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Degenerate complex Monge-Ampère equations over compact Kähler manifolds

We prove the existence and uniqueness of the solutions of some very general type of degenerate complex Monge-Ampère equations, and investigate their regularity. This type of equations are precisely what is needed in order to construct Kähler-Einstein metrics over irreducible singular Kähler spaces with ample or trivial canonical sheaf and singular Kähler-Einstein metrics over varieties of general type.

Introduction

In a celebrated paper [Yau] published in 1978, Yau solved the Calabi conjecture. As is well known, the problem of prescribing the Ricci curvature can be formulated in terms of non-degenerate complex Monge-Ampère equations.
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Theorem 1.1 (Yau). Let X be a compact Kähler manifold of complex dimension n and let α ∈ H 1,1 (X, R) be a Kähler class. Then for any smooth density v > 0 on X such that X v = X α n , there exists a unique (smooth) Kähler metric ω ∈ α (i.e. ω = ω 0 + i∂ ∂ϕ with ω 0 ∈ α ) such that ω n = (ω 0 + i∂ ∂ϕ) n = v.

Another breakthrough concerning the study of complex Monge-Ampère equations was achieved by Bedford-Taylor [Be-Ta]. They initiated a new method for the study of very degenerate complex Monge-Ampère equations. In fact, by combining these results, Koªodziej [Kol1] proved the existence of solutions for equations of type

(ω + i∂ ∂ϕ) n = v ,
where ω a Kähler metric and v ≥ 0 a density in L p or in some general Orlicz spaces. However, in various geometric applications, it is necessary to consider the case where ω is merely semipositive. This more dicult situation has been examined rst by Tsuji [Ts], and his technique has been reconsidered in the recent works [Ca-La], [Ti-Zha], [E-G-Z1] and [Pau].

In this paper we push further the techniques developed so far and we obtain some very general and sharp results on the existence, uniqueness and regularity of the solutions of degenerate complex Monge-Ampère equations. In order to dene the relevant concept of uniqueness of the solutions, we consider a suitable subset of the space of closed (1, 1)-currents, namely the domain of denition BT of the complex Monge-Ampère operator in the sense of Bedford-Taylor: a current Θ is in BT if the the successive exterior powers can be computed as

Θ k+1 = i∂ ∂(ϕΘ k ) ,
where ϕ is a potential of Θ and ϕΘ k is locally of nite mass. Then for every pseudoeective (1, 1)-cohomology class α ∈ H 1,1 (X, R), we prove a monotone convergence result for exterior powers of currents in the subset BT α := BT ∩ α. The case where the local potentials ϕ are bounded has been considered in [Be-Ta]. The unbounded case considered here appears rst in [Sib] and also in the subsequent papers [Fo-Si], [Di-Si]. The uniqueness of the solutions of the degenerate complex Monge-Ampère equations in a reasonable class of unbounded potentials has been a big issue and the object of intensive studies, see e.g. [Ts], [Ti-Zha], [START_REF] Bªocki | Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds[END_REF], [E-G-Z1]. In this direction, we introduce the subset BT log α ⊂ BT α , of (closed positive) currents T ∈ BT α which have a Monge-Ampère product T n possessing an L 1 -density such that X -log(T n /Ω) Ω < +∞ , for some smooth volume form Ω > 0. For example this is the case when the current T n possesses an L 1 -density with complex analytic singularities (see Theorem 6.1). We observe that the Ricci operator is well dened in the class BT log α .

In the last section we prove existence and ne regularity properties of the solutions of complex Monge-Ampère equations with respect to a given degenerate metric ω ≥ 0, when the right hand side possesses an L log n+ε L-density or a density carrying complex analytic singularities (see Theorems 6.2 and 6.1). As a consequence of this results, we derive the following generalization of Yau's theorem.

Theorem 1.2 Let X be a compact Kähler manifold of complex dimension n and let α be a (1, 1)-cohomology class with X α n > 0, which admits a closed positive (1, 1)-current γ ∈ α with bounded local potentials.

