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Degenerate complex Monge-Ampère equations
over compact Kähler manifolds

Jean-Pierre Demailly and Nefton Pali
Abstract

We prove the existence and uniqueness of the solutions of some
very general type of degenerate complex Monge-Ampère equations,
and investigate their regularity. This type of equations are precisely
what is needed in order to construct Kähler-Einstein metrics over ir-
reducible singular Kähler spaces with ample or trivial canonical sheaf
and singular Kähler-Einstein metrics over varieties of general type.
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1 Introduction
In a celebrated paper [Yau] published in 1978, Yau solved the Calabi conjec-
ture. As is well known, the problem of prescribing the Ricci curvature can be
formulated in terms of non-degenerate complex Monge-Ampère equations.
Key words : Complex Monge-Ampère equations, Kähler-Einstein metrics, Closed posi-
tive currents, Plurisubharmonic functions, Capacities, Orlicz spaces.
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Theorem 1.1 (Yau). Let X be a compact Kähler manifold of complex
dimension n and let α ∈ H1,1(X,R) be a Kähler class. Then for any
smooth density v > 0 on X such that

∫
X
v =

∫
X
αn, there exists a unique

(smooth) Kähler metric ω ∈ α (i.e. ω = ω0 + i∂∂̄ϕ with ω0 ∈ α ) such that
ωn = (ω0 + i∂∂̄ϕ)n = v.

Another breakthrough concerning the study of complex Monge-Ampère equa-
tions was achieved by Bedford-Taylor [Be-Ta]. They initiated a new method
for the study of very degenerate complex Monge-Ampère equations. In fact,
by combining these results, Koªodziej [Kol1] proved the existence of solutions
for equations of type

(ω + i∂∂̄ϕ)n = v ,

where ω a Kähler metric and v ≥ 0 a density in Lp or in some general Orlicz
spaces. However, in various geometric applications, it is necessary to consider
the case where ω is merely semipositive. This more di�cult situation has
been examined �rst by Tsuji [Ts], and his technique has been reconsidered
in the recent works [Ca-La], [Ti-Zha], [E-G-Z1] and [Pau].

In this paper we push further the techniques developed so far and we
obtain some very general and sharp results on the existence, uniqueness and
regularity of the solutions of degenerate complex Monge-Ampère equations.
In order to de�ne the relevant concept of uniqueness of the solutions, we
consider a suitable subset of the space of closed (1, 1)-currents, namely the
domain of de�nition BT of the complex Monge-Ampère operator �in the sense
of Bedford-Taylor�: a current Θ is in BT if the the successive exterior powers
can be computed as

Θk+1 = i∂∂̄(ϕΘk) ,

where ϕ is a potential of Θ and ϕΘk is locally of �nite mass. Then for
every pseudoe�ective (1, 1)-cohomology class α ∈ H1,1(X,R), we prove a
monotone convergence result for exterior powers of currents in the subset
BTα := BT∩ α. The case where the local potentials ϕ are bounded has
been considered in [Be-Ta]. The unbounded case considered here appears �rst
in [Sib] and also in the subsequent papers [Fo-Si], [Di-Si]. The uniqueness
of the solutions of the degenerate complex Monge-Ampère equations in a
reasonable class of unbounded potentials has been a big issue and the object
of intensive studies, see e.g. [Ts], [Ti-Zha], [Blo1], [E-G-Z1]. In this direction,
we introduce the subset

BTlog
α ⊂ BTα ,
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of (closed positive) currents T ∈ BTα which have a Monge-Ampère product
T n possessing an L1-density such that

∫

X

− log(T n/Ω) Ω < +∞ ,

for some smooth volume form Ω > 0. For example this is the case when the
current T n possesses an L1-density with complex analytic singularities (see
Theorem 6.1). We observe that the Ricci operator is well de�ned in the class
BTlog

α .
In the last section we prove existence and �ne regularity properties of the

solutions of complex Monge-Ampère equations with respect to a given degen-
erate metric ω ≥ 0, when the right hand side possesses an L logn+ε L-density
or a density carrying complex analytic singularities (see Theorems 6.2 and
6.1). As a consequence of this results, we derive the following generalization
of Yau's theorem.

Theorem 1.2 Let X be a compact Kähler manifold of complex dimension n
and let α be a (1, 1)-cohomology class with

∫
X
αn > 0, which admits a closed

positive (1, 1)-current γ ∈ α with bounded local potentials.

(A) For any L logn+ε L-density v ≥ 0, ε > 0 such that
∫
X
v =

∫
X
αn, there

exists a unique closed positive current T ∈ BTα such that T n = v. Moreover,
this current possesses bounded local potentials over X and continuous local
potentials outside a complex analytic set Σα ⊂ X. This set depends only on
the class α and can be taken to be empty if the class α is Kähler.

(B) In the special case of a density v ≥ 0 possessing complex analytic sin-
gularities the current T is also smooth outside the complex analytic subset
Σα ∪ Z(v) ⊂ X, where Z(v) is the set of zeros and poles of v.

(C) For all λ ∈ R≥0 and all smooth (1, 1)-forms ρ ∈ 2πc1(X) +λα there ex-
ists a unique closed positive current ΘKE ∈ BTlog

α solution of the generalised
Kähler-Einstein equation

Ric(ΘKE) = −λΘKE + ρ .

Moreover the current ΘKE possesses bounded local potentials over X and
de�nes a smooth Kähler metric outside the subset Σα.
The type of complex Monge-Ampère equation solved in Theorem 6.1 is pre-
cisely what is needed in order to construct Kähler-Einstein metrics over ir-
reducible singular Kähler spaces with ample or trivial canonical sheaf. The
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relevant L∞-estimate needed in the proof of Theorem 6.1 (in the case re-
lated with Kähler-Einstein metrics) is obtained combining the L∞-estimate
in Statement (A) of Theorem 2.2 with an important iteration method in-
vented by Yau [Yau] (see the Lemma 2.14). The main issue here is that
one can not use directly the maximum principle since the reference metric is
degenerate.

The proof of our Laplacian estimate in Theorem 6.1, which is obtained
as a combination of the ideas of in [Yau], [Ts], [Blo2], provides in particular
a drastic simpli�cation of Yau's most general argument for complex Monge-
Ampère equations with degenerate right hand side. Moreover, it can be
applied immediately to certain singular situations considered in [Pau] and
it reduces the Laplacian estimate in [Pau] to a quite simple consequence
(however, one should point out that the argument in [Pau] contains a gap
due to the fact that the Lp-norm of the exponential exp(ψ1,ε − ψ2,ε) of ε-
regularized quasi-plurisubharmonic functions need not be uniformly bounded
in ε under the assumption that exp(ψ1−ψ2) is Lp, as our Lemma 5.4 clearly
shows if we do not choose carefully the constant A there). Theorem 6.1 gives
also some metric results for the geometry of varieties of general type. In this
direction, we obtain the following results.

Theorem 1.3 Let X be a smooth complex projective variety of general type.
If the canonical bundle is nef, then there exists a unique closed positive cur-
rent ω

E
∈ BTlog

2πc1(KX) solution of the Einstein equation

Ric(ω
E
) = − ω

E
. (1.1)

This current possesses bounded local potentials over X and de�nes a smooth
Kähler metric outside a complex analytic subset Σ, which is empty if and
only if the canonical bundle is ample.

The existence part has been studied in [Ts], [Ca-La] and [Ti-Zha] by a Kähler-
Ricci �ow method. The importance of the uniqueness statement in Theorem
1.3 is the following. If a current

ω
E
∈ BTlog

2πc1(KX)

satis�es the Einstein equation (1.1) then it has bounded local potentials. In
the non nef case we obtain the following statement.

Theorem 1.4 Let X be a smooth variety of general type and let SB ⊂ Σ be
respectively the stable and augmented stable base locus of the canonical bundle
KX . Then there exists a closed positive current ω

E
∈ 2πc1(KX) over X, with
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locally bounded potentials over X r SB, solution of the Einstein equation
(1.1) over X r SB, which restricts to a smooth (non-degenerate) Kähler-
Einstein metric over X r Σ. Moreover ω

E
is unique in the class of currents

in 2πc1(KX) with singularities equivalent to ω
E
. In particular if ω

E
has

minimal singularities, then it is unique in the class of currents with minimal
singularities in 2πc1(KX).

Quite recently Tian and Koªodziej [Ti-Ko] proved a very particular case
of our L∞-estimate under some technical conditions that they could check in
the case of surfaces. Their method, which is completely di�erent, is based
on an idea developed in [De-Pa]. Our L∞-estimate allows us to completely
solve the following conjecture of Tian stated in [Ti-Ko].

Conjecture 1.5 Let (X,ωX) be a polarized compact connected Kähler mani-
fold of complex dimension n, let (Y, ωY ) be a compact irreducible Kähler space
of complex dimension m ≤ n, let π : X → Y be a surjective holomorphic map
and let 0 ≤ f ∈ L logn+ε L(X,ωnX), for some ε > 0 such that 1 =

∫
X
fωnX .

Then the solutions of the complex Monge-Ampère equations
(
π∗ωY + tωX + i∂∂̄ψt

)n
= {π∗ωY + tωX}nf ωnX ,

satisfy the uniform L∞-estimate Osc(ψt) := supX ψt − infX ψt ≤ C < +∞
for all t ∈ (0, 1).

The present manuscript expands and completes a paper published in the
International Journal of Mathematics, which had to be shortened in view of
the length of the manuscript and of the demands of referees - in particu-
lar it gives more details about the relation with the existing literature (see
Appendix C).

2 General L∞-estimates for the solutions
Let X be a compact connected complex manifold of complex dimension n
and let γ be a closed real (1, 1)-current with continuous local potentials or
a closed positive (1, 1)-current with bounded local potentials. Then to any
distribution Ψ on X such that γ + i∂∂̄Ψ ≥ 0 we can associate a unique
locally integrable and bounded from above function ψ : X → [−∞,+∞)
such that the corresponding distribution coincides with Ψ and such that for
any continuous or plurisubharmonic local potential h of γ the function h+ψ
is plurisubharmonic. The set of functions ψ obtained in this way will be
denoted by Pγ. We set P0

γ := {ψ ∈ Pγ | supX ψ = 0}.
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De�nition 2.1 Let X be a compact complex manifold of complex dimen-
sion n. A closed positive (1, 1)-current with bounded local potentials such
that {γ}n :=

∫
X
γn > 0, will be called big.

If X is compact Kähler, one knows by [De-Pa] that the class {γ} is big if and
only if it contains a Kähler current T = γ + i∂∂̄ψ ≥ εω (the inequality is in
the sense of currents), for some Kähler metric ω on X and ε > 0.

Basic facts about Orlicz spaces. Let P : R≥0 → R≥0, P (0) = 0, be
a convex increasing function and Ω > 0 be a smooth volume form over a
manifold M and let X ⊂M be a Borel set of Ω-�nite volume. According to
[Ra-Re] we introduce the vector space

LP (X) :=

{
f : X → R ∪ {±∞} | ∃λ > 0 :

∫

X

P (|f |/λ) Ω < +∞
}
,

(with the usual identi�cation of functions equal a.e.), equipped with the norm

‖f‖LP (X) := inf

{
λ > 0 |

∫

X

P (|f |/λ) Ω ≤ 1

}
.

The space LP (X) equipped with this norm is called the Orlicz space asso-
ciated with the convex function P . Moreover this norm is order preserving,
i.e

‖f‖LP (X) ≤ ‖g‖LP (X) ,

if |f | ≤ |g| a.e. If P (t) = |t|p, p ≥ 1, then LP (X) is the usual Lebesgue space.
More re�ned examples of Orlicz spaces are given by the functions

Pβ := t logβ(e+ t) ,

and
Qβ := et

1/β − 1 ,

with β ≥ 1 . In these cases, we set

L logβ L(X) := LPβ(X) ,

and
Exp1/β L(X) := LQβ(X) .

An important class of Orlicz spaces is given by considering functions P sat-
isfying the �doubling property�: P (2t) ≤ 2CP (t) for some constant C ≥ 1.
This is the case of the functions |t|p and Pβ(t), but not the case of Qβ(t). For
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functions satisfying the doubling condition one has (see proposition 6 page
77 in [Ra-Re])

LP (X) =

{
f : X → R ∪ {±∞} |

∫

X

P (|f |) Ω < +∞
}
,

and
∫

X

P (‖f‖−1
LP (X)

|f |) Ω = 1

for all f ∈ LP (X) r {0}. So in the particular case of the function Pβ, one
obtains the inequality

‖f‖L logβ L(X) ≤
∫

X

|f | logβ
(
e+ ‖f‖−1

L1(X)|f |
)

Ω , (2.1)

since ‖f‖L1(X) ≤ ‖f‖L logβ L(X). It is quite hard to get precise estimates of
the norm Exp1/β L(X), however it is easy to see that

‖1‖Exp1/β L(X) =
1

logβ(1 + 1/VolΩ(X))
. (2.2)

The relation between the Orlicz spaces L logβ L(X) and Exp1/β L(X) is ex-
pressed by the Hölder inequality (see [Iw-Ma])

∣∣∣∣
∫

X

fgΩ

∣∣∣∣ ≤ 2Cβ ‖f‖L logβ L(X) ‖g‖Exp1/β L(X) , (2.3)

which follows from the inequality xy ≤ Cβ(Pβ(x) + Qβ(y)) for all x, y ≥ 0.
(Observe moreover that C1 = 1.)

We de�ne the oscillation operator Osc := sup− inf. With the notations
so far introduced we state the following result.
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Theorem 2.2 Let X be a compact connected Kähler manifold of complex
dimension n, let Ω > 0 be a smooth volume form and let γ be a big closed
positive (1, 1)-current with bounded local potentials over X and with contin-
uous local potentials in the complement of a closed pluripolar set of X. Let
also ψ ∈ Pγ ∩L∞(X) be a solution of the degenerate complex Monge-Ampère
equation

(γ + i∂∂̄ψ)n = f Ω ,

with f ∈ L logn+ε0 L(X,Ω) for some ε0 > 0. Then the following conclusions
holds.
(A). The L∞-estimate. There exists a constant C1 = C1(ε0, γ,Ω) > 0 such
that for all ε ∈ (0, ε0] hold the estimate

Osc(ψ) ≤ (C1/ε)
n2/ε Iγ,ε(f)

n
ε + 1 ,

where
Iγ,ε(f) := {γ}−n

∫

X

f logn+ε
(
e+ {γ}−nf)

Ω .

(B). The stability of the solutions. Assume that the solution ψ is
normalized by the condition supX ψ = 0 and consider also a solution ϕ ∈
Pγ ∩L∞(X), supX ϕ = 0 of the degenerate complex Monge-Ampère equation

(γ + i∂∂̄ϕ)n = gΩ ,

with g ∈ L logn+ε0 L(X,Ω). Assume also Iγ,ε0(f), Iγ,ε0(g) ≤ K for some
constant K > 0. Then there exists a constant C2 = C2(ε0, γ,Ω, K) > 0 such
that

‖ϕ− ψ‖
L∞(X)

≤ 2C
α0

2

(
log ‖ϕ− ψ‖−1

L1(X,Ω)

)−α0

,

α0 :=
1

(n+ 1 + n2/ε0)
,

provided that ‖ϕ− ψ‖
L1(X,Ω)

≤ min{1/2, e−C2}.

(C). The stability of the constants. Let (γt)t>0 be a family of currents
satisfying the same properties as γ, with uniformly bounded local potentials
and let C1,t := C1(ε0, γt,Ω), C2,t = C2(ε0, γt,Ω, K). Assume;

(C1) there exist a decomposition of the type γt = θt + i∂∂̄ut, with θt smooth,
minX ut = 0, supt>0 maxX ut < +∞ and θt ≤ ({γt}n)1/nω for some Kähler
metric ω > 0 on X,

8



or
(C2) the distributions γnt /Ω are represented by L1-functions and

sup
t>0

{γt}−n
∫

X

log
(
e+ {γt}−nγnt /Ω

)
γnt < +∞ .

Then supt>0Cj,t < +∞ for j = 1, 2.

Statement (C) will follow from the arguments of the proof of Statements (A)
and (B) of Theorem 2.2.

We start by proving a few basic facts about pluripotential theory, in a
way which is best adapted for the understanding of the proof of the theorem
2.2. The reader can also consult and compare with the related results in
[Be-Ta], [Dem1], [Dem2], [G-Z] and [Sic].

Let X be a compact complex manifold of complex dimension n, let γ be
a big closed positive (1, 1)-current with bounded local potentials. Set

Pγ[0, 1] := {ϕ ∈ Pγ | 0 ≤ ϕ ≤ 1} ,

γϕ := γ + i∂∂̄ϕ and

Capγ(E) := sup
ϕ∈Pγ [0,1]

{γ}−n
∫

E

γnϕ ,

for all Borel sets E ⊂ X. We remark that if (Ej)j, Ej ⊂ Ej+1 ⊂ X is a
family of Borel sets and E =

⋃
j Ej then clearly, we have

Capγ(E) = lim
j→+∞

Capγ(Ej) . (2.4)

Lemma 2.3 Let X be a compact connected complex manifold of complex
dimension n, let γ be a closed real (1, 1)-current with continuous local poten-
tials or a closed positive (1, 1)-current with bounded local potentials and let
Ω > 0 be a smooth volume form. Then there exist constants α = α(γ,Ω) > 0,
C = C(γ,Ω) > 0 such that

∫
X
−ψΩ ≤ C and

∫
X
e−αψ Ω ≤ C for all ψ ∈ P0

γ .

(We notice that the �rst inequality follows from the second one.) The �rst
two integral estimates of Lemma 2.3 are quite standard in the elementary
theory of plurisubharmonic functions and the dependence of the constants α
and C on γ is only on the L∞ bound of its local potentials (see e.g. [Hör] and
[Skoda]). To be more precise in sight of the uniform estimate

∫
X
e−αψ Ω ≤ C

one can make the constant α depending only on the cohomology class of γ
as in [Ti1], but in this case the constant C will depend on the L∞ bound of
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the local potentials of γ and on the volume form Ω. One can also make C
depending only on the volume form Ω, but in this case α will depend on the
L∞ bound of the local potentials of γ and on the volume form Ω. We prove
now the following quite elementary integration by parts formula. (See also
[Sib], [Fo-Si] and [Di-Si] for more general statements.)

