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Abstract. We present one of the most efficient attacks against the com-
bination generator. This attack is inherent to this system as its only as-
sumption is that the filtering function has a good autocorrelation. This is
usually the case if the system is designed to be resistant to other kinds of
attacks. We use only classical tools, namely vectorial correlation, weight
4 multiples and Walsh transform.
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1 Introduction

The combination generator is, together with the filter generator, one of the
simplest and most analyzed construction of stream ciphers. It uses as an internal
state many linear feedback shift registers (LFSRs). We will write m for their
total size in bits. These registers are filtered using a n-variable balanced Boolean
function f (from Fn

2 into F2) to produce the keystream (zt)t≥0. The inputs of
this function are taken from some bits in the LFSRs internal states. We will
write xt for the n-bit vector corresponding to the inputs of f at time t. Notice
that we will always write such vector of bits in bold. Our goal here is to find the
key (that is the initial state of all the LFSRs) knowing the keystream sequence
(zt)t≥0 and all the components of the combination generator.

The classical way to attack such a system is to use a correlation attack [Sie85]
or one of its variants called fast correlation attacks [MS88,CT00,JJ00]. The idea
is to exploit the existence of a statistical dependence between the keystream
and one of the constituent LFSR. For example, if we write x = (u,v) where u

corresponds to the bits taken from the first LFSR, such a dependence exists if
for some linear function ℓ,

Pr[f(u,v) = ℓ(u)] 6= 1/2 .
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One can then perform an exhaustive search on the initial state of the first LFSR
(or any other targeted LFSR) and try to detect a bias. In order to ensure that
there is no such bias (or a really low one) f is usually chosen with a high non-
linearity and a low autocorrelation.

In the fast correlation attacks, one sees the search of the initial state as
a decoding problem of the linear code generated by the target LFSR and the
linear function ℓ. Then, instead of an exhaustive search, it is possible to avoid
examining all possible initializations of the target LFSR by using some efficient
error-correcting techniques. Usually the attack becomes faster but requires a
larger amount of keystream.

This paper presents a new attack on the combination generator. At first sight,
it may not seems that new because we use only classical tools, namely low weight
multiples, vectorial correlation and Walsh transform. But in our knowledge, they
are used in an original way and we add some interesting insights. Moreover, this
attack is not based on any particular weakness of the filtering function like for
correlation attacks. Actually, we can even attack a system where we do not
know the filtering function used! To simplify our analysis we only assume that
f has a good autocorrelation. However choosing a filtering function without this
property will open the door to the correlation attacks described above.

The paper is organized as follows. We begin by explaining the attack prin-
ciple in the next section. Then, in Section 3, we detail the algorithm and the
complexity of the different steps involved. We give in Section 4 the actual time
complexity of our implementation on an example combination generator. We
finally conclude in the last section.

2 Attack principle

We describe here an attack on the combination generator based on the theorem
given at the end of this section. What we actually show is how to find the initial
state of some of the LFSR composing the system. This is certainly enough to
say that the system is insecure and recovering the rest of the initial state require
usually less work. The best method for this task is more dependent on the actual
system we are working on and we will give in Section 4 an example of how we
can actually do it.

So, suppose we are given a combination generator and we are able to observe
a large amount of keystream bits, the zt’s. We denote by xt the input of the
filtering function for this observed system at time t, that is we have zt = f(xt).
We split the LFSRs involved into two groups and do an exhaustive search on
the initial states of the first LFSRs. For a given value I of this partial initial
state, we write yt for the hypothetical first part of the filtering function input
at time t. That is, the part we can compute given I. We also need one or more
common weight 4 multiples 1 + Xt1 + Xt2 + Xt3 of the feedback polynomials of
the LFSRs in the second group. We then compute the ratio PI of times t such
that

zt + zt+t1 + zt+t2 + zt+t3 = 0



amongst all the t’s such that

yt + yt+t1 + yt+t2 + yt+t3 = 0 .

Remark that the number of such time instants at our disposal is directly linked
to the amount of keystream we know. Now, how can we distinguish the real
partial initial state from the others?

– If I is the actual first part of the initial state, then we know we look only
at times t such that xt + xt+t1 + xt+t2 + xt+t3 = 0. This is because we are
working with a multiple of the other LFSRs feedback polynomials. Then, it
is reasonable to assume that the ratio PI is an estimate of the probability
Pr(f(u1) + f(u2) + f(u3) + f(u4) = 0 |

∑
i ui = 0). Here the ui are vectors

in Fn
2 uniformly distributed amongst the one having the required property.

