residuals from Model 2 QQplot from bootstrap

Figure 14: Analysis of residuals for misspecified models.

Residuals when fitting Model 3 Simulated residuals from Model 3 QQplot from bootstrap

Figure 15: Analysis of residuals for the correct model.
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H3 The interactions V1 and V2 are stable which means that there exists a constant K > 0
such that

V1 ≥ −K and V2 ≥ −K.

Now let us give a collection of assumptions used in the proof of the existence of Gibbs
Delaunay-Voronoi tessellations.

H4 There exist K1 > 0 and K ′
1 > 0 such that, for all γ ∈M∞(R2) and all Λ ∈ B(R2),

Card(γΛ) ≥ K1Vol(Λ)−K ′
1.

H5 There exists a point configuration γ̃ in M∞(R2), K2 > 0 and K ′
2 > 0 such that

i) For all Λ ∈ B(R2)

Card(DelΛ(γ̃)) ≤ K2Vol(Λ) +K ′
2. (16)

ii) rΛ(γ̃) in H2 can be chosen not to depend on Λ (denoted r(γ̃)) and such that,
for all x, y in γ̃, |x− y| > 2r(γ̃).

iii) There exists A > 0 such that, for all Λ ∈ B(R2) and every (r(γ̃),Λ)-modification
γ̃′ of γ̃, for all T, T ′ ∈ Del(γ̃′) with T ∼Del T

′,

V1(T ) ≤ A and V2(T, T
′) ≤ A; (17)

Respectively, for all C,C ′ ∈ Vor(γ̃′) with C ∼Vor C
′,

V1(C) ≤ A and V2(C,C
′) ≤ A. (18)

Now we are able to give a first existence theorem

Theorem 1. There exists a Gibbs Delaunay-Voronoi tessellation for any intensity ν = zλ
(z > 0) and any energy functions (EΛ)Λ∈B(R2) satisfying assumptions H1, H2, H3, H4

and H5.

Assumptions H4 and H5 can be substituted by the following one.

H6 There exists A > 0 such that for all r > 0 there exists a point configuration γ̃ in
M∞(R2) satisfying (16). Moreover rΛ(γ̃) in H2 can be chosen not to depend on Λ
(denoted by r(γ̃)) such that r(γ̃) > r and such that, for all x, y in γ̃, |x−y| > 2r(γ̃).
We assume also that for all Λ ∈ B(R2) and every (r(γ̃),Λ)-modification γ̃′ of γ̃ then
(17) or (18) hold.

We have the second following existence theorem.

Theorem 2. There exists a Gibbs Delaunay-Voronoi tessellation for any intensity ν = zλ
(z > 0) and any energy functions (EΛ)Λ∈B(R2) satisfying the assumptions H1, H2, H3

and H6.

The proofs of theorems 1 and 2 can be found in [8]. They rely on entropy tools which
are only usable in the setting of stationary processes (i.e. ν = zλ). We have no existence
results for non stationary processes. Concerning our three example models, the following
corollary holds (the existence of Model 2 is also proved in [7]).
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Corollary 1. In the stationary case, i.e. when the intensity measure ν is equal to zλ,
Gibbs Delaunay-Voronoi tessellations for models 1, 2 and 3 exist.

Proof. First of all, assumptions H1, H2, H3 are obviously satisfied for the three models.
Concerning Model 1, the existence is given by Theorem 2. Assumption H6 is proved by
taking a configuration γ̃ such that its Delaunay tessellation is formed by equilateral trian-
gles where the length of sides is large enough. Concerning models 2 and 3, the existence
is given by Theorem 1. Assumption H4 comes from the hardcore interaction which forces
the cells not to be too large. In H5, γ̃ is also chosen such that its Delaunay tessellation is
formed by equilateral triangles.

5.2 Convergence of the algorithm

The Birth-Death-Move algorithm used in this paper is presented in [19] page 115 where the
convergence is proved in Proposition 7.7 if the associated Markov Chain is irreducible and
aperiodic. In our setting, there is no problem with the aperiodicity since the probability
that nothing happens during one step of the algorithm is positive. In general to prove
the irreductibilty, it is sufficient to point out that every configuration γ is linked by a
finite number of algorithm steps to the empty configuration. In our case, it is not possible
because there is a strong hardcore interaction and so the connection with the empty
configuration is in general false. So we need the connectivity assumption H7 based on the
following definition.

Definition 4. γ and γ′ in M∞(R2) are connected if there exist n ≥ 0 and a sequence
of configurations γ0, γ1, . . . , γn−1, γn in M∞(R2) such that γ0 = γ, γn = γ′ and, for each
0 ≤ i ≤ n − 1, γi and γi+1 differ only by one step of the algorithm (a birth, a death or a
move).