Claim 2.4 Let (X,ω) be a compact and connected Kähler manifold of com-
plex dimension n, let θ be a closed and real smooth (1, 1)-form, let T be a
closed positive (n− 1, n− 1)-current and let ϕ ∈ P0

θ ∩ L∞(X), ψ ∈ P0
θ such

that

−
∫

X

ψ T ∧ ω < +∞ . (2.5)

Then
−

∫

X

ψ θϕ ∧ T < +∞ ,

and
∫

X

ϕ i∂∂̄ψ ∧ T =

∫

X

ψ i∂∂̄ϕ ∧ T . (2.6)

Moreover the same conclusion hold true if θ is a closed positive (1, 1)-current
with bounded local potentials.

Proof . By the regularization result in [Dem3] there exists a family of func-
tions (ϕε)ε>0, ϕε ∈ Pθ+εω∩C∞(X) such that ϕε ↓ ϕ as ε→ 0+. The standard
formula [Dem2]

d
[
ϕε d

c(ψT ) − ψ dc(ϕεT )
]

= ϕε dd
cψ ∧ T − ψ ddcϕε ∧ T .

implies ∫

X

ϕε i∂∂̄ψ ∧ T =

∫

X

ψ i∂∂̄ϕε ∧ T .

by Stokes formula. We assume �rst ψ ∈ L∞(X). Then the fact that

Θε := (θ + εω + i∂∂̄ϕε) ∧ T −→ θϕ ∧ T ,

weakly as ε → 0+ implies by lemma (3.9) page 189 in [Dem2], that any
weak limit Ξ of the uniformly bounded mass family (ψΘε)ε>0 satis�es the
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inequality Ξ ≤ ψ θϕ ∧ T . We infer by the monotone convergence theorem
applied to the family (ϕε)ε>0,

∫

X

ϕ i∂∂̄ψ ∧ T = lim
ε→0+

∫

X

ψ i∂∂̄ϕε ∧ T

= lim
ε→0+




∫

X

ψΘε −
∫

X

ψ (θ + εω) ∧ T



=

∫

X

Ξ −
∫

X

ψ θ ∧ T

≤
∫

X

ψ i∂∂̄ϕ ∧ T .

Then the integration by parts formula (2.6) in the bounded case follows by
replacing the roles of ϕ with ψ. We prove now the unbounded case. Let
ψk := max{ψ, ϕ− k} ∈ Pθ, k ∈ Z<0. Thus

∫

X

ϕ i∂∂̄ψk ∧ T =

∫

X

ψk i∂∂̄ϕ ∧ T .

As before the fact that Rk := θψk ∧ T → θψ ∧ T , weakly as ε → 0+ implies
by lemma (3.9) page 189 in [Dem2], that any weak limit Γ of the uniformly
bounded mass family (ϕRk)k<0 satis�es the inequality Γ ≤ ϕ θψ ∧ T . More-
over applying the monotone convergence theorem to the sequence (ψk)k<0

via the trivial decomposition
∫

X

ψk i∂∂̄ϕ ∧ T =

∫

X

ψk (Cω + i∂∂̄ϕ) ∧ T − C

∫

X

ψk ω ∧ T , C >> 0 ,

we deduce, thanks to the assumption (2.5),
∫

X

ψ i∂∂̄ϕ ∧ T = lim
k→−∞

∫

X

ϕ i∂∂̄ψk ∧ T ≤
∫

X

ϕ i∂∂̄ψ ∧ T .
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On the other hand the trivial decomposition

−
∫

X

ψ (θ + εω + i∂∂̄ϕε) ∧ T = −
∫

X

[
ϕε i∂∂̄ψ + ψ (θ + εω)

]
∧ T

= −
∫

X

[
ϕε θψ + ψ (θ + εω)

]
∧ T

+

∫

X

ϕε θ ∧ T ,

combined with the uniform L∞-bound of the family ϕε and the assumption
(2.5) imply the uniform mass bound

sup
ε>0

∫

X

−ψ (θ + εω + i∂∂̄ϕε) ∧ T < +∞ .

We infer the reverse inequality
∫

X

ϕ i∂∂̄ψ ∧ T ≤
∫

X

ψ i∂∂̄ϕ ∧ T ,

as in the case ψ bounded. The case when θ is a closed positive (1, 1)-current
with bounded local potentials follows by linearity. ¤

The following corollary will be very useful for the rest of the paper.

Corollary 2.5 Let (X,ω) be a polarized compact connected Kähler manifold
of complex dimension n and let γ, T be closed positive (1, 1)-currents with
bounded local potentials. Then for all l = 0, ..., n

Cl := sup
ψ∈P0

γ

∫

X

−ψ T l ∧ ωn−l < +∞

and γψ ∧ T l = T l ∧ γψ for all ψ ∈ Pγ.
Proof. The proof of the convergence of the constants Cl goes by induction
on l = 0, ..., n. The statement is true for l = 0 by the �rst integral estimate
of Lemma 2.3. So we assume it is true for l and we prove it for l+ 1. Let us
write T = θ+ i∂∂̄u, with θ smooth, θ ≤ Kω and u bounded with infX u = 0.
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Then ψ, u ∈ Pγ+Kω and the integration by parts formula applies thanks to
the inductive hypothesis. Therefore we can expand the integral

∫

X

−ψ T l+1 ∧ ωn−l−1 =

∫

X

−ψ (θ + i∂∂̄u) ∧ T l ∧ ωn−l−1

≤
∫

X

−ψ T l ∧Kωn−l −
∫

X

u i∂∂̄ψ ∧ T l ∧ ωn−l−1

≤ KCl +

∫

X

(u γ − u γψ) ∧ T l ∧ ωn−l−1

≤ KCl + sup
X
u

∫

X

γ ∧ T l ∧ ωn−l−1 < +∞ ,

by the inductive hypothesis. In sight of the symmetry of the exterior product
we remark that the decreasing monotone convergence theorem implies

lim
c→−∞

∫

X

(ψc − ψ)T l ∧ ωn−l = 0 ,

which means the convergence of the mass ‖(ψc−ψ)T l‖ω(X) → 0 as c→ −∞,
in particular ψcT l → ψT weakly as c → −∞. So by the weak continuity of
the i∂∂̄ operator we deduce

γψc ∧ T l −→ γψ ∧ T l , (2.7)

weakly as c→ −∞. Moreover the weak continuity of the i∂∂̄ operator implies
by induction on l

T l ∧ γψc −→ T l ∧ γψ ,
weakly as c→ −∞. This combined with (2.7) implies γψ ∧ T l = T l ∧ γψ .¤

The following lemma is the key technical tool which allows to deduce State-
ment (C) of Theorem 2.2.

Lemma 2.6 Let X be a compact connected Kähler manifold of complex di-
mension n and let γ be a big closed positive (1, 1)-current with bounded local
potentials.
(A) There exists a constant C = C(γ) > 0 such that Capγ({ψ < −t}) ≤ C/t
for all ψ ∈ P0

γ and t > 0. Moreover the constant C stays bounded for pertur-
bations of γ satisfying the hypothesis of Statement (C) with assumption (C1)
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in Theorem 2.2.
(B) If γn/Ω ∈ L logL(X), for a smooth volume form Ω > 0 then the con-
clusion of Statement (A) holds with a constant C = C(γ,Ω) > 0 which stays
bounded for perturbations of γ satisfying the hypothesis of Statement (C) with
assumption (C2) in Theorem 2.2.
Proof. We �rst notice that the obvious inequality

∫

ψ<−t

γnϕ ≤ 1

t

∫

X

−ψ γnϕ ,

implies

Capγ({ψ < −t}) ≤ 1

t
sup

ϕ∈Pγ [0,1]

{γ}−n
∫

X

−ψ γnϕ . (2.8)

We show now the elementary inequality.
∫

X

−ψ γnϕ ≤
∫

X

−ψ γn + n

∫

X

γn . (2.9)

For this purpose we consider the integrals

Ij :=

∫

X

−ψ γj ∧ γn−jϕ ,

for all j = 0, ..., n. Then Ij ≤ Ij+1 +
∫
X
γn. In fact integrating by parts we

obtain

Ij = Ij+1 −
∫

X

ψ γj ∧ i∂∂̄ϕ ∧ γn−j−1
ϕ

= Ij+1 −
∫

X

i∂∂̄ψ ∧ ϕγj ∧ γn−j−1
ϕ

≤ Ij+1 +

∫

X

ϕγj+1 ∧ γn−j−1
ϕ ≤ Ij+1 +

∫

X

γn .

In this way we deduce the inequality I0 ≤ In + n
∫
X
γn, i.e. the inequality

(2.9). Combining this with the inequality (2.8) we infer the required capacity
estimate of Statement (A) in Lemma 2.6, with constant

0 < C(γ) := n + sup
ψ∈P0

γ

{γ}−n
∫

X

−ψ γn < +∞ ,
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thanks to corollary (2.5). Let now (γt)t>0 be a family satisfying the hy-
pothesis of Statement (C) with assumption (C1) in Theorem 2.2 and Kt =
({γt}n)1/n. We can use the induction in the proof of corollary 2.5 with T = γt,
θ = θt, u = ut and K = Kt to get

C1 ≤ Kt

∫

X

−ψ ωn + sup
X
ut

∫

X

γt ∧ ωn−1

≤ Kt

∫

X

−ψ ωn +RKt

∫

X

ωn ,

where R ≥ supX ut. In general we obtain the inequality

Cl+1 ≤ KtCl +R

∫

X

γl+1
t ∧ ωn−l−1 ≤ KtCl +RK l+1

t

∫

X

ωn .

We deduce the estimate

Cn ≤ Kn
t

∫

X

−ψ ωn + nRKn
t

∫

X

ωn ,

which combined with the stability properties of the constant in lemma 2.3
implies the stability properties of the constant C(γ) in the Statement (A) of
the Lemma 2.6.
We now prove Statement (B) of Lemma 2.6. In fact let f := {γ}−nγn/Ω ≥ 0.
Then the uniform estimate for the integral

{γ}−n
∫

X

−ψ γn =
1

α

∫

X

−αψf Ω

follows from the elementary inequality

−αψf ≤ e−αψ − 1 + f log(1 + f) ,

combined with the uniform estimate
∫
X
e−αψΩ ≤ C of Lemma 2.3. In this

case the required stability properties of the constant C(γ,Ω) > 0 in the
capacity estimate are obvious. ¤

Lemma 2.7 (Comparison Principle). Let X be a compact complex man-
ifold of complex dimension n and let γ be a closed real (1, 1)-current with
bounded local potentials and consider ϕ, ψ ∈ Pγ ∩ L∞(X). Then

∫

ϕ<ψ

γnψ ≤
∫

ϕ<ψ

γnϕ .
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Proof. Let Θ :=
(
γ + i∂∂̄max{ϕ, ψ})n. By the inequality of measures

Θ ≥ I
ϕ≥ψ γ

n
ϕ + I

ϕ<ψ
γnψ ,

proved in [Dem1], we infer
∫

ϕ<ψ

Θ ≥
∫

ϕ<ψ

γnψ ,

∫

ϕ≥ψ

Θ ≥
∫

ϕ≥ψ

γnϕ .

This combined with Stokes' formula implies
∫

ϕ<ψ

γnψ ≤
∫

X

Θ −
∫

ϕ≥ψ

Θ ≤
∫

X

γnϕ −
∫

ϕ≥ψ

γnϕ =

∫

ϕ<ψ

γnϕ .

¤

We recall now the following lemma due to Koªodziej [Kol1], (see also [Ti-Zhu1],
[Ti-Zhu2]).

Lemma 2.8 Let a : (−∞, 0] → [0, 1], be a monotone non-decreasing func-
tion such that for some B > 0, δ > 0 the inequality

t a(s) ≤ B a(s+ t)1+δ

holds for all s ≤ 0, t ∈ [0, 1], s+t ≤ 0. Then for all S < 0 such that a(S) > 0
and all D ∈ [0, 1], S +D ≤ 0 we have the estimate

D ≤ e(3 + 2/δ)B a(S +D)δ .

The following lemma is a simple application of the main result in Bedford-
Taylor [Be-Ta] and of the monotone increasing convergence theorem in pluripo-
tential theory.

Lemma 2.9 Let X be a compact connected complex manifold of complex
dimension n, let γ be a big closed positive (1, 1)-current with bounded local
potentials over X and with continuous local potentials in the complement of
a closed pluripolar set Z ⊂ X. Let Ω > 0 be a smooth volume form. Then
there exist constants α = α(γ,Ω) > 0, C = C(γ,Ω) > 0 such that for all
Borel sets E ⊂ X hold the inequality

∫

E

Ω ≤ eαCe−α/Capγ(E)1/n . (2.10)

In particular Capγ(E) = 0 implies
∫
E

Ω = 0.
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Proof. It is su�cient to prove this estimate for an arbitrary compact set. In
fact assume (2.10) for compact sets and let (Kj)j, Kj ⊂ Kj+1 ⊂ E be a family
of compact sets such that

∫
Kj

Ω → ∫
E

Ω as j → +∞. Set U := ∪jKj ⊂ E

and take the limit in (2.10) with E replaced by Kj. By (2.4) we deduce
∫

E

Ω ≤ eαCe−α/Capγ(U)1/n ≤ eαCe−α/Capγ(E)1/n .

We prove now (2.10) for compact sets K ⊂ X. For this purpose, consider
the function introduced in [Sic], [G-Z]

ΨK(x) := sup{ϕ(x) | ϕ ∈ Pγ , ϕ|K ≤ 0} .
We remark that ΨK ≥ 0 over X and (ΨK)|K = 0 since 0 ∈ Pγ by the
positivity assumption on γ. Assume

∫

K

Ω 6= 0 ,

otherwise there is nothing to prove. In this case there exists a constant
CK > 0 such that supX ϕ ≤ CK for all ϕ ∈ Pγ , ϕ|K ≤ 0. In fact let

SK := {ϕ ∈ Pγ | ϕ|K ≤ 0}
and set ϕ̃ := ϕ− supX ϕ. By contradiction we would get a sequence ϕj ∈ SK
such that supX ϕj → +∞. This implies

sup
K
ϕ̃j → −∞

and so ∫

K

−ϕ̃j Ω ≥ −
( ∫

K

Ω

)
sup
K
ϕ̃j → +∞ ,

which contradicts the �rst integral estimate of Lemma 2.3.
Then it follows from quite standard local arguments that the upper regu-
larization over X r Z satis�es Ψ∗

K ∈ Pγ(X r Z) ∩ L∞(X). By a standard
extension result (see theorem 5.24 in [Dem2]) there exists a unique extension
Ψ̃∗
K ∈ Pγ. Moreover Ψ̃∗

K ≥ 0 over X and Ψ̃∗
K = 0 over the interior K0 of K.

We recall now the following well known consequence of a result of Bedford
and Taylor [Be-Ta].

Theorem 2.10 Let ϕ ∈ Pγ ∩ L∞(X) and let B be an open coordinate ball.
Then there exists ϕ̂ ∈ Pγ ∩L∞(X), ϕ̂ ≥ ϕ such that γnϕ̂ = 0 on B and ϕ̂ = ϕ
on X rB. Moreover if ϕ1 ≤ ϕ2, then ϕ̂1 ≤ ϕ̂2.
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This implies the following quite standard fact in pluripotential theory [Sic],
[Dem1], [G-Z].

Corollary 2.11 Let K ⊂ X be a compact set such that
∫
K

Ω 6= 0. Then the
extremal function Ψ̃∗

K ∈ Pγ ∩L∞(X), previously introduced, satis�es Ψ̃∗
K ≥ 0

over X, Ψ̃∗
K = 0 over the interior K0 of K and (γ + i∂∂̄Ψ̃∗

K)n = 0 over
X rK.
Proof. By the classical Choquet lemma there exists a sequence (ϕj)j ⊂ SK ,
ϕj ≥ 0 such that Ψ̃∗

K = (supj ϕj)
∗ over X r Z. We can assume that this

sequence is increasing. Otherwise, set ϕ̃1 := ϕ1 and

ϕ̃j := max{ϕj, ϕ̃j−1} ∈ SK .
Let B be an open coordinate ball in X r K and let ϕ̂j ∈ SK be a solu-
tion of the Dirichlet problem γnϕ̂j = 0 over B as in Theorem 2.10. Thus the
sequence (ϕ̂j)j ⊂ SK is still increasing and Ψ̃∗

K = (supj ϕ̂j)
∗ over X r Z.

Remember also that the plurisubharmonicity implies that Ψ̃∗
K = limj ϕ̂j al-

most everywhere over X. By the monotone increasing theorem from classical
pluripotential theory, we infer (γ + i∂∂̄Ψ̃∗

K)n = 0 over B, and the conclusion
follows from the fact that B is arbitrary. ¤

The fact that the current γ has continuous local potentials in the comple-
ment of a closed pluripolar set Z ⊂ X implies that any ϕ ∈ Pγ is upper
semicontinuous outside Z. Moreover the proof of Corollary 2.11 shows that
the decreasing sequence of open sets

Uj := {x ∈ X r Z : ϕj(x) < 1/j} ⊃ K r Z ,

(with (ϕj)j increasing) satis�es

Ψ̃∗
K =

(
lim
j
↑ Ψ̃∗

Uj

)∗
, (2.11)

over X r Z. In fact we infer from the inequalities ϕj − 1/j ≤ Ψ̃∗
Uj
≤ Ψ̃∗

K ,

Ψ̃∗
K =

(
lim
j
↑ ϕj

)∗
=

(
lim
j
↑ (ϕj − 1/j)

)∗
≤

(
lim
j
↑ Ψ̃∗

Uj

)∗
≤ Ψ̃∗

K ,

over X rZ. This implies (2.11) which combined with the monotone conver-
gence theorem and with the second integral estimate of Lemma 2.3 gives

∫

K

Ω = lim
j

∫

Uj

Ω ≤ lim
j

∫

X

e
−α Ψ̃∗Uj Ω =

∫

X

e−α Ψ̃∗K Ω ≤ Ce−αAK ,
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where AK := supX Ψ̃∗
K . If AK > 1 set ϕ := A−1

K Ψ̃∗
K . Then

0 ≤ γ + i∂∂̄Ψ̃∗
K ≤ AKγϕ ,

and so ϕ ∈ Pγ[0, 1]. By corollary 2.11 we deduce

{γ}nA−nK = A−nK

∫

K

(γ + i∂∂̄Ψ̃∗
K)n ≤

∫

K

γnϕ ≤ {γ}n Capγ(K ) ,

thus
−αAK ≤ −α/Capγ(K )1/n ,

by the bigness assumption on the current γ. If AK ≤ 1 then Ψ̃∗
K ∈ Pγ[0, 1]

and so

1 = {γ}−n
∫

K

(γ + i∂∂̄Ψ̃∗
K)n ≤ Capγ(K ) ≤ Capγ(X) = 1 .