– If I is not the actual first part of the initial state, even in the worst case where
only the initial state of one LFSR was not guessed correctly, it is reasonable
to assume that the sum xt +xt+t1 +xt+t2 +xt+t3 is different from 0 roughly
half of the time. For theses points, we then have an estimate for one of the
probabilities Pr(f(u1) + f(u2) + f(u3) + f(u4) = 0 |

∑
i ui = u) where

u 6= 0.

Hopefully for us, the two cases are distinguishable thanks to the following result
taken almost directly from [Did07] and already present in the work of Sabine
Leveiller [Lev04].

Theorem 1. Let f be a n-variable balanced Boolean function, and let u1, u2,

u3, u4 be 4 uniformly distributed n bits vector such that u1 + u2 + u3 +u4 = u.

Let Pu := Pr(f(u1) + f(u2) + f(u3) + f(u4) = 0), then we have

P0 ≥
1

2
+

1

2n+1

and

min
u 6=0

(P0 − Pu) ≥
1

2n+1

(
1 −

∆f

2n

)2

where ∆f is the maximum of the autocorrelation coefficients of f and is usually

small compared to 2n.

Proof. see Appendix.

We will assume in the rest of this paper that the filtering function has a good
autocorrelation property which result in a difference between these probabilities
of 1

2n+1 . This is a reasonable hypothesis because it is the case for the function
usually used in this settings [GK03]. In particular, it is a needed property to
resist against correlation attacks.



3 Detailed analysis

We describe here our attack in details and hence need some more notations.
Since we split the LFSRs in two groups, we will write m = m1 + m2 where m1

is the total size in bits of the LFSRs in the first group. That is the one we do an
exhaustive search on. Similarly, we write n = n1 + n2 for the inputs bit of the
filtering function f . Remark that in practice, n is kept small compared to m for
efficiency issues. Our result is summarized in this theorem:

Theorem 2. Our attack recovers m1 bits of the initial states in complexity

O(m12
n12m1). It requires O(2

m2
3 + m12

2n+n1+1) consecutive bits of keystream

and a memory of O(2m1). If the memory requirement is too big, some tradeoff

exists until a complexity of O(m12
2n+n12m1) and a memory of O(m12

2n+n1).
This attack also require a precomputation phase of complexity and memory in

O(2
m2
3 ).

3.1 Computing weight 4 multiples

We need to compute one or a few weight 4 common multiples of the second group
of LFSRs. We show here that this precomputation phase can be dealt with a
complexity and memory around O(2

m2
3 ).

What we need is only a few multiple of degree as small as possible. If we look
at LFSRs of total size m2, it is well known that the expected number of weight 4

multiples of degree D is heuristically approximated by 1
2m2

D3

6 considering that
for D large enough the values of the polynomials of weight 4 and degree at most
D are uniformly distributed.

There are many algorithms to compute low weight multiples whose complex-
ity depends on the parameters D which in our case is around 2

m2
3 . One can use

the algorithm in [CJM02] but for weight 4 multiples, the most efficient is the
one of [DLC07]. It’s especially adapted here, as we need to find a simultanous
multiple of many polynomials.

Its complexity is in O(D) times the complexity to compute discrete loga-
rithms in the multiplicative group F∗

2l1
×· · ·×F∗

2lk
where the li are the respective

length of each LFSR. This task is particularly easy since using Pohlig-Hellman
algorithm it can be splited into k discrete logarithms computation in each of the
finite field multiplicative groups involved.

3.2 Amount of keystream needed

We prove here the following lemma

Lemma 1. We need to consider around N := m12
2n+n1+1 degree 4 equations to

identify the correct partial initial state. This translates to O(2
m2
3 +m12

2n+n1+1)
consecutive keystream bits needed.



Given the results in Section 2, mainly Theorem 1, we need to distinguish in
the worst case between two binomial distributions, one of parameter 1

2 + 1
2n+1

and one of parameter at most 1
2 + 1

2n+2 . However, for most of the wrong partial
initial states, we will just observe a law of parameter 1

2 , so the bias we need to
detect is in practice close to 1

2n+1 .
A classical results from statistics tell us that using S samples, we have an

error probability of roughly 2−
S

22n+1 . We thus need at least 22n+1 samples to be
able to distinguish the two distributions. But this is not sufficient in our case.
Recall that we are doing an exhaustive search on 2m1 possible states, so the

average number of wrong states passing the statistical test will be 2m12
−S

22n+1 .
We thus need a number of samples equal to at least m12

2n+1 to obtain only a
few possible candidates for the real initial states. Notice that with this number
of samples, the probability to miss the initial states is of O(2−m1) which is really
small.