H7 For every γ and γ′ in [0, 1]2 such that γ̄ and γ̄′, defined in (6), are inM∞(R2), then
γ and γ′ are connected.

The deterministic connectivity assumption H7 and the flexibility assumption H2 on the
spaceM∞(R2) ensure that for all configurations γ, γ′ inM∞(R2), the algorithm may gen-
erate γ′ from γ with a finite number of steps and with a positive probability. Irreductibility
of the Markov chain follows and we have the following proposition.

Proposition 3. Under the assumptions H2 and H7, the Birth-Death-Move algorithm
presented in Sections 3.2 converges to P̄ (see Definition 2) in total variation norm.

It seems difficult in our context to obtain rates of convergence because the energy
functions are not locally stable, and the space M∞(R2) may be very complicated since
there is no upper bound in general for the number of steps n in assumption H7.

Let us remark that assumption H7 is not easy to check. If H7 is not satisfied then
the algorithm converges to the restriction of P̄ on the connected component of the initial
configuration γ0. In this case, the limiting distribution may depend on the initial configu-
ration. For Model 1, we can show that H7 is satisfied if α is small enough. We don’t give
the proof here but the scheme is essentially the same than in the following Proposition 4
which deals with Model 2. For Model 3, it is more complicated, we have not proved it but
it seems satisfied if α and B are large enough.
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Proposition 4. In Model 2, if 2ε < α < 1
2 then the algorithm presented in Sections 3.2

converges to P̄ .

Proof. According to Proposition 3, it suffices to show H2 and H7. Since H2 is obviously
satisfied for Model 2, it remains to show H7.

Let γ and γ′ be in [0, 1]2 such that γ̄ and γ̄′ are inM∞(R2). To simplify the notations,
we say that γ is inM∞(R2) if γ̄ is in M∞(R2). We start the sequence by putting γ0 = γ
and we construct the sequence γi by an algorithmic procedure.

In a first step (called saturation) we add points until there does not exist any ball
with radius ε without points. More precisely, we test if there exists x in [0, 1]2 such that
γ̄0 ∩ B(x, ε) = ∅. If it is not the case, the saturation is finished. If it is the case we add
the point x by a birth-step action and we put γ1 = γ0 + x. Then, we test again if there
exists x in [0, 1]2 such that γ̄1 ∩B(x, ε) = ∅. If it is not the case the saturation is finished
otherwise we put γ2 = γ1+x. We go on like this until the saturation procedure stops which
is always the case since [0, 1]2 may contain only a finite number of points with a distance
between them bigger than ε. Let us remark that this construction produces configurations
in M∞(R2). We denote by γm1

the saturated configuration of γ.
In a second step, we add the points of γ′ to γm1

by the following way. Let x be a point
of γ′. By definition of the saturation, the configuration γm1

+ x is not in M∞(R2) since
there exists at least one point y in γm1

such that |x− ȳ| ≤ ε (ȳ is the periodic version of
y such that ȳ ∈ B(x, ε)). If this point y is unique we use a move-step action to move y
to x. So we put γm1+1 = (γ − y) + x. If these points are non unique, they are removed
(except one) by death-step actions and the last one is moved as above. We denote by
γm1+1, . . . , γm2

this sequence and we remark that these configurations are in M∞(R2)
since γm1

is saturated and 2ε < α < 1
2 . Now we saturate again the configuration γm2

as
above and we add another point of γ′ to γm2

. We go on until we have added all the points
of γ′ and we denote by γm3

the final configuration.
It remains to remove the points of γm3

which are not in γ′. It is sufficient to apply
several death-step actions since the obtained configurations are in M∞(R2).

5.3 Consistency of the estimation procedure

Let us suppose that the energy function, defined in (4) and (5), is parameterized by β and

θ, and is denoted by Eβ,θ
Λ . We first need to distinguish properly the hardcore parameter

β from the other parameter θ. This is the purpose of the following assumption.

S1 : For all γ ∈M(R2), for all β and for all θ and θ′,

∀Λ ∈ B(R2), Eβ,θ
Λ (γΛ, γΛc) <∞ ⇐⇒ Eβ,θ′

Λ (γΛ, γΛc) <∞.
Under S1, the support of the energy is parameterized by β only, and not by θ, which

confirms that β is the hardcore parameter. This assumption is satisfied by Models 2 and
3 with β = (ǫ, α) and β = (ǫ, α,B) respectively.

The asymptotic consistency of β̂ defined in (10) and (θ̂, ẑ) defined in (13) are estab-
lished in Theorem 2 in [9], under some regularity assumptions. These assumptions have
been checked for Model 2 in Proposition 5 in [9]. Concerning Model 3, the assumptions
could be checked in the same way excepted for assumption S3 involved in [9]. We have
not succeed to prove it but it seems true at least for B large enough.
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