In both cases we reach the required conclusion. ¤

Proof of Theorem 2.2, part A.
We can assume supX ψ = 0. Let Us := {ψ < s}, s ≤ 0, t ∈ [0, 1], s + t ≤ 0,
ϕ ∈ Pγ[−1, 0] and set

V := {ψ − s− t < tϕ} .
Then we have inclusions Us ⊂ V ⊂ Us+t. By using the Comparison Principle
(2.7) we infer

tn
∫

Us

γnϕ ≤
∫

Us

γntϕ ≤
∫

V

γntϕ ≤
∫

V

γnψ ≤
∫

Us+t

γnψ ,
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thus combining this with Hölder inequality in Orlicz spaces (2.3), formula
(2.2) and Lemma 2.9 we obtain

tn Capγ(Us) ≤ {γ}−n
∫

Us+t

γnψ = {γ}−n
∫

Us+t

f Ω

≤ {γ}−nCε0‖f‖L logn+ε L(X) · ‖1‖Exp
1

n+ε L(Us+t)

=
{γ}−nCε0‖f‖L logn+ε L(X)

logn+ε (1 + 1/VolΩ(Us+t))

≤ {γ}−nCε0‖f‖L logn+ε L(X)

logn+ε
(
1 + e−αC−1eα/Capγ(Us+t)1/n

)

≤ Cε0(k/α)n+ε{γ}−n‖f‖L logn+ε L(X) Capγ(Us+t)
(n+ε)/n .

(Here the constant C > 0 depends on the same quantities as the constant C1

in Statement A and k > 0 is a constant such that

k−1α/x ≤ log(1 + e−αC−1eα/x) ,

for all x ∈ (0, 1]). So if we set δ := ε/n and

B := C1/n
ε0

(k/α)1+ε/nIγ,ε(f)1/n ,

we deduce that the function a(s) := Capγ(Us)
1/n, s ≤ 0, satis�es the hypoth-

esis of Lemma 2.8. (We use here the inequality (2.1).) Consider now the
function κ(t) := KδB tδ, with constant Kδ := e(3+2/δ). Remember also the
uniform capacity estimate

a(s) ≤ C (−s)−1/n ,

of Lemma 2.6. Let now η > 1 be arbitrary. We claim that a(Sη) = 0 for

−Sη = Cn(KδB η)n/δ + 1 .

The fact that the function a is left continuous (by formula (2.4)) will imply
that a(S1) = 0 also. Remark that Sη is a solution of the equation

C(−Sη − 1)−1/n = κ−1(η−1) ,

where κ−1 is the inverse of the function κ. So if we assume by contradiction
that a(Sη) > 0 we deduce by Lemmas 2.8 and 2.6

1 ≤ κ(a(Sη + 1)) ≤ κ(C(−Sη − 1)−1/n) = η−1 < 1 ,
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which is a contradiction. Thus if we set −I := max{s ≤ 0 | a(s) = 0} we
obtain

I ≤ −S1 ≤ Cn(KδB)n/δ + 1 ,

which by arranging the coe�cients yields the right hand side of the estimate
in Statement A of Theorem 2.2. Moreover by de�nition Capγ(U−I) = 0, thus
VolΩ(U−I) = 0 by Lemma 2.9. The fact that the current γ has continuous
local potentials in the complement of a closed pluripolar set Z ⊂ X implies
that the function ψ is upper semicontinuous outside Z, so the set U−I rZ is
open, thus empty. This implies the required conclusion by elementary prop-
erties of plurisubharmonic functions. ¤

Proof of part B.
Set a := max{‖ϕ‖L∞(X), ‖ψ‖L∞(X)}, consider θ ∈ Pγ[0, 1], s ≥ 0, t ∈ [0, 1]
and set

V :=

{
ϕ <

t

1 + a
θ +

(
1− t

1 + a

)
ψ − s− t

}
.

Then the obvious inequality 0 ≤ − t
1+a

ψ ≤ at
1+a

implies the inclusions
{ϕ− ψ < −s− t} ⊂ V ⊂ {ϕ− ψ < −s}. Thus by applying the Comparison
Principle (2.7) as in [Kol2] we obtain

tn

(1 + a)n

∫

ϕ−ψ<−s−t

γnθ ≤
∫

V

[
t

1 + a
γθ +

(
1− t

1 + a

)
γψ

]n

≤
∫

V

γnϕ ≤
∫

ϕ−ψ<−s

γnϕ .

By inverting the roles of ϕ and ψ in the previous inequality and by summing
up we get

tn

(1 + a)n

∫

|ϕ−ψ|>s+t

γnθ ≤
∫

|ϕ−ψ|>s

(f + g) Ω .

By taking the supremum over θ we obtain the capacity estimate

tn Capγ(|ϕ− ψ| > s+ t) ≤ (1 + a)n{γ}−n
∫

|ϕ−ψ|>s

(f + g) Ω , (2.12)

for all s ≥ 0, t ∈ [0, 1]. Set Us := {|ϕ− ψ| > s} ⊂ X. By combining Lemma
2.9 with a computation similar to the one in the proof of part A we obtain
tn Capγ(Us+t) ≤ (1 + a)n{γ}−nC ′ε0‖f + g‖L logn+ε0 L(X) Capγ(Us)

(n+ε0)/n

≤ Bn Capγ(Us)
(n+ε0)/n ,
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where the constant B > 0 depends on the same quantities as the constant
C2 in Statement (B) of Theorem 2.2. We deduce that the function a(s) :=
Capγ(U−s)

1/n, s ≤ 0, satis�es the hypothesis of Lemma 2.8 with δ = ε0/n.
On the other hand, the capacity estimate (2.12) combined with Hölder's
inequality in Orlicz spaces implies for all t ∈ [0, 1] the inequalities

tn Capγ(|ϕ− ψ| > 2t) ≤ (1 + a)n{γ}−n
∫

|ϕ−ψ|>t

(f + g) Ω

≤ (1 + a)n{γ}−n
t

∫

X

|ϕ− ψ|(f + g) Ω

≤ 2(1 + a)n{γ}−n
t

‖ϕ− ψ‖ExpL(X)‖f + g‖L logL(X)

≤ 4K(1 + a)n

t
‖ϕ− ψ‖ExpL(X) . (2.13)

Claim 2.12 If ‖ϕ−ψ‖L1(X) ≤ 1/2, then there exists a constant Ca > 0 such
that

‖ϕ− ψ‖ExpL(X) ≤ Ca/ log ‖ϕ− ψ‖−1
L1(X) .

Proof. We assume ‖ϕ−ψ‖L1(X) > 0, otherwise there is nothing to prove. Set

Ck,a := k(e2a/k − 1)/(2a) ,

k > 0. Then for all k > 0 and all x ∈ [0, 2a/k] the inequality ex − 1 ≤ Ck,a x
holds. Thus the inequality |ϕ− ψ|/k ≤ 2a/k implies

∫

X

(
e|ϕ−ψ|/k − 1

)
Ω ≤ Ck,a

∫

X

|ϕ− ψ|
k

Ω .

We get from there the implication

‖ϕ− ψ‖L1(X) = k/Ck,a =⇒ ‖ϕ− ψ‖ExpL(X) ≤ k , (2.14)

since by de�nition

‖ϕ− ψ‖ExpL(X) := inf



k > 0 |

∫

X

(
e|ϕ−ψ|/k − 1

)
Ω ≤ 1



 .

So if we set µ(k) := k/Ck,a > 0 we deduce by the implication (2.14)

‖ϕ− ψ‖ExpL(X) ≤ µ−1
(‖ϕ− ψ‖L1(X)

)
, (2.15)
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where µ−1 : R>0 → R>0 is the inverse function of µ. Explicitly

µ−1(y) = 2a/ log(1 + 2a/y) ,

for all y > 0. Now there exists a constant Ca > 0 such that

µ−1(y) ≤ Ca/ log(1/y) ,

for all y ∈ (0, 1/2]. This combined with (2.15) implies the conclusion. ¤

Combining Claim 2.12 with the estimate (2.13) we infer the capacity es-
timate

a(−t) ≤ C

t1+1/n

(
log ‖ϕ− ψ‖−1

L1(X)

)−1/n

, (2.16)

where the constant C > 0 depends on the same quantities as the constant
C2 in Statement B. Set now C2 := Cn(2KδB)n/δ > 0 (with Kδ > 0 as in the
proof of Statement (A)) and de�ne

t := Cα0
2

(
log ‖ϕ− ψ‖−1

L1(X)

)−α0

.

The hypothesis t ∈ (0, 1] combined with the hypothesis of Claim 2.12 forces
the condition ‖ϕ − ψ‖L1(X) ≤ min{1/2, e−C2}. Moreover t is solution of the
equation

C

t1+1/n

(
log ‖ϕ− ψ‖−1

L1(X)

)−1/n

= κ−1

(
t

2

)
,

where κ−1 is the inverse of the function κ introduced in the proof of part A.
We claim that a(−2t) = 0. Otherwise, by Lemma 2.8 and inequality (2.16),
we infer

0 < t ≤ κ(a(−t)) ≤ κ(κ−1(t/2)) = t/2 ,

which is absurd. We deduce

VolΩ(|ϕ− ψ| > 2t) = 0

by Lemma 2.9. We prove now that the set

U2t = {|ϕ− ψ| > 2t} ⊂ X ,

is empty, which will imply the desired L∞-stability estimate. The fact that
|ϕ− ψ| ≤ 2t a.e. over X, implies

∣∣∣∣ −
∫

B(x,r)

(ϕ− ψ) dλ

∣∣∣∣ ≤ 2t ,
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for all coordinate open balls B(x, r) ⊂ X. (The symbol −
∫
B

represents the
mean value operator.) By elementary properties of plurisubharmonic func-
tions follows

ϕ(x)− ψ(x) = lim
r→0+

−
∫

B(x,r)

(ϕ− ψ) dλ ,

for all x ∈ X. We infer |ϕ− ψ| ≤ 2t over X. ¤

Corollary 2.13 Let (X,ω) be a polarized compact connected n-dimensional
Kähler manifold, let α ∈ H1,1(X,R) be a (1, 1)-cohomology class with

∫
X
αn >

0, which admits a closed positive (1, 1)-current with bounded local potentials
and let Γ := (γε)ε>0 ⊂ α be a family of smooth (1, 1)-forms with uniformly
bounded potentials such that γε + εω > 0. Moreover let Ω > 0 be a smooth
volume form, let f ∈ L logn+δ L(X), δ > 0, such that

∫
X
αn =

∫
X
f Ω and let

(fε)ε>0 ⊂ C∞(X) be a family converging to f in the L logn+δ L(X)-norm as
ε→ 0+, satisfying the integral condition

∫

X

(γε + εω)n =

∫

X

fε Ω . (2.17)

Then, for any real number λ ≥ 0, the unique solution of the non-degenerate
complex Monge-Ampère equation

(γε + εω + i∂∂̄ψε)
n = fε e

λψεΩ , (2.18)

given by Yau's and Aubin-Yau's solution of Calabi's conjecture (which in the
case λ = 0 is normalized by maxX ψε = 0) satis�es the uniform L∞-estimate

‖ψε‖L∞(X) ≤ C(δ,Γ,Ω) Iα,δ(f)
n
δ + 1 . (2.19)

Proof. The existence of a regularizing family fε of f in L logn+δ L(X) follows
from [Ra-Re] page 364 or [Iw-Ma], Theorem 4.12.2, page 79. We can always
assume the integral condition (2.17) otherwise we multiply fε by a constant
cε > 0 which converges to 1 by the normalizing condition

∫
X
αn =

∫
X
f Ω.

We distinguish two cases.

Case λ = 0. The hypothesis of Statement (C) with assumption (C1) of
Theorem 2.2 are obviously satis�ed for the family (γε+εω)ε∈(0,1). We deduce
that the constant C1 = C1(δ , γε + εω , Ω) > 0 in the Statement of Theorem
2.2, A does not blow up as ε→ 0+. Moreover the uniform estimate

‖fε‖L logn+δ L(X) ≤ C ′‖f‖L logn+δ L(X) =: K (2.20)
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holds for all ε ∈ (0, 1). Thus by Theorem 2.2, A we obtain the required
uniform estimate (2.19).

Case λ > 0. We start by proving the following lemma, which is a parti-
cular case of a more general result due to Yau (see [Yau], sect. 6, page 376).

Lemma 2.14 Let (X,ω) be a polarized compact Kähler manifold of complex
dimension n, let h be a smooth function such that

∫
X
ωn =

∫
X
ehωn and let

ϕ ∈ Pω be the unique solution of the complex Monge-Ampère equation

(ω + i∂∂̄ϕ)n = eh+λϕωn , (2.21)

λ > 0. Consider also two solutions ϕ′, ϕ′′ ∈ Pω of the complex Monge-
Ampère equation (ω + i∂∂̄ψ)n = ehωn such that minX ϕ

′ = 0 = maxX ϕ
′′.

Then ϕ′′ ≤ ϕ ≤ ϕ′.
Proof. The argument is a simpli�cation, in our particular case, of Yau's
original argument for the proof of Theorem 4, sect. 6 in [Yau]. Set ϕ′0 :=
ϕ′, ϕ′′0 := ϕ′′ and consider the solutions ϕ′j, ϕ′′j of the complex Monge-Ampère
equations given by the iteration

(ω + i∂∂̄ϕ′j)
n = eh+(λ+1)ϕ′j−ϕ′j−1 ωn , (2.22)

(ω + i∂∂̄ϕ′′j )
n = eh+(λ+1)ϕ′′j−ϕ′′j−1 ωn . (2.23)

Notice that we can solve these equations even if the terms eh−ϕ′j−1 , eh−ϕ′′j−1

are not normalized, see Lemma 2 page 378 in [Yau]. Set L := λ + 1 and
consider

(ω + i∂∂̄ϕ′1)
n = eh+L(ϕ′1−ϕ′0)+λϕ′0ωn ≥ eL(ϕ′1−ϕ′0)ehωn = eL(ϕ′1−ϕ′0)(ω + i∂∂̄ϕ′0)

n .

At a maximum point of ϕ′1 − ϕ′0 we have the inequality

(ω + i∂∂̄ϕ′0)
n ≥ (ω + i∂∂̄ϕ′1)

n .

By plugging this into the previous one, we deduce ϕ′1 ≤ ϕ′0. We now prove by
induction the inequality ϕ′j ≤ ϕ′j−1. In fact by dividing (2.22)j with (2.22)j−1

we get

(ω + i∂∂̄ϕ′j)
n

(ω + i∂∂̄ϕ′j−1)
n

= eL(ϕ′j−ϕ′j−1)−(ϕ′j−1−ϕ′j−2) ≥ eL(ϕ′j−ϕ′j−1) .

At a maximum point of ϕ′j − ϕ′j−1 we �nd again the inequality

(ω + i∂∂̄ϕ′j)
n ≤ (ω + i∂∂̄ϕ′j−1)

n .

25



Combining this with the previous one we deduce ϕ′j ≤ ϕ′j−1. By applying a
quite similar argument to (2.23) we obtain also ϕ′′j−1 ≤ ϕ′′j . We also prove
by induction the inequality ϕ′′j ≤ ϕ′j, which is true by de�nition in the case
j = 0. By dividing (2.22)j with (2.23)j we get

(ω + i∂∂̄ϕ′j)
n

(ω + i∂∂̄ϕ′′j )n
= eL(ϕ′j−ϕ′′j )−(ϕ′j−1−ϕ′′j−1) ≤ eL(ϕ′j−ϕ′′j ) ,

by the induction hypothesis ϕ′′j−1 ≤ ϕ′j−1. At a minimum point of ϕ′j − ϕ′′j
we get

(ω + i∂∂̄ϕ′j)
n ≥ (ω + i∂∂̄ϕ′′j )

n ,

hence ϕ′′j ≤ ϕ′j. As a conclusion, we have proved the sequence of inequalities

ϕ′′0 ≤ ϕ′′j−1 ≤ ϕ′′j ≤ ϕ′j ≤ ϕ′j−1 ≤ ϕ′0 . (2.24)

We now prove a uniform estimate for the Laplacian of the potentials ϕ′j. The
inequalities 2.24 imply 0 < 2n + ∆ωϕ

′
j ≤ C Bj, where Bj > 0 satis�es the

uniform estimate

0 ≥ C1B
1

n−1

j −
(
2n+ max

X
∆ωϕ

′
j−1

)
B−1
j − C0 , (2.25)

C0, C1 > 0, which is obtained by applying the maximum principle in a
similar way as in Yau's proof of the second order estimate for the solution of
the Calabi conjecture [Yau]. (It can also be obtained by setting δ = l = h = 0
and ω̃ε = ω in step (B) in the proof of Theorem 6.1, (see Appendix B). In the
case n = 1 the uniform estimate 0 < 2n + ∆ωϕ

′
j ≤ C ′ follows immediately

from the inequalities (2.24).) Fix now a constant C2 > 0 such that the
inequality

C1 x
1+ 1

n−1 ≥ (C0 + 2C)x− C2 ,

holds for all x ≥ 0. This implies by (2.25) the estimate

2(2n+ ∆ωϕ
′
j) ≤ 2C Bj ≤

(
2n+ max

X
∆ωϕ

′
j−1

)
+ C2 ,

thus
2n+ max

X
∆ωϕ

′
j ≤ 2−j

(
2n+ max

X
∆ωϕ

′
0

)
+ C2 ,

by iteration. By taking the derivative in the Green Formula (see [Aub], Th.
4.13 page 108) we get the identity

dxϕ
′
j = −

∫

X

dxGω(x, ·) ∆ωϕ
′
j ω

n ,
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which implies the estimate

|∇ωϕ
′
j|ω ≤ Cω max

X
∆ωϕ

′
j ≤ K .

By applying the complex version of the Evans-Krylov theory [Ti2] we de-
duce the uniform estimate ‖ϕ′j‖C2,α(X) ≤ K ′. This combined with (2.22)
implies that the monotone sequence (ϕ′j)j converges in the C2,α-topology to
the unique solution ϕ of the complex Monge-Ampère equation (2.21). Then
the conclusion follows from the inequalities (2.24). ¤

Consider now the solutions ψ′ε, ψ′′ε , minX ψ
′
ε = 0 = maxX ψ

′′
ε of the com-

plex Monge-Ampère equation (2.18) for λ = 0. By applying Lemma 2.14 we
deduce ψ′′ε ≤ ψε ≤ ψ′ε for all ε > 0. By the argument in the case λ = 0, we
infer ‖ψ′ε‖L∞(X), ‖ψ′′ε‖L∞(X) ≤ C, thus ‖ψε‖L∞(X) ≤ C. ¤

3 Basic properties of currents in the class BT

In the situation we have to consider, the relevant class of currents which can
be used as the input of Monge-Ampère operators is de�ned as follows.