What is the amount of keystream needed to get that many samples? For
one sample, we will need to consider 2n1 degree 4 equations since this is the
expected number for yt + yt+t1 + yt+t2 + yt+t3 to be equal to 0. The average

degree of the lowest weight 4 multiples is O(2
m2
3 ) (see previous subsection).

By shifting this multiple x times, we get x degree 4 equation for O(2
m2
3 + x)

consecutive keystream bits. Hence, the required amount of keystream is O(2
m2
3 +

m12
2n+n1+1).
We assumed here that we use only one weight 4 multiples. If we use many, it is

actually possible to need less keystream at the expense of more precomputation.
This gain is difficult to analyze as it really depend on the used LFSRs, but may
definitely be useful in practice. However, it will not change the overall asymptotic
keystream needed.

3.3 Performing the attack efficiently

We show in this subsection how to find the initial states in O(m12
n12m1) instead

of O(N2m1) with a straightforward implementation. Notice that this is a huge
gain since in our case m12

n1 ≪ N . On the memory side, we need 2m1 integer in
the second case compared to N bits in the first one. If this is a problem, we can
actually trade memory for time and be anywhere between those two algorithms.

In order to perform our attack, we have to compute many quantities involving
time positions of the form (t, t+t2, t+t2, t+t3). Since we may use many multiples,
let just assign an index i to such 4-tuple. We will then write z(i) for the sum of
the zt for the 4 time positions number i and y(i) in the same way.

Computing the probability estimate for a given partial initial state is roughly
the same as computing the number of indices i such that y(i) = 0 and z(i) = 0.
Actually to get the true probability, we also need to know how many indices are
such that y(i) = 0 and z(i) = 1 but this will not change our discussion or the
final complexity. So let restrict ourselves on the N ′ indices i such that z(i) = 0.

If we do this independently for each of the 2m1 partial initial states, the
complexity is then in N ′2m1 which is pretty large. In order to improve on this



complexity, let us start by assuming that out of the m1 bits, only one is used
as an input for the filtering function f , that is we assume the yt to be scalar.
Remark now that any linear combination of bits from the internal states of
some LFSRs can be expressed as a linear expression of the initial state of theses
LFSRs. This is the case for the y(i). We can then define a binary linear code of
generator matrix G of size m1 × N ′ such that for a given partial initial state u

the i-th element of uG is precisely y(i). The number we try to compute for a
given initial state u is then just N ′ minus the Hamming weight of uG.

Is there a way to compute the Hamming weight of each codeword in a code
of length N ′ and dimension m1 faster than 2m1N ′ ? The answer is yes, thanks
to the Walsh transform we can do it in O(m12

m1) which in our case is a lot
better since m1 ≪ N ′. The Walsh transform ŵ of a function w : Fm1

2 → Z can
be computed in O(m12

m1) and is such that

ŵ(u) =
∑

v

w(v)(−1)v.u .

If w(v) is equal to the number of columns in G equal to v, ŵ(u) is exactly twice
the Hamming weight of uG minus N .

Now, what to do when the yt are not scalar ? we can use this nice formula :

#{i,y(i) = 0} =

∑
y∈F

n1
2

#{i,y(i).y = 0} − 2n1−1

2n1
.

This simply comes from the fact that when y(i) is 0 it contributes to 2n1 in the
sum whereas any other y(i) contributes only 2n1−1. Each cardinality in the sum
can be computed using a Walsh transform, but since Walsh transform is linear,
we better compute directly the Walsh transform of the function

w(v) = #{(i,y), y.(G1(i), . . . , Gn1
(i)) = v}

where Gj(i) is the i-th columns of the matrix of the linear code corresponding
to the input bit j of the filtering function.

Finally, the time-memory tradeoff mentioned in the first paragraph directly
follows from a time memory tradeoff in the implementation of the Walsh trans-
form.

4 Attack Example

We give in this section an example of how to use our result to mount an attack
on a given combination generator.