De�nition 3.1 On a complex manifold, we consider the class BT of closed
positive (1, 1)-currents Θ whose exterior products Θk, 0 ≤ k ≤ n, can be
de�ned inductively in the sense of Bedford-Taylor, namely, if Θ = i∂∂̄ψ
on any open set, then ψΘk is locally of �nite mass and Θk+1 = i∂∂̄(ψΘk)
for k < n.

Notice that the local �niteness of the mass of ψΘk is independent of the
choice of the psh potential ψ, and that this assumption allows indeed to com-
pute inductively i∂∂̄(ψΘk) in the sense of currents. The case where the local
potentials ϕ are bounded has been considered in [Be-Ta]. The unbounded
case considered here appears �rst in [Sib] and also in the subsequent papers
[Fo-Si], [Di-Si]. Now, if α ∈ H1,1(X,R) is a pseudoe�ective class, we set
BTα = BT∩ α. Let γ ≥ 0 be a closed positive (1, 1)-current with bounded
local potentials. We de�ne corresponding classes of potentials

P BTγ :=
{
ϕ ∈ Pγ | γ + i∂∂̄ϕ ∈ BT{γ}

}
,

P BT0
γ := {ϕ ∈ P BTγ | sup

X
ϕ = 0} .

Let ϕ ∈ P BTγ with zero Lelong numbers. It is well known from the work of
the �rst author [Dem4] (which becomes drastically simple in this particular
case), that there exists a family (ϕε)ε>0, ϕε ∈ Pγ+εω ∩ C∞(X), such that
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ϕε ↓ ϕ as ε ↓ 0+. In the case the Lelong numbers of ϕ are not zero we can
chose R > 0 su�ciently big such that 0 ≤ γ + Rω + i∂∂̄ϕε for all ε ∈ (0, 1)
and ϕε ↓ ϕ as ε→ 0+. We have the following crucial result.

Theorem 3.2 (Degenerate monotone convergence result).
Let (X,ω) be a polarized compact Kähler manifold of complex dimension n
and let γ, T be closed positive (1, 1)-currents with bounded local potentials.
Then the following statements hold true.
(A) For all ϕ ∈ P BTγ, ϕ ≤ 0 and k, l ≥ 0, k + l ≤ n, k ≤ n− 1

Ik,l :=

∫

X

−ϕγkϕ ∧ T l ∧ ωn−k−l < +∞ , and γk+1
ϕ ∧ T l = T l ∧ γk+1

ϕ .

(B) Let ϕ ∈ P BTγ, ϕ ≤ 0 with zero Lelong numbers and ϕε ∈ Pγ+εω ∩
C∞(X), such that ϕε ↓ ϕ as ε → 0+. Then for all k, l ≥ 0, k + l ≤ n,
k ≤ n− 1

ϕε (γϕε + εω)k ∧ T l −→ ϕγkϕ ∧ T l , (3.1)

(γϕε + εω)k+1 ∧ T l −→ γk+1
ϕ ∧ T l , (3.2)

weakly as ε→ 0+.
(C) Let ϕ ∈ P BTγ, ϕ ≤ 0 and ϕε ∈ Pγ+Rω ∩ C∞(X) such that ϕε ↓ ϕ as
ε→ 0+. Then for all k, l ≥ 0, k + l ≤ n, k ≤ n− 1

ϕε (γϕε +Rω)k ∧ T l −→ ϕ (γϕ +Rω)k ∧ T l , (3.3)

(γϕε +Rω)k+1 ∧ T l −→ (γϕ +Rω)k+1 ∧ T l , (3.4)

weakly as ε→ 0+.

As follows immediately from the proof, the statement of this theorem still
holds if we replace T l with a product T1∧ ....∧Tl, where the currents Tj have
the same properties as T . As a matter of fact, we wrote the statement in
the previous special case only for the sake of notation simplicity. However,
in the course of the proof, it is useful to notice that statements concerning
terms involving T l are still valid if we replace T l with γr ∧ T l−r.

Proof. Statement (3.2) follows from (3.1) by using the weak continuity of
the i∂∂̄ operator. The argument for Statement (B) is the same as for (C).
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Proof of (A).We denote by Ak,l the special case of Statement (A) in the the-
orem for the relative indices (k, l). We prove Statements Ak,l, l = 0, ..., n− k
by using an induction on k = 0, ..., n − 1. We remark that corollary 2.5
asserts Statement (A) in full generality for k = 0. So we assume Statement
Ak−1,• and we prove Ak,l, l = 0, ..., n − k by using an induction on l. We
remark that Ak,0 holds by the hypothesis ϕ ∈ P BTγ. So we assume Ak,l
and we prove Ak,l+1. In fact let ϕc := max{ϕ, c} ∈ Pγ, c ∈ R<0 and write
T = θ + i∂∂̄u, with θ smooth, θ ≤ Cω and u bounded with infX u = 0.
By using the monotone convergence theorem, the symmetry of the wedge
product provided by the inductive hypothesis in k and the integration by
parts formula (2.6) (which applies thanks to the inductive hypothesis in l),
we expand the integral

Ik,l+1 = −
∫

X

ϕ (θ + i∂∂̄u) ∧ T l ∧ γkϕ ∧ ωn−k−l−1

≤ C Ik,l −
∫

X

u i∂∂̄ϕ ∧ γkϕ ∧ T l ∧ ωn−k−l−1

= C Ik,l +

∫

X

u (γ − γϕ) ∧ γkϕ ∧ T l ∧ ωn−k−l−1

≤ C Ik,l + sup
X
u

∫

X

γ ∧ γkϕ ∧ T l ∧ ωn−k−l−1 < +∞ ,

by the inductive hypothesis in l. We now prove the symmetry relation

γk+1
ϕ ∧ T l = T l ∧ γk+1

ϕ . (3.5)

The decreasing monotone convergence theorem implies

lim
c→−∞

∫

X

(ϕc − ϕ) γkϕ ∧ T l ∧ ωn−k−l = 0 ,

which means the convergence of the mass ‖(ϕc − ϕ) γkϕ ∧ T l‖ω(X) → 0 as
c→ −∞. In particular

ϕc γ
k
ϕ ∧ T l −→ ϕγkϕ ∧ T ,

weakly as c→ −∞. So by the weak continuity of the i∂∂̄ operator we deduce

γϕc ∧ γkϕ ∧ T l −→ γk+1
ϕ ∧ T l , (3.6)
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weakly as c → −∞. The symmetry of the wedge product provided by the
inductive hypothesis in k implies

γϕc ∧ γkϕ ∧ T l = γϕc ∧ T l ∧ γkϕ = T l ∧ γϕc ∧ γkϕ
By the other hand (3.6)k,0 combined with the weak continuity of the i∂∂̄
operator implies, by an induction on l

T l ∧ γϕc ∧ γkϕ −→ T l ∧ γk+1
ϕ ,

weakly as c→ −∞. This combined with (3.6) implies the required symmetry
(3.5).

Proof of (B). For all k = 0, ..., n − 1 and l = 0, ..., n − k we consider
the following statement Bk,l: for all p = 0, ..., k

ϕε γ
p
ϕ ∧ (γϕε + εω)k−p ∧ T l −→ ϕγkϕ ∧ T l , (3.7)

i∂∂̄ϕε ∧ γpϕ ∧ (γϕε + εω)k−p ∧ T l −→ i∂∂̄ϕ ∧ γkϕ ∧ T l , (3.8)

γpϕ ∧ (γϕε + εω)k−p+1 ∧ T l −→ γk+1
ϕ ∧ T l , (3.9)

ϕγpϕ ∧ (γϕε + εω)k−p ∧ T l −→ ϕγkϕ ∧ T l , (3.10)

weakly as ε → 0+. We remark that (3.8) follows from (3.7) by the weak
continuity of the i∂∂̄ operator. By combining (3.8) with the weak continuity
of the i∂∂̄ operator we obtain

(γϕε + εω) ∧ γpϕ ∧ (γϕε + εω)k−p ∧ T l −→ γk+1
ϕ ∧ T l ,

weakly as ε → 0+. On the other hand the symmetry of the wedge product
proved in part (A) of the theorem implies

(γϕε + εω) ∧ γpϕ ∧ (γϕε + εω)k−p ∧ T l = (γϕε + εω)k−p+1 ∧ T l ∧ γpϕ

= γpϕ ∧ (γϕε + εω)k−p+1 ∧ T l .
In this way we deduce (3.9). The statements B0,• are true by the proof of
corollary 2.5. We now prove by induction on k = 0, ..., n− 1 that Statements
Bk,l, l = 0, ..., n− k hold true. In fact we prove the following claim.

Claim 3.3 If Bj,• holds true for all j = 0, ..., k− 1, then Bk,l holds also true
for all l = 0, ..., n− k.
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As pointed out before in order to prove Bk,l it is su�cient to show (3.7) and
(3.10). The proof of (3.10) is quite similar to the proof of (3.7) that we now
explain. We �rst prove by induction on s = 0, ..., k − p the inequality

∫

X

−ϕε γpϕ ∧ (γϕε + εω)k−p ∧ T l ∧ ωn−k−l

≤
∫

X

−ϕγp+sϕ ∧ (γϕε + εω)k−p−s ∧ T l ∧ ωn−k−l

+
s−1∑
r=0

∫

X

(ϕε − ϕ) γp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ γ ∧ T l ∧ ωn−k−l

−
s−1∑
r=0

∫

X

εϕ γp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ T l ∧ ωn−k−l+1. (3.11)

Inequality (3.11) is obviously true for s = 0. (Here we adopt the usual
convention of neglecting a sum when it runs over an empty set of indices.)
Before proceding to the proof of the inequality (3.11), we need to point out
two useful facts.
1) Let α be a smooth closed real (q, q)-form, R be a closed positive (r, r)-
current, v ≥ 0 be a measurable function such that

∫
X
vR∧ωn−r < +∞. This

implies that the currents i∂∂̄v∧R := i∂∂̄(v R) and i∂∂̄v∧α∧R := i∂∂̄(vα∧R)
are well de�ned. Then the Leibniz formula implies

α ∧ i∂∂̄v ∧R = i∂∂̄v ∧ α ∧R . (3.12)

2) Thanks to part (A) of the theorem we have
∫

X

−ϕγp+rϕ ∧ γh ∧ T l ∧ ωn−p−r−h−l < +∞

for all h = 0, ..., k − p− r − 1. By (3.12) this implies
∫

X

−ϕγp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ T l ∧ ωn−k−l+1 < +∞ ,

so the current
S := ϕγp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ T l

is well de�ned and we can de�ne the current

i∂∂̄ϕ ∧ γp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ T l := i∂∂̄S .
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Then the integration by parts formula
∫

X

i∂∂̄ϕε ∧ S ∧ ωn−k−l =

∫

X

ϕε i∂∂̄S ∧ ωn−k−l

can be written explicitly as
∫

X

i∂∂̄ϕε ∧ ϕγp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ T l ∧ ωn−k−l

=

∫

X

ϕε i∂∂̄ϕ ∧ γp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ T l ∧ ωn−k−l . (3.13)

We suppose now the inequality (3.11) true for s and we prove it for s + 1.
We start by expanding, thanks to formula (3.12), the integral

J :=

∫

X

−ϕγp+sϕ ∧ (γϕε + εω)k−p−s ∧ T l ∧ ωn−k−l

=

∫

X

−ϕγp+sϕ ∧ (γ + εω) ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l

+

∫

X

−ϕγp+sϕ ∧ i∂∂̄ϕε ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l

=

∫

X

−εϕ γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l+1

−
∫

X

ϕγp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ γ ∧ T l ∧ ωn−k−l

−
∫

X

i∂∂̄ϕε ∧ ϕγp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l .
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By applying the integration by parts formula (3.13) to the last integral we
deduce

J =

∫

X

−ϕε γp+s+1
ϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l

+

∫

X

ϕε γ ∧ γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l

−
∫

X

ϕγp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ γ ∧ T l ∧ ωn−k−l

−
∫

X

εϕ γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l+1 .

By combining the symmetry of the wedge product proved in part (A) with
formula (3.12) we get

γ ∧ γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l = γ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ γp+sϕ

= (γϕε + εω)k−p−s−1 ∧ γ ∧ T l ∧ γp+sϕ

= γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ γ ∧ T l .

By plugging this into the previous expression of J we obtain

J =

∫

X

−ϕε γp+s+1
ϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l

+

∫

X

(ϕε − ϕ) γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ γ ∧ T l ∧ ωn−k−l

−
∫

X

εϕ γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l+1 ,
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which implies inequality (3.11) for s+ 1. For s = k− p the inequality (3.11)
rewrites as

∫

X

−ϕε γpϕ ∧ (γϕε + εω)k−p ∧ T l ∧ ωn−k−l ≤
∫

X

−ϕγkϕ ∧ T l ∧ ωn−k−l

+
k−1∑
r=p

∫

X

(ϕε − ϕ) γrϕ ∧ (γϕε + εω)k−r−1 ∧ γ ∧ T l ∧ ωn−k−l

−
k−1∑
r=p

∫

X

εϕ γrϕ ∧ (γϕε + εω)k−r−1 ∧ T l ∧ ωn−k−l+1 .

By using the inductive convergence hypothesis (3.7)j,•, (3.10)j,• in Bj,• for
j ≤ k − 1 we deduce

lim sup
ε→0+

∫

X

−ϕε γpϕ ∧ (γϕε + εω)k−p ∧ T l ∧ ωn−k−l

≤
∫

X

−ϕγkϕ ∧ T l ∧ ωn−k−l < +∞ , (3.14)

by Statement A. (We can always arrange ϕε ≤ 0 for all ε ∈ (0, 1) by changing
ϕ into ϕ−C.) Thus by weak compactness of the mass there exists a sequence
(εj)j, εj ↓ 0+ and a current of order zero Θ ∈ D′

n−k−l,n−k−l(X) such that

ϕεj γ
p
ϕ ∧ (γϕεj + εj ω)k−p ∧ T l −→ Θ ,

weakly as j → +∞. So for any smooth and strongly positive form α of
bidegree (n− k − l, n− k − l), we have

ϕεj γ
p
ϕ ∧ (γϕεj + εj ω)k−p ∧ T l ∧ α −→ Θ ∧ α ,

weakly as j → +∞. The fact that ϕεj ↓ ϕ and

γpϕ ∧ (γϕεj + εj ω)k−p ∧ T l ∧ α −→ γkϕ ∧ T l ∧ α ,

weakly as j → +∞, by the convergence inductive hypothesis (3.9)k−1,l, im-
plies

Θ ∧ α ≤ ϕγkϕ ∧ T l ∧ α ,
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thanks to Lemma (3.9), page 189 in [Dem2]. Thus Θ ≤ ϕγkϕ∧T l . Combining
this with the inequality (3.14) we obtain

∫

X

Θ ∧ ωn−k−l ≤
∫

X

ϕγkϕ ∧ T l ∧ ωn−k−l

≤ lim inf
ε→0+

∫

X

ϕε γ
p
ϕ ∧ (γϕε + εω)k−p ∧ T l ∧ ωn−k−l

≤ lim
j→+∞

∫

X

ϕεj γ
p
ϕ ∧ (γϕεj + εj ω)k−p ∧ T l ∧ ωn−k−l

=

∫

X

Θ ∧ ωn−k−l .

We deduce Trω(ϕγ
k
ϕ ∧ T l − Θ) = 0, which implies ϕγkϕ ∧ T l = Θ since

0 ≤ ϕγkϕ ∧ T l −Θ. This proves Statement Bk,l. ¤

We introduce also the subsets

P̂ BTγ :=

{
ϕ ∈ P BT0

γ |
∫

X

−ϕγnϕ < +∞
}

+ R ⊂ P BTγ ,

P̂ BT0
γ := {ϕ ∈ P̂ BTγ | sup

X
ϕ = 0} .

Without changes in the proof of Theorem 3.2 we get the following corollary.

Corollary 3.4 For all ϕ ∈ P̂ BTγ, ϕ ≤ 0, the assertions A), B) and C) of
Theorem 3.2 hold for all k = 0, ..., n.

Let now Θ be a closed positive (n−1, n−1)-current and consider the L2-space

L2(X,Θ) :=



α ∈ Γ(X,Λ1,0T ∗X) |

∫

X

iα ∧ ᾱ ∧Θ < +∞


/

Θ−a.e

,

equipped with the hermitian product 〈α, β〉Θ :=
∫
X
iα∧ β̄ ∧Θ, which is well

de�ned by the polarization identity. The Θ-almost everywhere equivalence
relation is de�ned by : α ∼ β i�

∫

X

i(α− β) ∧ (α− β) ∧Θ = 0 .
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The subscript �Θ-a.e.� in the de�nition of L2(X,Θ) above is �Θ-almost
everywhere. Let αk, α ∈ L2(X,Θ). We say that the sequence αk converges
L2(X,Θ)-weakly to α if

∫

X

iα ∧ β̄ ∧Θ = lim
k→+∞

∫

X

iαk ∧ β̄ ∧Θ ,

for all β ∈ L2(X,Θ). Let ϕ ∈ P0
γ such that

∫
X
−ϕΘ ∧ ω < +∞. Then

one can de�ne ∂ϕ ∧ Θ := ∂(ϕΘ). We write ∂ϕ ∈ L2(X,Θ) if there exists
α ∈ L2(X,Θ) such that ∂(ϕΘ) = α∧Θ in the sense of currents. In this case
we write ∫

X

i∂ϕ ∧ ∂̄ϕ ∧Θ :=

∫

X

iα ∧ ᾱ ∧Θ .

With these notations we have the following corollary.

Corollary 3.5 Let (X,ω) be a polarized compact Kähler manifold of complex
dimension n and let γ, T be closed positive (1, 1)-currents with bounded local
potentials, let Θ be a closed positive (n− 1, n− 1)-current and consider ϕ ∈
P̂ BTγ, ϕ ≤ 0, ψ ∈ Pγ ∩L∞(X), ψ ≤ 0. Then for all k, l ≥ 0, k+ l ≤ n− 1,

∫

X

i∂ϕ ∧ ∂̄ϕ ∧ γkϕ ∧ T l ∧ ωn−k−l−1 < +∞ , (3.15)

∫

X

i∂ψ ∧ ∂̄ψ ∧Θ < +∞ . (3.16)

Moreover let (ϕε)ε>0, (ψε)ε>0 ⊂ C∞(X), ϕε ∈ Pγ+Rω, ψε ∈ Pγ+εω such that
ϕε ↓ ϕ, ψε ↓ ψ as ε→ 0+. Then

lim
ε→0+

∫

X

i∂(ϕε − ϕ) ∧ ∂̄(ϕε − ϕ) ∧ γkϕ ∧ T l ∧ ωn−k−l−1 = 0 , (3.17)

lim
ε→0+

∫

X

i∂(ψε − ψ) ∧ ∂̄(ψε − ψ) ∧Θ = 0 . (3.18)

Proof. By integrating by parts we obtain
∫

X

i∂ϕε ∧ ∂̄ϕε ∧ γkϕ ∧ T l ∧ ωn−k−l−1

= −
∫

X

ϕε i∂∂̄ϕε ∧ γkϕ ∧ T l ∧ ωn−k−l−1
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=

∫

X

ϕε (γ +Rω) ∧ γkϕ ∧ T l ∧ ωn−k−l−1

−
∫

X

ϕε (γϕε +Rω) ∧ γkϕ ∧ T l ∧ ωn−k−l−1 .

By the proof of Theorem 3.2, B we can take the limit, so

0 ≤ lim
ε→0+

∫

X

i∂ϕε ∧ ∂̄ϕε ∧ γkϕ ∧ T l ∧ ωn−k−l−1

=

∫

X

ϕ (γ − γϕ) ∧ γkϕ ∧ T l ∧ ωn−k−l−1 < +∞ . (3.19)

On the other hand the weak convergence of the sequence

ϕε γ
k
ϕ ∧ T l ∧ ωn−k−l−1 −→ ϕγkϕ ∧ T l ∧ ωn−k−l−1 ,

combined with the weak continuity of the ∂ operator implies

∂ϕε ∧ γkϕ ∧ T l ∧ ωn−k−l−1 −→ ∂ϕ ∧ γkϕ ∧ T l ∧ ωn−k−l−1 ,

weakly as ε → 0+. Then the L2(X, γkϕ ∧ T l ∧ ωn−k−l−1)-weak compactness
provided by (3.19) implies (3.15) and the L2(X, γkϕ ∧ T l ∧ ωn−k−l−1)-weak
convergence ∂ϕε → ∂ϕ as ε→ 0+. This implies

∫

X

i∂ϕ ∧ ∂̄ϕ ∧ γkϕ ∧ T l ∧ ωn−k−l−1

= lim
ε→0+

∫

X

i∂ϕε ∧ ∂̄ϕ ∧ γkϕ ∧ T l ∧ ωn−k−l−1

= lim
ε→0+

∫

X

−ϕε i∂∂̄ϕ ∧ γkϕ ∧ T l ∧ ωn−k−l−1

= lim
ε→0+

∫

X

−ϕε (γ − γϕ) ∧ γkϕ ∧ T l ∧ ωn−k−l−1

=

∫

X

−ϕ (γ − γϕ) ∧ γkϕ ∧ T l ∧ ωn−k−l−1

= lim
ε→0+

∫

X

i∂ϕε ∧ ∂̄ϕε ∧ γkϕ ∧ T l ∧ ωn−k−l−1 ,
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by identity (3.19). This implies (3.17) by elementary facts about Hilbert
spaces. The proof of (3.16) and (3.18) is quite similar. ¤

The conclusion of the corollary 3.5 still holds true if we replace the current
γkϕ ∧ T l ∧ ωn−k−l−1 with a sum of currents

Ξ :=
∑

k+l≤n−1

Ck,l γ
k
ϕ ∧ T l ∧ ωn−k−l−1 ,

where Ck,l ∈ R such that Ξ ≥ 0. We infer the linearity formula
∫

X

i∂ϕ ∧ ∂̄ϕ ∧ Ξ =
∑

k+l≤n−1

Ck,l

∫

X

i∂ϕ ∧ ∂̄ϕ ∧ γkϕ ∧ T l ∧ ωn−k−l−1 .

4 Uniqueness of the solutions
We start with a renormalization result for the density volume form of a big
and nef (1, 1)-cohomology class. This uses [De-Pa] in a crucial way.

Lemma 4.1 Let (X,ω) be a compact Kähler manifold of complex dimen-
sion n, let T be a big closed positive (1, 1)-current with bounded local poten-
tials. Then there exist a big closed positive (1, 1)-current γ with bounded local
potentials, cohomologous to T , a continuous function λ ≥ 0 and a complex
analytic subset Z ⊂ X such that γ ≥ λω over X and λ > 0 over X r Z.
Proof. Let θ be a smooth closed (1, 1)-form representing the cohomology
class of T . The assumption on T means that we can write T = θ+ i∂∂̄ψ ≥ 0
where ψ is a bounded quasi-plurisubharmonic function. By the approxima-
tion theorem of [Dem4], there exists a decreasing sequence ψj of smooth
quasi-plurisubharmonic functions converging to ψ such that

θ + i∂∂̄ψj ≥ −j−1 ω,

in particular the class {T} = {θ} is nef (i.e. numerically e�ective in the sense
of [Dem4]) and big. By Theorem 0.5 of [De-Pa], there also exists a Kähler
current Θ = θ + i∂∂̄ϕ ∈ {θ}, with Θ ≥ εω (in the sense of currents) and
ε > 0, such that ϕ has logarithmic poles on some analytic subset Z ⊂ X and
ϕ is smooth on X r Z. The function

ϕj := max(ϕ, ψ − j) ,

is a bounded quasi-subharmonic function which coincides with ϕ on the open
set

Wj = {z ∈ X r Z ; ψ(z)− ϕ(z) < j} .
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Clearly we have θ + i∂∂̄ϕj ≥ 0 on X and

θ + i∂∂̄ϕj = θ + i∂∂̄ϕ = Θ ≥ εω on Wj.

Therefore the function Φ =
∑

j≥1 2−jϕj is a bounded quasi-plurisubharmonic
potential on X (notice that there is uniform convergence since
−j − C ≤ ϕj ≤ C on X) such that θ + i∂∂̄Φ ≥ 0 over X. Moreover

θ + i∂∂̄Φ ≥ εω
∑

j≥l+1

2−j on Wl ,

for all l ≥ 1. We infer the existence of a continuous function λ ≥ 0 on X
such that γ := θ + i∂∂̄Φ ≥ λω over X and λ(x) > 0 on

⋃
Wj = X r Z. ¤

Theorem 4.2 Let X be a compact connected Kähler manifold of complex
dimension n and let γ be a big closed positive (1, 1)-current with bounded
local potentials.
(A) Let ψ ∈ P0

γ ∩ L∞(X) and ϕ ∈ P BT0
γ such that

(γ + i∂∂̄ψ)n = (γ + i∂∂̄ϕ)n .

Then ψ = ϕ.
(B) Let ψ, ϕ ∈ Pγ ∩ L∞(X) such that

e−λψ(γ + i∂∂̄ψ)n = e−λϕ(γ + i∂∂̄ϕ)n .

with λ > 0. Then ψ = ϕ.

Proof of A. By the ∂∂̄-lemma and by the previous statement 4.1 we can
assume that the current γ satis�es the estimate γ ≥ λω, with λ as in lemma
4.1. The identity γnϕ = γnψ implies ϕ ∈ P̂ BT0

γ by corollary 2.5. Let ϕε, ψε be
as in the statement of corollary 3.5 and set u := ψ − ϕ, uε := ψε − ϕε. Let
us also recall the formula

αk − βk = (α− β) ∧
k−1∑

l=0

αl ∧ βk−l−1 .
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From this we deduce

0 =

∫

X

−u(γnψ − γnϕ) = lim
ε→0+

∫

X

−uε(γnψ − γnϕ)

= lim
ε→0+

n−1∑

l=0

∫

X

−uε i∂∂̄u ∧ γlψ ∧ γn−l−1
ϕ

= lim
ε→0+

n−1∑

l=0

∫

X

i∂uε ∧ ∂̄u ∧ γlψ ∧ γn−l−1
ϕ

=
n−1∑

l=0

∫

X

i∂u ∧ ∂̄u ∧ γlψ ∧ γn−l−1
ϕ =: I , (4.1)

since ∂uε → ∂u in L2(X, γlψ ∧ γn−l−1
ϕ ) by corollary 3.5. Inspired by an idea

of S. Bªocki [Blo1], we will prove by induction on k = 0, ..., n− 1 that
∫

X

i∂u ∧ ∂̄u ∧ γrψ ∧ γsϕ ∧ γk = 0 (4.2)

for all r, s ≥ 0, r + s = n − k − 1. For k = 0 this follows from (4.1). So we
assume (4.2) for k − 1 and we prove it for k. In fact consider the identity

γk = γkψ − i∂∂̄ψ ∧
k−1∑

l=0

γlψ ∧ γk−l−1 and set Ξ := γrψ ∧ γsϕ ∧
k−1∑

l=0

γlψ ∧ γk−l−1 .

By applying several times corollary 3.5 and by integrating by parts we derive
∫

X

i∂u ∧ ∂̄u ∧ γrψ ∧ γsϕ ∧ γk = lim
ε→0+

∫

X

i∂uε ∧ ∂̄u ∧ γrψ ∧ γsϕ ∧ γk

= lim
ε→0+




∫

X

i∂uε ∧ ∂̄(uγr+kψ ∧ γsϕ) −
∫

X

i∂uε ∧ ∂̄(u i∂∂̄ψ ∧ Ξ)



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= lim
ε→0+




∫

X

i∂uε ∧ ∂̄u ∧ γr+kψ ∧ γsϕ +

∫

X

uε i∂∂̄u ∧ i∂∂̄ψ ∧ Ξ




=

∫

X

i∂u ∧ ∂̄u ∧ γr+kψ ∧ γsϕ − lim
ε→0+

∫

X

uε i∂∂̄ψ ∧ (γϕ − γψ) ∧ Ξ

≤ I + lim
ε→0+

∫

X

i∂uε ∧ ∂̄ [ψ (γϕ − γψ) ∧ Ξ ]

= lim
ε→0+




∫

X

i∂uε ∧ ∂̄ψ ∧ γϕ ∧ Ξ −
∫

X

i∂uε ∧ ∂̄ψ ∧ γψ ∧ Ξ




=

∫

X

i∂u ∧ ∂̄ψ ∧ γϕ ∧ Ξ −
∫

X

i∂u ∧ ∂̄ψ ∧ γψ ∧ Ξ . (4.3)

Set χ = ϕ or χ = ψ. Then the Cauchy-Schwarz inequality implies
∣∣∣∣∣∣

∫

X

i∂u ∧ ∂̄ψ ∧ γχ ∧ Ξ

∣∣∣∣∣∣

≤



∫

X

i∂u ∧ ∂̄u ∧ γχ ∧ Ξ




1/2 


∫

X

i∂ψ ∧ ∂̄ψ ∧ γχ ∧ Ξ




1/2

= 0 ,

by the inductive hypothesis. This combined with (4.3) implies (4.2) for k.
So at the end of the induction we get

0 =

∫

X

i∂u ∧ ∂̄u ∧ γn−1 ≥
∫

X

i∂u ∧ ∂̄u ∧ (λω)n−1 ≥ 0 .

This implies ϕ = ψ by elementary properties of plurisubharmonic functions.

Proof of B. By applying the comparison principle (2.7) as in [E-G-Z1] we
get ∫

ϕ<ψ

γnψ ≤
∫

ϕ<ψ

γnϕ =

∫

ϕ<ψ

eλ(ϕ−ψ)γnψ ,

which implies
∫
ϕ<ψ

γnψ = 0 since eλ(ϕ−ψ) < 1. This implies that the inequality
ϕ ≥ ψ holds γnψ-almost everywhere, thus the inequality

γnϕ = eλ(ϕ−ψ)γnψ ≥ γnψ ,
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holds γnψ-almost everywhere. By symmetry we also deduce that γnψ ≥ γnϕ
holds γnϕ-almost everywhere. The fact that the potentials ϕ and ψ satisfy

γnϕ = eλ(ϕ−ψ)γnψ (4.4)

implies that a property holds γnψ-almost everywhere if and only if it holds
γnϕ-almost everywhere. We infer γnψ = γnϕ, hence ψ − ϕ = Const by part (A),
and equality (4.4) now implies ψ = ϕ. ¤

We now show a uniqueness result in the non-nef case. We denote by UBϕ ⊂ X
the unbounded locus of a quasi-plurisubharmonic function ϕ. Let us �rst re-
call the following well known lemma [Dem1], [Be-Bo].

Lemma 4.3 Let (X,ω) be a compact Kähler manifold of complex dimen-
sion n, T a closed positive (q, q)-current on X, θ a smooth closed real (1, 1)-
form and ϕ a quasi-plurisubharmonic function such that θ+i∂∂̄ϕ ≥ 0 over X.
Then the following holds
(A) For all k = 1, ..., n− q

∫

XrUBϕ

(θ + i∂∂̄ϕ)k ∧ T ∧ ωn−k−q < +∞ .

(B) If in addition ϕ has zero Lelong numbers, then
∫

XrUBϕ

(θ + i∂∂̄ϕ)k ∧ T ∧ ωn−k−q ≤
∫

X

θk ∧ T ∧ ωn−k−q ,

for all k = 1, ..., n− q.

Proof . Set Θ := θ + i∂∂̄ϕ ≥ 0. Let (ϕε)ε>0 ⊂ C∞(X,R) such that ϕε ↓ ϕ
as ε → 0 and let C > 0 be a su�ciently big constant such that Θε :=
θ + i∂∂̄ϕε ≥ −Cω for all ε ∈ (0, 1). By the monotone decreasing theorem in
pluripotential theory we infer that

(Θε + Cω)k ∧ T −→ (Θ + Cω)k ∧ T ,
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weakly over the open set U := X r UBϕ as ε→ 0. We infer
∫

U

Θk ∧ T ∧ ωn−k−q ≤
∫

U

(Θ + Cω)k ∧ T ∧ ωn−k−q

≤ lim inf
ε→0

∫

U

(Θε + Cω)k ∧ T ∧ ωn−k−q

≤
∫

X

(θ + Cω)k ∧ T ∧ ωn−k−q < +∞ ,

which concludes the proof of statement (A). Statement (B) follows from the
fact that, thanks to the work in [Dem4], we can replace the loss of positivity
constant C with constants Cε > 0 such that Cε ↓ 0 as ε→ 0. ¤

The following lemma can be found in [Be-Bo] and is based on a simple but
e�cient increasing singularity approach introduced by the �rst named au-
thor.

Lemma 4.4 Let X be a compact Kähler manifold of complex dimension n,
let T be a closed positive (n−q, n−q)-current, q ≥ 1, let θ be a smooth closed
real (1, 1)-form and consider ϕ, ψ ∈ Pθ such that ϕ ≥ ψ over X. Then

∫

XrUBψ

(θ + i∂∂̄ϕ)q ∧ T ≥
∫

XrUBψ

(θ + i∂∂̄ψ)q ∧ T .

Proof . Consider the closed positive current Θ := (θ + i∂∂̄ψ)q−1 ∧ T over
X r UBψ. In order to conclude, it is su�cient to prove the inequality

∫

XrUBψ

(θ + i∂∂̄ϕ) ∧Θ ≥
∫

XrUBψ

(θ + i∂∂̄ψ) ∧Θ , (4.5)

thanks to the symmetry of the wedge product and to an obvious induction.
(Notice that the integral on the left hand side of the inequality (4.5) is also
�nite by the same type of argument as in the proof of Lemma 4.3.) Let
C > 0 be a su�ciently big constant such that i∂∂̄ψ ≥ −Cω and set ψε :=
(1 + ε)ψ ∈ Pθε , with θε := θ + εCω. Then the inequality (4.5) will follow by
letting ε→ 0 in the inequality

∫

XrUBψ

(θε + i∂∂̄ϕ) ∧Θ ≥
∫

XrUBψ

(θε + i∂∂̄ψε) ∧Θ , (4.6)
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that we prove now. Let k > 0 be an arbitrary constant. The fact that
ϕ− k > ψε over the open set {ψ < −k/ε} implies

∫

XrUBψ

(θε + i∂∂̄ϕ) ∧Θ =

∫

XrUBψ

(
θε + i∂∂̄max{ϕ− k , ψε}

) ∧Θ =: I ,

by Stokes' formula. Let L ⊂ X r UBψ be an arbitrary compact set and let
U ⊂ U ⊂ X r UBψ be an open set such that L ⊂ U ⊂ {ψε ≥ −R} for a
su�ciently big constant R > 0. We infer

I ≥
∫

U

(
θε + i∂∂̄max{ϕ− k , ψε}

) ∧Θ ≥
∫

L

(θε + i∂∂̄ψε) ∧Θ ,

for k such that ϕ − k < −R over X. Then the inequality (4.6) follows by
taking the supremum over L. ¤

We now de�ne the potential with minimal singularities

ϕθ(x) := sup
{
ψ(x) | ψ ∈ P0

θ

}
,

and we observe that ϕθ ∈ P0
θ . Let θ′ ∈ {θ} be another smooth element in

the cohomology class of θ. We write θ = θ′ + i∂∂̄u. By de�nition, we infer
ϕθ + u − C ≤ ϕθ′ and ϕθ′ − u − C ′ ≤ ϕθ for some constants C,C ′ > 0. By
Lemmas 4.3 and 4.4 we infer the equality

∫

XrUBθ

(θ + i∂∂̄ϕθ)
q ∧ T = max

ψ∈Pθ

∫

XrUBψ

(θ + i∂∂̄ψ)q ∧ T < +∞ .

Notice that the closed set UBθ depends only on the cohomology class {θ}.
We observe that the regularising result in [Dem4] implies that if a class
α ∈ H1,1(X,R) is big then UBα is contained in a complex analytic set. We
prove now the following lemma (see also [Be-Bo]).

Lemma 4.5 Let α ∈ H1,1(X,R) be a nef and big class over a compact Kähler
manifold (X,ω) of complex dimension n and let θ ∈ α a smooth (1, 1)-form.
Then the potential with minimal singularities ϕθ associated to θ is with zero
Lelong numbers over X. Moreover for any q = 1, ..., n and any closed positive
(n − q, n − q)-current T over X such that its mass does not charge proper
complex analytic subsets of X, hold the identity

∫

XrUBα

(θ + i∂∂̄ϕθ)
q ∧ T = αq · {T} .
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Proof . The nef assumption implies the existence of a family (uε)ε∈(0,1) ⊂
C∞(X,R), uε ≤ 0 such that

θ + εω + i∂∂̄uε ≥ 0 ,

for all ε ∈ (0, 1). Moreover the big assumption combined with the regularising
result in [Dem4] implies the existence of a quasi-plurisubharmonic function
ψ ≤ 0 with analytic singularities such that θ+ i∂∂̄ψ ≥ ε0ω, for some ε0 > 0.
We infer

0 ≤ 1

1 + εε−1
0

[
θ + εω + i∂∂̄uε + εε−1

0 (θ − ε0ω + i∂∂̄ψ)
]

=
1

1 + εε−1
0

[
(1 + εε−1

0 )θ + i∂∂̄(uε + εε−1
0 ψ)

]

= θ + i∂∂̄ψε ,

with
ψε :=

uε + εε−1
0 ψ

1 + εε−1
0

≤ 0 .