The following timings were obtained on an Intel Core2 Quad CPU Q9550
at 2.83GHz, using only one core and no more than 2GB of memory. We used a
combination generator based on three LFSRs of size 29, 31 and 37 respectively.
The feedback polynomials are dense in order not to have artificially easy to find
low weight multiples. The filtering function f is a 9-variable Boolean function,
with 3 inputs from each LFSR. It was chosen to be still balanced even if we fixed



Precomputation Total online time Keystream used

Attack 1 12min27s 7min01s 3.06MB

Attack 2 3min02s 6h18min 985KB

Table 1. Global comparison of the two attacks

1st LFSR 2nd LFSR 3rd LFSR

Attack 1 51s 6min10s 0s

Attack 2 6h17min 1min27s 0s

Table 2. Comparison of the different parts of the online attacks

the input bits from any of the constituent LFSR in order to avoid traditional
correlation attack , i.e. the function is 3-resilient.

In the attack referred below as Attack 1, we retrieve the initialization of the
LFSR of size 29, 31 and 37 in this order. We thus have in a first step the following
parameters :

m1 = 29; m2 = 31 + 37 = 68; n1 = 3; n2 = 6.

As stated in Lemma 1, we thus need to consider approximately N = 226.86 mul-
tiples of P31 ×P37 of weight 4. The maximum degree needed is slightly less than
225 which implies we need 3MB of keystream. Using the approach of [DLC07]
for finding low weight multiples of degree less than 225, the precomputation took
around 13 minutes. The online time to recover the initial internal state of the
first LFSR is only 51s, for a theoretical workload of approximately 237. The
internal state of the second LFSR is then recovered in roughly 6 minutes, using
only very few keystream because we only need to consider multiples of the last
feedback polynomial. Finally, the internal state of the last register is found by a
different method almost instantly, because the full knowledge of 6 entries of our
Boolean function amongst 9 gives us a lot of information.

In the second version of the attack , we retrieve the initialization of the LFSR
of size 37, 29 and 31 in this order. We thus have in a first step the following
parameters :

m1 = 37; m2 = 31 + 29 = 60; n1 = 3; n2 = 6.

This small difference allows us to have a lower value for m2, which implies that
we need less keystream to perform the attack. We need to consider approximately
N = 226.86 multiples of P31×P29 of weight 4, the precomputation is this time only
3 minutes and the maximum degree needed is approximately 223, corresponding
to 985KB. On the contrary, the online time to recover the initial internal state
of the first LFSR is much longer. The theoretical workload is approximately 242

and our experiment confirms this ratio as it tooks us just more than 6 hours.
The timings to recover the two other LFSR is negligible compared to the first
one.



In conclusion, the Attack 1 is the best one from a complexity point of view,
whereas the Attack 2 minimizes the amount of keystream needed. We summarize
the timings for the two different strategies in Tables 1 and 2.

5 Conclusion

We presented in this paper an efficient attack on the combination generator. In
particular, if we look at the timings given in Section 4, we are not aware of any
other attacks that can break the chosen combination generator that efficiently.
Remark however that breaking the combination generator still requires an ex-
ponential number of computation. Hence, if the parameters are chosen large
enough, such a system can still be secure given the actual knowledge.

An important point is that the presented attack is inherent to the construc-
tion and is not based on any particular weakness in the choice of the filtering
function or in the constituent LFSRs. As such, it appears that for the same order
of internal size the combination generator is a lot less secure than a single large
primitive LFSR filtered by a non-linear function. This statement seems true in
many ways. With a large LFSR, it is more difficult to compute any low weight
multiples, it is more difficult to break the system into smaller components, and
the best attacks we know are a lot less efficient.
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A Proof of Theorem 1

The bound on P0, mentioned in [Can06], is already present in [Lev04]. It is a
direct consequence of the result in [Did07] where it is shown that

Px =
1

2



1 +
∑

y∈Fn

2

(−1)y.x

(
Wf (y)

2n

)4




where Wf (y) is the Walsh coefficient of f at point y, that is
∑

x(−1)f(x)+x.y.
By Parceval equality we know that the sum

∑
y Wf (y)2 is equal to 22n and it is

well know that the sum of square
∑

y

(
Wf (y)2

)2
is minimized when every terms

are equal. Hence we can upper bound everything by

1

2



1 +
1

24n

∑

y∈Fn

2

(2n)
2





and get the first part of the theorem.
For the second part, the result is taken directly from [Did07]. Just recall that

the maximum of the autocorrelation coefficient is defined as

∆f := max
y 6=0

∣∣∣∣∣∣

∑

x∈Fn

2

(−1)f(x)+f(x+y)

∣∣∣∣∣∣

and is usually quite small for Boolean functions used in cryptography.
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