Therefore ψε ≤ ϕθ and so λx(ψε) ≥ λx(ϕθ) for all ε ∈ (0, 1) and x ∈ X. The
fact that the Lelong numbers of ψε become arbitrary small as ε→ 0 implies
λx(ϕθ) = 0. We prove now the last statement of the lemma. We observe �rst
the inclusion UBα ⊂ Z := ψ−1(−∞). The previous computation implies also
the inequality

1

1 + εε−1
0

(
θ + εω + i∂∂̄uε

)
≤ θ + i∂∂̄ψε ,

which combined with lemma 4.4 provides
∫

XrUBα

(θ + i∂∂̄ϕθ)
q ∧ T ≥

∫

XrZ

(θ + i∂∂̄ψε)
q ∧ T

≥ 1

(1 + εε−1
0 )q

∫

X

(θ + εω + i∂∂̄uε)
q ∧ T

=
1

(1 + εε−1
0 )q

∫

X

(θ + εω)q ∧ T .

If we let ε→ 0 we infer the inequality
∫

XrUBα

(θ + i∂∂̄ϕθ)
q ∧ T ≥ αq · {T} .
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The reverse inequality follows from the statement (B) of lemma 4.3. ¤

In the case UBθ is contained in a complete pluripolar set E ⊂ X, the trivial
extension of the current

IXrE (θ + i∂∂̄ϕθ)
q ,

over X is closed and positive by the Skoda-El Mir extension theorem, which
applies thanks to Lemma 4.3. Moreover this extension is independent of E
by the de�nition of UBθ. In fact the current (θ+ i∂∂̄ϕθ)

q , does not carry any
mass on pluripolar sets contained in the open set XrUBθ, since ϕθ is locally
bounded over this set. In this case we will still denote by (θ + i∂∂̄ϕθ)

q the
extension overX. In this setting, for any smooth and closed (n−q, n−q)-form
T over X, q ≥ 1, we can de�ne the cohomology invariant

{θ}[q] · {T} :=

∫

X

(θ + i∂∂̄ϕθ)
q ∧ T = max

ψ∈Pθ

∫

XrUBψ

(θ + i∂∂̄ψ)q ∧ T < +∞ .

In general the number α[q] · {ω}n−q associated to a pseudoe�ective class α ∈
H1,1(X,R) over a compact Kähler manifold (X,ω) of complex dimension n
is not a cohomology invariant, so we will denote it by α[q] · ωn−q. However
the numerical dimension of α, namely the number

ν(α) := max{q ∈ {0, ..., n} | α[q] · ωn−q > 0 } .
is well de�ned. In fact it is independent of the choice of the Kähler met-
ric ω since the trace operator controls the mass of a positive (q, q)-current.
We prove now the following degenerate version of the Comparison Principle
which is also based on the increasing singularity approach previously used.
(Compare with the statement and the proof of corollary 1.4 in [Be-Bo]).

Lemma 4.6 (Degenerate Comparison Principle). Let X be a compact
Kähler manifold of complex dimension n, let θ be a smooth closed real (1, 1)-
form and consider ϕ, ψ ∈ Pθ such that ϕ ≥ ψ−K for some constant K > 0.
Then ∫

{ϕ<ψ}rUBψ

(θ + i∂∂̄ψ)n ≤
∫

{ϕ<ψ}rUBψ

(θ + i∂∂̄ϕ)n .

Proof. For any set E ⊂ X we put Eψ := E r UBψ and de�ne the closed
positive current Θ :=

(
θ + i∂∂̄max{ϕ, ψ})n over Xψ. We start by proving

the inequality
∫

Xψ

(θ + i∂∂̄ϕ)n ≥
∫

Xψ

Θ . (4.7)
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Let R > 0 be a su�ciently big constant such that i∂∂̄ψ ≥ −Rω and set
ψε := (1 + ε)ψ ∈ Pθε , with θε := θ+ εRω. The fact that ϕ > ψε on the open
set {ψ < −K/ε} implies

∫

Xψ

(θε + i∂∂̄ϕ)n =

∫

Xψ

(
θε + i∂∂̄max{ϕ, ψε}

)n
,

by Stokes' formula. We infer
∫

Xψ

(θ + i∂∂̄ϕ)n = lim inf
ε→0

∫

Xψ

(
θε + i∂∂̄max{ϕ, ψε}

)n ≥
∫

Xψ

Θ .

by the weak convergence

Θε :=
(
θε + i∂∂̄max{ϕ, ψε}

)n −→ Θ , (4.8)

as ε → 0 over the open set Xψ. In order to prove the convergence (4.8) we
restrict our considerations to an arbitrary open set U ⊂ U ⊂ Xψ. Let C > 0
be a constant such that ψ ≥ −C over U . Then the function

Φε := max{ϕ+ εC, ψε + εC} ∈ Pθε ,

decreases to max{ϕ, ψ} over U as ε → 0 and satis�es Θε =
(
θε + i∂∂̄Φε

)n.
Then the convergence (4.8) over U follows from the monotone decreasing the-
orem in pluripotential theory. On the other hand the inequality of measures

Θ ≥ I
ϕ≥ψ θ

n
ϕ + I

ϕ<ψ
θnψ ,

over the open set Xψ (see [Dem1]), implies
∫

{ϕ<ψ}ψ

Θ ≥
∫

{ϕ<ψ}ψ

θnψ ,

∫

{ϕ≥ψ}ψ

Θ ≥
∫

{ϕ≥ψ}ψ

θnϕ .

This combined with the inequality (4.7) implies
∫

{ϕ<ψ}ψ

θnψ ≤
∫

Xψ

Θ −
∫

{ϕ≥ψ}ψ

Θ ≤
∫

Xψ

θnϕ −
∫

{ϕ≥ψ}ψ

θnϕ =

∫

{ϕ<ψ}ψ

θnϕ .

¤

47



Corollary 4.7 Let X be a compact Kähler manifold of complex dimension
n, Ω > 0 a smooth volume form and θ a smooth closed real (1, 1)-form.
Assume that ϕj ∈ Pθ, j = 1, 2 is such that UBϕj is a zero measure set and

(θ + i∂∂̄ϕj)
n = eϕjΩ

over X r UBϕj . If ϕ1 ≥ ϕ2 − K over X, for some constant K > 0
then ϕ1 ≥ ϕ2 over X. Moreover if there exists a Kähler-Einstein current
ω
E
∈ 2πc1(KX), then it is unique in the class of currents in 2πc1(KX) with

singularities equivalent to ω
E
. In particular if ω

E
has minimal singulari-

ties, then it is unique in the class of currents with minimal singularities in
2πc1(KX).
Proof. We set E := {ϕ1 < ϕ2}rUBϕ2 and we apply the degenerate compar-
ison principle 4.6 as before. We obtain

∫

E

(θ + i∂∂̄ϕ2)
n ≤

∫

E

(θ + i∂∂̄ϕ1)
n =

∫

E

eϕ1−ϕ2(θ + i∂∂̄ϕ2)
n .

We infer 0 =
∫
E
eϕ2Ω, and so ϕ1 ≥ ϕ2 almost everywhere over X, thus

everywhere by elementary properties of quasi-plurisubharmonic functions.¤

5 Generalized Kodaira lemma
We �rst recall a few standard de�nitions of algebraic and analytic geometry
which will be useful in our situation.

De�nition 5.1 Let (X,ω) be a compact Kähler manifold.
(A) A modi�cation of X is a bimeromorphic morphism µ : X̃ → X of
compact complex manifolds with connected �bers. Then there is a smallest
analytic set Z ⊂ X such that the restriction µ : X̃ r µ−1(Z) → X r Z is a
biholomorphism; we say that Exc(µ) = µ−1(Z) is the exceptional locus of µ.
(B) A class α ∈ H1,1(X,R) is called big if there exist a current T ∈ α such
that T ≥ εω, for some ε > 0.
By a result of [De-Pa], a nef class α on a compact Kähler manifold is big if
and only if

∫
X
αn > 0. By the proof of Theorem 3.4 in [De-Pa] we obtain the

following generalization of Kodaira's lemma.

Lemma 5.2 Let X be a compact Kähler manifold and α ∈ H1,1(X,R) be
a big class. Then there exist a modi�cation µ : X̃ → X of X, an e�ective
integral divisor D on X̃ with support |D| ⊃ Exc(µ) and a number δ ∈ Q>0,
such that the class µ∗α− δ{D} is Kähler.
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We associate to α the set Iα of triples (µ,D, δ) satisfying the generalized Ko-
daira lemma 5.2, and a complex analytic set Σα which we call the augmented
singular locus of α, de�ned as

Σα :=
⋂

(µ,D,δ)∈Iα
µ(|D|) . (5.1)

A trivial approximation argument shows that the set Σα depends only on the
half line R>0α. In the case the class α is Kähler, (idX , 0, 1) ∈ Iα, thus Σα = ∅.
Conversely, if Σα = ∅, it is clear that the class α must be Kähler : in fact,
if ω̃µ,D,δ is a Kähler metric in µ∗α − δ{D}, then Θ = µ∗(ω̃µ,D,δ + δ[D]) is a
Kähler current contained in the class α, which is smooth on X r µ(|D|) and
possesses logarithmic poles on µ(|D|) ; by taking the regularized upper enve-
lope of a �nite family of potentials of such currents Θj with

⋂
µ(|Dj|) = ∅,

we obtain a (smooth) Kähler metric on X. In the case the class α is integral
or rational, the set Σα can be characterized as follows.

Lemma 5.3 Let L be a big line bundle over a compact Kähler manifold.
Then the class α := c1(L) satis�es

SB(L) ⊂ Σα =
⋂

E∈Div+(X), δ∈Q>0,

α−δ{E} ample

|E| , (5.2)

where SB(L) is the stable base locus of L, i.e. the intersection of the base loci
of all line bundles kL, and E runs over all e�ective integral divisors of X.

Proof. First notice that the existence of a big line bundle implies that X is
Moishezon. This combined with the assumption that X is Kähler shows that
X must in fact be projective (see [Moi], and also [Pet1], [Pet2] for a simple
proof). The inclusion SB(L) ⊂ Σα in (5.2) is quite easy: Let (µ,D, ρ) ∈ Iα.
Then Kodaira's theorem implies that {A} := µ∗α− ρ{D} is a Q-ample class
on X̃ and so the integer multiples kA are base point free for k large enough.
Therefore the base locus of kµ∗L is contained in |D|. This shows that SB(L)
is contained in the intersection of the sets µ(|D|), which is precisely equal to
Σα by de�nition. Now, if H is an ample divisor on X, we have

µ∗(α− ε{H}) = ρ{D}+ {A} − ε{µ∗H}

and, again, A − εµ∗H is ample for ε ∈ Q>0 small. We infer that the base
locus of k(L− εH) is contained in Σα for k large and su�ciently divisible. If
we pick any divisor E in the linear system of k(L− εH), then L− 1

k
E ≡ εH
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is an ample class, and the intersection of all these divisors E is contained
in Σα. Therefore ⋂

E∈Div+(X), δ∈Q>0,

α−δ{E} ample

|E| ⊂ Σα.

The opposite inclusion is obvious. ¤

The following lemma gives us an important class of densities which will
be allowable as the right hand side of degenerate complex Monge-Ampère
equations.

Lemma 5.4 Let X be a compact complex manifold, let Ω > 0 be a smooth
volume form and let σj ∈ H0(X,Ej), τr ∈ H0(X,Fr), j = 1, ..., N , r =
1, ...,M be, non identically zero, holomorphic sections of some holomorphic
vector bundles over X such that the integral condition

∫

X

N∏
j=1

|σj|2lj ·
M∏
r=1

|τr|−2hr Ω < +∞

holds for some real numbers lj ≥ 0, hr ≥ 0. Then the integrand function
belongs to some Lp space, p > 1, and for A ≥ A0 ≥ 0 large enough, the
family of functions

Gε :=
N∏
j=1

(|σj|2 + εA)lj ·
M∏
r=1

(|τr|2 + ε)−hr , ε ∈ [0, 1)

converges in Lp-norm to the function G0 when ε → 0. In fact, for N 6= 0
and lj > 0, one can take A0 := (

∑
r hr)/(minj lj).

Proof. By blowing-up the coherent ideals generated by the components of
any of the sections σj, τr, we obtain a modi�cation µ : X̃ → X such that
the pull-back of these ideals by µ is a divisorial ideal. Using Hironaka's
desingularization theorem, we can even assume that all divisors obtained in
this way form a family of normal crossing divisors in X̃. Then each square
|σj ◦ µ|2 (resp. |τr ◦ µ|2) can be written as the square |zα|2 (resp. |zβ|2) of
a monomial in suitable local coordinates U on a neighborhood of any point
of X̃, up to invertible factors. The Jacobian of µ can also be assumed to be
equal to a monomial zγ, up to an invertible factor. In restriction to such a
neighborhood U , the convergence of the integral is equivalent to that of

∫

U

|zγ|2
N∏
j=1

|zαj |2lj
M∏
r=1

|zβr |−2hr dz.
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Notice also that X̃ can be covered by �nitely many such neighborhoods, by
compactness. Now it is clear that if the integral is convergent, then the
integrand must be in some Lp, p > 1, because the integrability condition
is precisely that each coordinate zj appears with an exponent > −1 in the
n-tuple

γ +
∑

ljαj −
∑

hrβr ,

(so that we can still replace lj, hr with plj, phr with p close to 1). In order
to prove the convergence of the functions Gε in the Lp norm we distinguish
two cases. In the case where lj = 0 for all j, the claim follows immediately
from the monotone convergence theorem. The other possible case is lj > 0
for all j. In this case the convergence statement will follow if we can prove
that for A large enough the functions

|zγ|2
N∏
j=1

(|zαj |2 + εA)lj
M∏
r=1

(|zβr |2 + ε)−hr

converge in Lp-norm as ε→ 0. This is trivial my monotonicity when N = 0.
When N > 0 and lj > 0, we have
N∏
j=1

(|zαj |2 + εA)lj ≤ C
( N∏
j=1

(|zαj |2lj + εAmin lj
)
,

M∏
r=1

(|zβr |2 + ε)−hr ≤ ε−
P
hr ,

so it is su�cient to take A ≥ (
∑
hr)/(min lj) to obtain the desired uniform

Lp-integrability in ε. ¤

6 Existence and higher order regularity of so-
lutions

We are ready to prove the following fundamental existence theorem.

Theorem 6.1 Let X be a compact connected Kähler manifold of complex
dimension n and let α ∈ H1,1(X,R) be a (1, 1)-cohomology class with

∫
X
αn >

0, which admits a closed positive (1, 1)-current γ ∈ α with bounded local
potentials. Let θ ∈ α be a smooth (1, 1)-form and let Ω > 0 be a smooth
volume form. Consider also σj ∈ H0(X,Ej), τr ∈ H0(X,Fr), j = 1, ..., N ,
r = 1, ...,M be non identically zero holomorphic sections of some holomorphic
vector bundles over X, such that the integral condition

∫

X

N∏
j=1

|σj|2lj ·
M∏
r=1

|τr|−2hr Ω =

∫

X

θn (6.1)
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holds for certain real numbers lj ≥ 0, hr ≥ 0. Then there exists a unique
solution ϕ ∈ P BTθ of the degenerate complex Monge-Ampère equation

(θ + i∂∂̄ϕ)n =
N∏
j=1

|σj|2lj ·
M∏
r=1

|τr|−2hr eλϕ Ω , λ ≥ 0 , (6.2)

which in the case λ = 0 is normalized by supX ϕ = 0. Moreover let Σα be the
augmented singular locus of the (1, 1)-cohomology class α as de�ned in (5.1),
which is empty if the class α is Kähler, and consider the complex analytic
sets

S ′ := Σα ∪
(⋃

r

{τr = 0}
)
, S := S ′ ∪

(⋃
j

{σj = 0}
)
.

Then ϕ ∈ Pθ ∩ L∞(X) ∩ C0(X r Σα) ∩ C1,1(X r S ′) ∩ C∞(X r S) .
Proof. We �rst assume the existence of an e�ective divisor D in X and of
a small number δ > 0 such that α − δ{D} is a Kähler class on X. (We will
later be able to remove this assumption thanks to Lemma 5.2). By using the
Lelong-Poincaré formula we infer the existence of a smooth hermitian metric
on O(D) such that

0 < ωδ := θ − 2πδ[D] + δ i∂∂̄ log |s|2 ,
with div(s) = D. By convention we will put δ = 0 if α is a Kähler class (so
that ωδ = θ in that case), and in general we will denote by |D| the support
of the divisor D.

(A) Setup.
We decompose the current γ = θ + i∂∂̄v ∈ α and we remind that the regu-
larisation result in [Dem4] provides a family a family of smooth (1, 1)-forms
γε = θ+ i∂∂̄vε, with vε smooth, uniformly bounded and with vε ↓ v as ε→ 0,
such that γε+εω is a Kähler metric for every ε > 0. For the sake of simplicity
of notation we will use the function Gε, ε ∈ [0, 1) de�ned in the statement of
lemma 5.4. In the case λ > 0 we assume that the potential v is normalised
by the condition

∫

X

G0 e
λvΩ =

∫

X

θn . (6.3)

Let ω > 0 be a Kähler metric, let ε ∈ (0, 1) and let cε be a normalizing
constant for the integral condition

ecε
∫

X

Gε e
λvεΩ =

∫

X

(θ + εω)n > 0 , (6.4)
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with A := h/l. Condition (6.3) combined with Lemma 5.4 and the fact that
the potentials vε are uniformly bounded, implies cε → 0, when ε → 0+.
Consider the standard solutions Φε ∈ C∞(X) of the complex Monge-Ampère
equations

(
γε + εω + i∂∂̄Φε

)n
= Gε e

cε+λ(vε+Φε) Ω ,

given by Yau's and Aubin-Yau's solution of the Calabi conjecture [Yau],
[Aub]. Notice that the integral condition (6.4) implies that a non identically
zero solution Φε changes signs in the case λ > 0. If we set ϕε := Φε+ vε then
the previous equation rewrites as

(
θ + εω + i∂∂̄ϕε

)n
= Gε e

cε+λϕε Ω . (6.5)

As usual, in the case λ = 0, we normalize the solution ϕε with the condition
maxX ϕε = 0. By combining Lemma 5.4 with the estimate of corollary 2.13
we obtain a uniform bound for the oscillations Osc(Φε) ≤ C ′ and thus a
uniform bound for the oscillations Osc(ϕε) ≤ Osc(Φε) + Osc(vε) ≤ C. We
set now

ω̃ε := ωδ + εω ,

and
ψε := ϕε − δ log |s|2 .

As the notation indicates, we will keep δ �xed (until step (E)). Then we get
a Kähler metric de�ned over X

ω̂ε := θ + εω + i∂∂̄ϕε = ω̃ε + i∂∂̄ψε + 2πδ[D], (6.6)

thus ω̂ε = ω̃ε + i∂∂̄ψε over X r |D|. In this setting, equation (6.5) can be
rewritten as

(ω̃ε + i∂∂̄ψε)
n = eF

ε+λδ log |s|2+λψε ω̃nε (6.7)

on X r |D|, with F ε := f ε + aε − bε, and with

f ε := cε + log(Ω/ω̃nε ) ,

aε :=
N∑
j=1

lj · log(|σj|2 + εA) ,

bε :=
M∑
r=1

hr · log(|τr|2 + ε) .
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(Here the superscripts in ε are indices and not powers.) Let Cω̃ε be the Chern
curvature form of the Kähler metric ω̃ε > 0 and let

Γε := min
x∈X

min
ξ,η∈TX,xr0x

Cω̃ε(ξ ⊗ η, ξ ⊗ η) |ξ|−2
ω̃ε
|η|−2

ω̃ε
.

(We remark that the minimum is always achieved by an easy compactness
argument, see e.g. [Kat], Chap II, Sect. 5.1, Theorem 5.1, page 107.) We
observe that the family of metrics (ω̃ε)ε has bounded geometry for δ �xed
and ε ∈ [0, 1] arbitrary. In particular, for all ε ∈ [0, 1] hold the uniform
bounds

Γε ≥ Γ , |f ε| ≤ K0 , λ(ωδ − θ) + i∂∂̄f ε ≥ −K0 ω̃ε .

Moreover we can assume i∂∂̄aε , i∂∂̄bε ≥ −K0 ω̃ε , (see Appendix A.)

(B) The Laplacian estimate.
This estimate is obtained as a combination of ideas of Yau, Bªocki and Tsuji,
[Yau], [Blo2], [Ts]. Consider the continuous function Λε : X → (0,+∞) given
by the maximal eigenvalue of ω̂ε = ω̃ε + i∂∂̄ψε with respect to the Kähler
metric ω̃ε,

Λε(x) := max
ξ∈TX,xr0x

(ω̃ε + i∂∂̄ψε)(ξ, Jξ)|ξ|−2
ω̃ε
,

i.e. we extend Λε over |D| by continuity, as is permitted by (6.6). Consider
also the continuous function over X r |D|,

Aε := log Λε − k · ψε + bε ,

with 0 < k := 2(1 +K0/2−K1) and with

K1 := min{−λ−K0/n , Γ} < −λ .

The reason for this crucial choice will be clear in a moment. The singularity
of the function ψε implies the existence of a maximum of the function Aε at
a certain point xε ∈ X r |D|. Let gε be a smooth real valued function in a
neighborhood of xε in X r |D| such that ω̃ε = i

2
∂∂̄gε, and let uε := gε + 2ψε.

Then
ω̃ε + i∂∂̄ψε =

i

2
∂∂̄uε .

For the simplicity of notation, we just put g = gε and u = uε from now on,
and we also set ul,m̄ := ∂2u

∂zl∂z̄m
. Let (z1, . . . , zn) be ω̃ε-geodesic holomorphic

coordinates centered at the point xε, such that the metric ω̂ε = ω̃ε + i∂∂̄ψε
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can be written in diagonal form in xε. Explicitly, we have the local expression
ω̃ε = i

2

∑
l,m gl,m̄ dzl ∧ dz̄m, with

gl,m̄ = δl,m −
∑

j,k

Cj,k̄
l,m̄zj z̄k +O(|z|3) , gj,k̄,l,m̄(xε) = −Cj,k̄

l,m̄ ,

Cω̃ε(xε) =
∑

j,k,l,m

Cj,k̄
l,m̄ dzj ⊗ dzl ⊗ dz̄k ⊗ dz̄m .

and i
2
∂∂̄u = i

2

∑
l ul,l̄ dzl ∧ dz̄l, with 0 < u1,1̄ ≤ ... ≤ un,n̄ at the point xε. For

every ζ ∈ Cn we set gζ,ζ̄ :=
∑

l,m gl,m̄ ζl ζ̄m. Then

Λε(x) = max
ξ∈TX,xr0x

∂∂̄u(ξ1,0, ξ0,1)

∂∂̄g(ξ1,0, ξ0,1)
= max

|ζ|=1

uζ,ζ̄
gζ,ζ̄

,

and so Λε(xε) = un,n̄(xε), with un,n̄
gn,n̄

≤ Λε. We also set

Ãε := log
un,n̄
gn,n̄

− k · ψε + bε .

Then Ãε ≤ Aε, with Ãε(xε) = Aε(xε). This implies that the function Ãε also
reaches a maximum at the point xε, thus ∆ω̂εÃε(xε) ≤ 0. All the subsequent
computations in this part of the proof will be made at the point xε. By the
local expressions for the Ricci tensor we obtain

∂2
n,n̄ log det(uj,k̄) =

∑

l,p

(
un,n̄,l,p̄ −

∑
s,t

un,l,s̄ u
s,t̄ un̄,t,p̄

)
up,l̄

=
∑
p

un,n̄,p,p̄
up,p̄

−
∑
p,q

|un,p,q̄|2
up,p̄ uq,q̄

,

and in a similar way ∂2
n,n̄ log det(gj,k̄) =

∑
p gn,n̄,p,p̄. Then by di�erentiating

with respect to the operator ∂2
n,n̄ the identity (6.7), which can be rewritten

as
log det(uj,k̄) = F ε + λδ log |s|2 + λ(u− g)/2 + log det(gj,k̄) ,

we obtain
∑
p

un,n̄,p,p̄
up,p̄

−
∑
p,q

|un,p,q̄|2
up,p̄ uq,q̄

= f εn,n̄ + λ[(ωδ)n,n − θn,n]/2 + aεn,n̄ − bεn,n̄

+ λ(un,n̄ − 1)/2 +
∑
p

gn,n̄,p,p̄ .
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Combining this with the inequality ∆ω̂εÃε(xε) ≤ 0, we get

0 ≥
∑
p

Ãp,p̄
up,p̄

=
∑
p

(
un,n̄,p,p̄
up,p̄ un,n̄

− |un,n̄,p|2
up,p̄ u2

n,n̄

+
k/2 + bεp,p̄ − gn,n̄,p,p̄

up,p̄

)
− nk/2

=
∑
p,q

|un,p,q̄|2
up,p̄ uq,q̄ un,n̄

−
∑
p

|un,n̄,p|2
up,p̄ u2

n,n̄

+
fn,n̄ + λ[(ωδ)n,n − θn,n − 1]/2 + aεn,n̄ − bεn,n̄

un,n̄

+
∑
p

(
gn,n̄,p,p̄
un,n̄

+
k/2 + bεp,p̄ − gn,n̄,p,p̄

up,p̄

)
− (nk − λ)/2 .

We observe at this point that the sum of the two �rst terms following the
second equality is nonnegative and the trivial inequality

− bεn,n̄
un,n̄

+
∑
p

bεp,p̄
up,p̄

≥ −
∑
p

K0/2

up,p̄
.

By plugging these inequalities in the previous computations and by using the
de�nition of the constants k and K1, we get

0 ≥
∑
p

(
K1 − Cn,n̄

p,p̄

un,n̄
+
−K1 + Cn,n̄

p,p̄

up,p̄
+

1

up,p̄

)
− (nk − λ)/2

≥
∑
p

(Cn,n̄
p,p̄ −K1)(un,n̄ − up,p̄)

up,p̄ un,n̄
+

∑
p

1

up,p̄
− C0 ,

where C0 > 0 and all the following constants are independents of ε. Let
denote by (x1, ..., xn) the real part of the complex coordinates (z1, ..., zn).
Then the inequality Cn,n̄

p,p̄ = Cω̃ε( ∂
∂xn

⊗ ∂
∂xp

, ∂
∂xn

⊗ ∂
∂xp

)(xε) ≥ Γε ≥ Γ implies

0 ≥
∑
p

1

up,p̄
− C0 ≥

(
un,n̄∏
p up,p̄

) 1
n−1

− C0

= e
−λψε−λδ log |s|2−Fε

n−1 u
1

n−1
n,n̄ − C0 .
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Consider now the function Bε := eAε = Λε e
−k·ψε+bε . Then xε is also a

maximum point for Bε over X r |D| and the previous inequality can be
written as

0 ≥ e
(k−λ)ψε−λδ log |s|2−bε−Fε

n−1
(xε) Bε(xε)

1
n−1 − C0

= e
(k−λ)ϕε−δk log |s|2−aε−fε

n−1
(xε) Bε(xε)

1
n−1 − C0 .

Then by the inequalities k − λ > 0, |s|2 ≤ C, aε ≤ C and |f ε| ≤ K0, we get
the estimate

0 ≥ C1 e
(k−λ)
n−1

minX ϕε Bε(xε)
1

n−1 − C0 .

In conclusion we have found over X r |D| the estimates

0 < 2n+ ∆ω̃εϕε − δ∆ω̃ε log |s|2

= Trω̃ε(ω̃ε + i∂∂̄ψε)

≤ 2nΛε ≤ 2n ek·ψε−b
ε

Bε(xε)

≤ C2 e
k·ϕε−(k−λ)minX ϕε

|s|2δk(|τ |2 + ε)h

≤ C ′2 e
kOsc(ϕε)

|s|2δk |τ |2h .

(Here Trω̃ε is the trace operator with respect to the Kähler metric ω̃ε.) The
last inequality follows from the fact that λminX Φε ≤ 0, since a non iden-
tically zero solution Φε changes signs in the case λ > 0. Thus λminX ϕε ≤
λmaxX vε ≤ C. Moreover using the inequality

∣∣δ∆ω̃ε log |s|2
∣∣ = |Trω̃ε(θ − ωδ)| ≤ C3

over X r |D|, we deduce the singular Laplacian estimate

−C3 < 2n+ ∆ω̃εϕε ≤
C ′2 e

kOsc(ϕε)

|s|2δk |τ |2h + C3 .

(C) Higher order estimates.
By the previous estimates we infer 0 < 2ul,l̄ < Trω̃ε(θ + εω + i∂∂̄ϕε) ≤ 2Υε,
for all l = 1, ..., n, with

Υε :=
C ′2 e

kOsc(ϕε)

|s|2δk(|τ |2 + ε)h
.
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The equation (6.5) can be rewritten as
(
θ + εω + i∂∂̄ϕε

)n
= eF

ε+λϕε ω̃nε .

We infer
eF

ε+λϕε =
∏

l

ul,l̄ ≤ Υn−1
ε um,m̄ ,

for all m = 1, ..., n. The fact that a non identically zero solution Φε changes
signs in the case λ > 0 implies λminX Φε ≥ −λOsc(Φε). Thus

λmin
X

ϕε ≥ −λOsc(ϕε) + λmax
X

vε ,

and therefore

eF
ε+λmaxX vε−λOsc(ϕε) Υ1−n

ε ω̃ε ≤ θ + εω + i∂∂̄ϕε .

Then an elementary computation yields the singular estimate

C−1
4 |s|2δk(n−1) |σ|2l |τ |2h(n−2) e−knOsc(ϕε) ω̃ε

≤ θ + εω + i∂∂̄ϕε ≤ C4 e
kOsc(ϕε)

|s|2δk |τ |2h ω̃ε . (6.8)

Moreover the fact that ϕε ∈ Pθ+εω implies

2|∂∂̄ϕε|ω̃ε ≤ ∆ω̃εϕε + 2 Trω̃ε(θ + εω) .

At this step of the proof we consider

S ′ := |D| ∪
( ⋃

r

{τr = 0}
)
, S := S ′ ∪

( ⋃
j

{σj = 0}
)
.

By the Interpolation Inequalities [Gi-Tru] we �nd that for any coordinate
compact set K ⊂ X r S ′ there are uniform constants CK > 0 such that

max
K
|∇Cnϕε| ≤ CK

(
max
K

∆Cnϕε + max
K
|ϕε|

)
.

Therefore, we can apply the complex version of Evans-Krylov theory [Ti2]
on every compact set K ⊂ X r S to get uniform constants C2,K > 0 such
that ‖ϕε‖C2,η(K) ≤ C2,K for some η ∈ (0, 1). Now, let U ⊂ X rS be an open
set and let ξ ∈ O(TX)(U). We rewrite the complex Monge-Ampère equation
(6.5) under the form

(
θ + εω + i∂∂̄ϕε

)n
= eHε+λϕεωn ,
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with
Hε := cε + log(Ω/ωn) + aε − bε .

By taking the derivative with respect to the complex vector �eld ξ, we obtain
(see the proof of formula 11 in [Pal])

∆ω̂ε(ξ . ϕε)− 2λ ξ . ϕε = −Trω̂ε Lξ(θ + εω) + Trω Lξ ω + 2ξ .Hε , (6.9)

By the uniform estimates (6.8) and ‖ϕε‖C2,η(K) ≤ C2,K it follows that the
operator ∆ω̂ε is uniformly elliptic with coe�cients uniformly bounded in
Cη-norm at least, over any compact set K ⊂ U . The right hand side of
equation (6.9) is also uniformly bounded in Cη-norm at least, over K. By
the standard regularity theory for linear elliptic equations [Gi-Tru] we de-
duce ‖ξ . ϕε‖C2,η(K) ≤ C ′K for all ε > 0. We infer the uniform estimate
‖ϕε‖C3,η(K) ≤ C3,K .
In its turn, this estimate implies that the coe�cients of the Laplacian ∆ω̂ε

and the right hand side of equation (6.9) are uniformly bounded in C1,η-norm
at least. By iteration we get the uniform estimates ‖ϕε‖Cr,η(K) ≤ Cr,K for
all ε > 0 and r ∈ N. We infer that the family (ϕε)ε>0 ⊂ C∞(X r S) is
precompact in the smooth topology.

(CI) The smooth regularity.
By elementary properties of plurisubharmonic functions (see [Dem2], chap-
ter 1), the uniform estimate ‖ϕε‖L∞(X) ≤ C implies the existence of a L1-
convergent sequence (ϕj)j, ϕj := ϕεj , εj ↓ 0 with limit ϕ ∈ Pθ ∩ L∞(X).
We can assume that a.e.-convergence holds also. The precompactness of the
family (ϕε)ε>0 ⊂ C∞(XrS) in the smooth topology implies the convergence
of the limits

(θ + i∂∂̄ϕ)n = lim
l→+∞

(θ + i∂∂̄ϕj)
n = lim

j→+∞
Gj e

λϕj+cjΩ = G0 e
λϕΩ (6.10)

over XrS, with cj := cεj , Gj := Gεj . The fact that ϕ is a bounded potential
implies that the global complex Monge-Ampère measure (θ+i∂∂̄ϕ)n does not
carry any mass on complex analytic sets. We infer that ϕ is a global bounded
solution of the complex Monge-Ampère equation (6.2) which belongs to the
class Pθ ∩ L∞(X) ∩ C∞(X r S).

(CII) The C1,1-regularity.
Let U ⊂⊂ X r S ′ be a coordinate open set. By a classical result in [Gi-Tru]
(see Theorem 8.32, page 210) for all open sets U ′ ⊂⊂ U there exists a con-
stant C = C(U ′, U) > 0 such that for all η ∈ (0, 1) the uniform estimate

‖ϕε‖C1,η(U ′) ≤ C
(‖ϕε‖L∞(U) + ‖∆Cnϕε‖L∞(U)

)
(6.11)
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holds. By applying the Ascoli-Arzela theorem to the sequence (ϕj)j, we infer
the uniform estimate ‖ϕ‖C1,η(U ′) ≤ C ′ for all η ∈ (0, 1), thus ϕ ∈ C1,1(XrS ′).

(D) Uniqueness of the solution.
We observe �rst that Theorem 4.2 still hold true if we replace γ there with
any θ ∈ {γ} smooth. We prove now the uniqueness of the solution ϕ in the
class P BTθ. In the case λ = 0 this follows immediately from Theorem 4.2.
In the case λ > 0 let ψ ∈ P BTθ be an other solution. The fact that ψ ∈ Pθ
implies that we can solve the degenerate complex Monge-Ampère equation

(
θ + i∂∂̄U

)n
= G0 e

λψ Ω , (6.12)

with the methods so far explained, so as to obtain a solution U ∈ P0
θ∩L∞(X).

In fact as in step (A) we consider the solutions Uε of the non-degenerate
complex Monge-Ampère equations

(
θ + εω + i∂∂̄Uε

)n
= Gε e

λψε+c′ε Ω ,

with ψε ↓ ψ, ψε ∈ C∞(X), ψε ≤ C, i∂∂̄ψε ≥ −K0 ω̃ε and c′ε being a normal-
izing constant converging to 0 as ε→ 0. By combining Lemma 5.4 with the
dominated convergence theorem we infer that the family Gε e

λψε+c′ε converges
in Lp-norm to G0 e

λψ. These conditions are su�cient to provide the singular
Laplacian estimate of step (B). Thus by the C1,η-compactness argument of
step (CII) we infer the existence of the solution U of the degenerate complex
Monge-Ampère equation (6.12).
By the uniqueness result in the case λ = 0 we infer U = ψ − supX ψ, thus
ψ ∈ L∞(X). Then the required uniqueness follows immediately from Theo-
rem 4.2 (B).

(E) Eliminating the assumption on the existence of divisors D in X.
By section 5, the divisors D which we have assumed to exist in X up to now,
can only be constructed (at least, in the non-projective case) by applying
a blow-up process to X, i.e. we can �nd a modi�cation µ : X̃ → X of X,
a divisor D in X̃ with |D| ⊃ Exc(µ) and a number δ > 0 such that the
class µ∗α − δ{D} is Kähler on X̃. For this reason, we use pull-back the
Monge-Ampère equation by µ so as to transform equation (6.2) into

(µ∗θ + i∂∂̄Φ)n =
N∏
j=1

|σj ◦ µ|2lj ·
M∏
r=1

|τr ◦ µ|−2hr eλΦ µ∗Ω , λ ≥ 0 .

Here µ∗Ω is no longer a positive volume form on X̃ but we have µ∗Ω = |Jµ|2Ω̃
where Ω̃ is such a volume form, and |Jµ|2 is the square of the Jacobian of µ
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expressed with respect to the pair (Ω, Ω̃). Observe that Jµ is just a section
of the relative canonical divisor KX̃/X and that |Jµ|2 is its norm with respect
to the metric induced by (Ω, Ω̃). Thus our equation again takes the form

(µ∗θ + i∂∂̄Φ)n = |Jµ|2
N∏
j=1

|σj ◦ µ|2lj ·
M∏
r=1

|τr ◦ µ|−2hr eλΦ Ω̃ ,

and it is clear that the analogue of condition (6.1)

0 <

∫

X̃

µ∗θn =

∫

X̃

|Jµ|2
N∏
j=1

|σj ◦ µ|2lj ·
M∏
r=1

|τr ◦ µ|−2hr Ω̃ ,

holds. By steps (A)�(D), we obtain a unique solution

Φ ∈ Pµ∗θ ∩ L∞(X̃) ∩ C1,1(X̃ r S̃ ′µ,D,δ) ∩ C∞(X̃ r S̃µ,D,δ) ,

with

S̃ ′µ,D,δ = |D| ∪
( ⋃

r

{τr ◦ µ = 0}
)
,

S̃µ,D,δ = S̃ ′µ,D,δ ∪
( ⋃

j

{σj ◦ µ = 0}
)
∪ Exc(µ).

Actually, taking the union with Exc(µ) will not be needed since |D| ⊃ Exc(µ).
Moreover j∗qµ∗θ = 0, where jq : µ−1(q) ↪→ X̃, q ∈ µ(Exc(µ)) is the inclusion
map. Thus

Φ ◦ jq ∈ Psh(µ−1(q))

since Φ ∈ Pµ∗ω ∩ L∞(X̃). By hypothesis µ−1(q) is compact and connected,
which implies that Φ is constant along the �bers µ−1(q). Therefore we can
de�ne ϕ := π∗Φ ∈ Pθ ∩L∞(X). The fact that ϕ is bounded implies that the
current (θ+ i∂∂̄ϕ)n does not carry any mass on complex analytic sets. This,
combined with the fact that

µ : X̃ r Exc(µ) → X r µ(Exc(µ))

is a biholomorphism, implies (see Theorem 4.2) that ϕ is the unique solution
in Pθ∩L∞(X) of the complex Monge-Ampère equation (6.2) with the required
C1,1, C∞-regularity over the adequate subsets of X r µ(|D|). We set �nally

Σα =
⋂

(µ,D,δ)∈Iα
µ(|D|) ,

S ′ = Σα ∪
( ⋃

r

{τr = 0}
)
, S = S ′ ∪

( ⋃
j

{σj = 0}
)
.
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Then the conclusion about the Pθ ∩L∞(X)∩C1,1(XrS ′)∩C∞(XrS) reg-
ularity of the solution ϕ follows by letting (µ,D, δ) ∈ Iα vary. The proof of
the uniqueness of the solution ϕ in the class P BTθ is the same as in step D,
modulo the use of modi�cations.

(F) C0 regularity on X r Σα.
The proof will be complete if we show that ϕ ∈ C0(X r Σα). This follows
from the following statement. ¤

Theorem 6.2 . Let X, α, γ, θ, Ω as in the statement of Theorem 6.1 Let
also f ∈ L logn+δ L(X), δ > 0 such that

∫
X
θn =

∫
X
f Ω and λ ≥ 0 be a real

number. Then there exists a unique solution ϕ ∈ PBTθ of the degenerate
complex Monge-Ampère equation

(θ + i∂∂̄ϕ)n = f eλϕΩ , (6.13)

which in the case λ = 0 is normalized by supX ϕ = 0. Moreover the solution
ϕ is in the class Pθ ∩ L∞(X) ∩ C0(X r Σα).

Proof . We consider a regularizing family (fj)j ⊂ C∞(X), fj > 0 of f in
the Orlicz space L logn+δ L(X). (The existence of such family follows from
[Ra-Re] page 364 or [Iw-Ma], Theorem 4.12.2, page 79.) We can assume as
usually the normalisation

∫
X
θn =

∫
X
fj Ω. By the proof of Theorem 6.1

and the L∞-estimate in corollary 2.13 we deduce the existence of a unique
solution of the degenerate complex Monge-Ampère equation

(θ + i∂∂̄ϕj)
n = fj e

λϕjΩ , (6.14)

with the properties ϕj ∈ Pθ ∩ L∞(X) ∩ C∞(X r Σα) and

‖ϕj‖L∞(X) ≤ C := C(δ, γ, θ,Ω) Iα,δ(f)
n
δ + C(γ, θ) . (6.15)

(With supX ϕj = 0 in the case λ = 0.) We deduce in particular the uniform
estimate

‖fj eλϕj‖L logn+δ L(X) ≤ KeλC‖f‖L logn+δ L(X) , (6.16)

for all j. (See [Ra-Re] page 364 or [Iw-Ma], Theorem 4.12.2, page 79.) On the
other hand the uniform estimate (6.15) implies (see [Dem2], chapter 1) the
existence of a L1-convergent subsequence (ϕj)j (which by abuse of notation
we denote in the same way).
Any solution of (6.14) provides a current γ = θ + i∂∂̄ϕj ≥ 0 satisfying
the hypothesis of Theorem 2.2. Therefore we can apply the L∞-stability
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estimate of Theorem 2.2 (B) (replacing there γ with any θ ∈ {γ} smooth) to
the complex Monge-Ampère equation (6.14) thanks to the estimates (6.15)
and (6.16).
Notice that by (6.15), the L∞-stability estimate of Theorem 2.2 (B) applies
even if in the case λ > 0, the solutions ϕj are not necessarily normalized by
the supremum condition.
We infer that the sequence (ϕj)j is a Cauchy sequence in the L∞(X)-norm,
thus convergent to some function ϕ ∈ Pθ∩L∞(X)∩C0(XrΣα). This yields
weakly convergent limits

(θ + i∂∂̄ϕ)n = lim
j→+∞

(θ + i∂∂̄ϕj)
n = lim

j→+∞
fj e

λϕjΩ = f eλϕΩ ,

over X r Σα. Moreover the fact that the global Monge-Ampère measure
(θ + i∂∂̄ϕ)n does not carry any mass on complex analytic sets of X implies
that ϕ is the unique (in the class PBTθ) global solution of the degenerate
complex Monge-Ampère equation (6.13) with the required regularity and
with ‖ϕ‖L∞(X) ≤ C. (We remark that the uniqueness of the solution in the
case λ > 0 follows from the same argument in step (D) in the proof of the
Theorem 6.1 .) ¤

Proof of Theorem 1.2.
Let θ ∈ α be a smooth (1, 1)-form and let Ω > 0 be the unique smooth
volume form over X such that Ric(Ω) = ρ − λθ and

∫
X

Ω = αn. Ac-
cording to Theorem 6.1 we can �nd a unique solution ϕ ∈ P BTα of the
degenerate complex Monge-Ampère equation θnϕ = eλϕ Ω. Moreover ϕ ∈
Pθ ∩L∞(X)∩C∞(X rΣα), and so ΘKE := θϕ is the required unique gener-
alised Kähler-Einstein current in the class BTlog

α . ¤

Proof of Theorem 1.3.
A result of Kawamata [Kaw] claims that in our case the canonical bun-
dle is base point free, and so, for all m À 0 su�ciently big and divisible,
mKX has no base points. So we can �x m such that the pluricanonical map
fm : X → CPN is holomorphic. Consider also the semipositive and big Käh-
ler form ωm := f ∗mωFS/m ∈ 2πc1(KX), where ωFS is the Fubini-Study metric
of CPN . Therefor we can apply theorem 1.2 (C) to the class α := 2πc1(KX)
with ρ = 0 and λ = 1. We infer the existence and uniqueness of the Einstein
current ω

E
∈ BTlog

2πc1(KX) with the required regularity. ¤

Proof of Theorem 1.4.
The uniqueness statement in the theorem 1.4 follows from the corollary 4.7.
In order to prove the existence of a Kähler-Einstein current ω

E
∈ 2πc1(KX)
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letm be a su�ciently large integer such that the base locus ofmKX coincides
with the stable base locus SB and let

fm : X r SB −→ Xm := fm(X r SB) ,

be the rational map associated to the linear system H0(X,mKX). Let Γ̂m
be the desingularization of the Zariski closure of the graph Γm ⊂ X × Xm

of fm, let πm : Γ̂m → X and pm : Γ̂m → Xm be the natural projections. By
de�nition of the graph there exists a Zariski dense open set Um ⊂ Γ̂m such
that X r SB = πm(Um) and pm = fm ◦ πm over Um. Consider also bases

(σm,j)
Nm
j=1 ⊂ H0(X,mKX) ,

and the induced curvature currents

0 ≤ γm :=
1

rm
f ∗m ωFS,m = −Ric(Ωm) ∈ 2πc1(KX) ,

where ωFS,m is the Fubini-Study metric of CPNm−1 and Ω−1
m is the induced

singular hermitian metric over mKX . Explicitly

Ωm =

(
Nm∑
j=1

∣∣∣σm,j
κm

∣∣∣
2
)1/m

in
2

κ ∧ κ̄ =

(
Nm∑
j=1

|σm,j|2Ω−1

)1/m

Ω ,

for arbitrary κ ∈ H0(X,KX) and Ω > 0 a smooth volume form. Observe
now that the smooth form

0 ≤ θm := m−1p∗m ωFS,m ,

is big. Moreover the Zariski dense open set Vm := Γ̂mrΣθm satis�es XrΣ =
πm(Vm). By Theorem 6.1 we infer the existence of a solution

Φm ∈ (Pθm ∩ L∞)(Γ̂m) ∩ C∞(Vm) ,

of the degenerate complex Monge-Ampère equation

(θm + i∂∂̄Φm)n = eΦm π∗mΩm , (6.17)

over Γ̂m. The fact that θm = π∗mγm over Um and the �bers of πm are connected
allows to πm-push forward the equation (6.17). We infer a solution ϕm ∈
L∞(X) ∩ C∞(X r Σ) of the degenerate complex Monge-Ampère equation

(γm + i∂∂̄ϕm)n = eϕmΩm , (6.18)
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over X r SB. We observe that (6.18) can be rewritten in an equivalent way
as

(−Ric(Ω) + i∂∂̄ψm
)n

= eψmΩ ,

over X r SB, with

ψm := ϕm +m−1 log
Nm∑
j=1

|σm,j|2Ω−1 .

Thus ω
E

:= −Ric(Ω) + i∂∂̄ψm is the required Kähler-Einstein current. ¤

Proof of the conjecture of Tian 1.5
Set Kt := {π∗ωY + tωX}n > 0 for t ∈ (0, 1). The hypothesis of Statement
(C) with assumption (C2) in Theorem 2.2 is satis�ed since

lim
t→0

(π∗ωY + tωX)n

Kt ωnX
=




∫

y∈Y

ωmY (y) ·
∫

z∈π−1(y)

ωn−mX




−1

π∗ωmY ∧ ωn−mX

ωnX
< +∞.

We deduce Osc(ψt) ≤ C < +∞ for all t ∈ (0, 1) by Statements (C) and (A)
of Theorem 2.2. This solves in full generality the conjecture of Tian 1.5. ¤

7 Appendix
Appendix A. Computation of a complex Hessian. Let σ ∈ H0(X,E)
be a holomorphic section of a holomorphic hermitian vector bundle (E, h)
and set Sε := log(|σ|2 + ε), for some ε > 0. We denote by {·, ·} the exterior
product of E-valued forms respect to the hermitian metric h. We have

i∂Sε =
i{∂hσ, σ}
|σ|2 + ε

,
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since σ is a holomorphic section. We compute now the complex hessian

i∂∂̄Sε = −∂̄ i{∂hσ, σ}|σ|2 + ε

=
−i{∂̄∂hσ, σ}+ i{∂hσ, ∂hσ}

|σ|2 + ε
+ i{∂hσ, σ} ∧ ∂̄

(
1

|σ|2 + ε

)

=
i{∂hσ, ∂hσ} − {iCE,hσ, σ}

|σ|2 + ε
− i{∂hσ, σ} ∧ {σ, ∂hσ}

(|σ|2 + ε)2

=
(|σ|2 + ε)i{∂hσ, ∂hσ} − i{∂hσ, σ} ∧ {σ, ∂hσ}

(|σ|2 + ε)2

︸ ︷︷ ︸
iT (Sε)

− {iCE,hσ, σ}|σ|2 + ε

where CE,h ∈ C∞(X,Λ1,1T ∗X ⊗ End(E,E)) is the curvature tensor of (E, h).
We show that the (1, 1)-form iT (Sε) is nonnegative. In fact by using twice
the Lagrange inequality

i{∂hσ, σ} ∧ {σ, ∂hσ} ≤ |σ|2 i{∂hσ, ∂hσ}

(which is an equality in the case of line bundles), we get

iT (Sε) ≥ εi{∂hσ, ∂hσ}
(|σ|2 + ε)2

≥ εi{∂hσ, σ} ∧ {σ, ∂hσ}
|σ|2(|σ|2 + ε)2

=
ε

|σ|2 i∂Sε ∧ ∂̄Sε ≥ 0 .

Observe that the last form is smooth. Consequently, we �nd the inequalities

i∂∂̄Sε ≥ ε

|σ|2 i∂Sε ∧ ∂̄Sε −
{iCE,hσ, σ}
|σ|2 + ε

≥ ε

|σ|2 i∂Sε ∧ ∂̄Sε − ‖CE,h‖h,ω |σ|2
|σ|2 + ε

ω

where ω is a positive (1, 1)-form.

Appendix B. Proof of the estimate (2.25) in Lemma 2.14. We will
apply the computations of step (B) in the proof of Theorem 6.1 to the non-
degenerate complex Monge-Ampère equation

(ω + i∂∂̄ϕ′j)
n = eh+Lϕ

′
j−ϕ′j−1 ωn .

In this setting, the notation of setup (A) in the proof of the Theorem 6.1
reduces to δ = l = h = 0, ω̃ε = ω and i∂∂̄h ≥ −K0 ω. By replacing the term
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f with h−ϕ′j−1 in the expansion of the term
∑

p Ãp,p̄/up,p̄ in step (B) in the
proof of Theorem 6.1, we infer

0 ≥ e
−Lϕ′j−h+ϕ′j−1

n−1 u
1

n−1
n,n̄ − (ϕ′j−1)n,n̄

un,n̄
− C ′0 ,

Thus

0 ≥ C ′1 u
1

n−1
n,n̄ − 2n+ maxX ∆ωϕ

′
j−1

4un,n̄
− C ′0 , (7.1)

by the estimates

ϕ′′0 ≤ ϕ′′j−1 ≤ ϕ′′j ≤ ϕ′j ≤ ϕ′j−1 ≤ ϕ′0 . (7.2)

This estimate implies also that at the maximum point xj we have

un,n̄(xj) = Λω
ϕ′j

= ekϕ
′
j(xj)Bj(xj) ≥ C ′2Bj ,

with Bj := maxX Bj > 0. Then estimate (2.25) in Lemma 2.14 follows from
(7.1) and the fact that

0 < 2n+ ∆ωϕ
′
j ≤ 2nekmaxX ϕ′j Bj ≤ C Bj ,

which is itself a consequence of (7.2). ¤

Appendix C. Relation with other works. As explained in the introduc-
tion the present work has its foundations in the papers [Yau], [Be-Ta] and
especially in [Kol1], [Kol2]. A few months after that the �rst version of the
present paper appeared on the arXiv server, P. Eyssidieux, V. Guedj, A. Ze-
riahi posted on the same server a related preprint [E-G-Z2]. In this preprint
the authors obtain a weaker version of Statement (C) given in our Theorem
2.2, which is su�cient to imply Tian's conjecture as stated in [Ti-Ko]. The
statement in [E-G-Z2] is weaker since it requires the (somehow stronger) as-
sumption Ω/ωn ∈ Lε(X), where ω ≥ 0 is smooth, big and degenerate. For
the same reason a weaker version of Lemma 2.9 is stated in [E-G-Z1].

At this point one should observe that the essence of the capacity method
introduced in [Kol1] does not allow to produce the required L∞-estimate
in the case of a big and non nef class. It is possible to see that in this
case the constants blow-up. This blow-up phenomenon has been one of the
motivations of our work, which has led us to the proof of Tian's conjec-
ture [Ti-Ko]. Moreover �xed point methods do not produce a priori the
L∞-estimate needed to construct singular Kähler-Einstein metrics and to
investigate their regularity.
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We wish to point out that in a quite recent preprint [Di-Zh] the authors
claim (in Theorem 1.1) boundedness and continuity of the solutions of some
particular type of degenerate complex Monge-Ampère equations. No proof
of this claim seems to be provided. The authors also claim a stability result
which is not su�cient to imply the continuity of solutions in the degenerate
case. In fact a sequence of discontinuous functions converging in L∞-norm
does not have necessarily a continuous limit ! Moreover the same claim (The-
orem 1.1) has been stated in [Zh1], [Zh2], but again no proof of continuity
seems to be given (see page 12 in [Zh1] and page 146 in [Zh2]). The argu-
ments for the boundedness of the solutions in [Zh1], [Zh2] are quite informal
in the degenerate case and seem impossible to follow.

Concerning the stability of the solutions, the continuity assumption is
quite natural and often available in the applications. In fact in the applica-
tions one works with smooth solutions provided by the Aubin-Yau solution of
the Calabi conjecture with respect to variable Kähler forms of type ω+εα, as
in the proof of theorem 6.1. This perturbation process is one of the reasons
of trouble for the continuity of the solutions. Moreover the stability with re-
spect to the data f considered in [Di-Zh] is not essential in this context since
one has L1-compactness of quasi-plurisubharmonic functions normalized by
the supremum condition. In fact a particular case of the stability result,
namely Theorem 2.2 B, implies the continuity of the solution of the complex
Monge-Ampère equation (ω + i∂∂̄ϕ)n = eλϕf Ω, whenever ω > 0 is a Kähler
metric and f ∈ L logn+ε L. This fact has been observed also in [Kol2].

Finally we mention that a nice and simple proof of the regularization of
quasi-plurisubharmonic functions in the case of zero Lelong numbers can be
found in [Bl-Ko].
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