(A) For any L log n+ε L-density v ≥ 0, ε > 0 such that X v = X α n , there exists a unique closed positive current T ∈ BT α such that T n = v. Moreover, this current possesses bounded local potentials over X and continuous local potentials outside a complex analytic set Σ α ⊂ X. This set depends only on the class α and can be taken to be empty if the class α is Kähler.

(B) In the special case of a density v ≥ 0 possessing complex analytic singularities the current T is also smooth outside the complex analytic subset Σ α ∪ Z(v) ⊂ X, where Z(v) is the set of zeros and poles of v.

(C) For all λ ∈ R ≥0 and all smooth (1, 1)-forms ρ ∈ 2πc 1 (X) + λ α there exists a unique closed positive current Θ KE ∈ BT log α solution of the generalised Kähler-Einstein equation

Ric(Θ KE ) = -λ Θ KE + ρ .
Moreover the current Θ KE possesses bounded local potentials over X and denes a smooth Kähler metric outside the subset Σ α .

The type of complex Monge-Ampère equation solved in Theorem 6.1 is precisely what is needed in order to construct Kähler-Einstein metrics over irreducible singular Kähler spaces with ample or trivial canonical sheaf. The relevant L ∞ -estimate needed in the proof of Theorem 6.1 (in the case related with Kähler-Einstein metrics) is obtained combining the L ∞ -estimate in Statement (A) of Theorem 2.2 with an important iteration method invented by Yau [Yau] (see the Lemma 2.14). The main issue here is that one can not use directly the maximum principle since the reference metric is degenerate.

The proof of our Laplacian estimate in Theorem 6.1, which is obtained as a combination of the ideas of in [Yau], [Ts], [START_REF] Bªocki | Regularity of the degenerate Monge-Ampère equation on compact Kähler manifolds[END_REF], provides in particular a drastic simplication of Yau's most general argument for complex Monge-Ampère equations with degenerate right hand side. Moreover, it can be applied immediately to certain singular situations considered in [Pau] and it reduces the Laplacian estimate in [Pau] to a quite simple consequence (however, one should point out that the argument in [Pau] contains a gap due to the fact that the L p -norm of the exponential exp(ψ 1,ε -ψ 2,ε ) of εregularized quasi-plurisubharmonic functions need not be uniformly bounded in ε under the assumption that exp(ψ 1 -ψ 2 ) is L p , as our Lemma 5.4 clearly shows if we do not choose carefully the constant A there). Theorem 6.1 gives also some metric results for the geometry of varieties of general type. In this direction, we obtain the following results.

Theorem 1.3 Let X be a smooth complex projective variety of general type.

If the canonical bundle is nef, then there exists a unique closed positive current ω E ∈ BT log 2πc 1 (K X ) solution of the Einstein equation

Ric(ω E ) = -ω E . (1.1)
This current possesses bounded local potentials over X and denes a smooth Kähler metric outside a complex analytic subset Σ, which is empty if and only if the canonical bundle is ample.

The existence part has been studied in [Ts], [Ca-La] and [Ti-Zha] by a Kähler-Ricci ow method. The importance of the uniqueness statement in Theorem 1.3 is the following. If a current

ω E ∈ BT log 2πc 1 (K X )
satises the Einstein equation (1.1) then it has bounded local potentials. In the non nef case we obtain the following statement.

Theorem 1.4 Let X be a smooth variety of general type and let SB ⊂ Σ be respectively the stable and augmented stable base locus of the canonical bundle K X . Then there exists a closed positive current ω E ∈ 2πc 1 (K X ) over X, with locally bounded potentials over X SB, solution of the Einstein equation (1.1) over X SB, which restricts to a smooth (non-degenerate) Kähler-Einstein metric over X Σ. Moreover ω E is unique in the class of currents in 2πc 1 (K X ) with singularities equivalent to ω E . In particular if ω E has minimal singularities, then it is unique in the class of currents with minimal singularities in 2πc 1 (K X ).

Quite recently Tian and Koªodziej [Ti-Ko] proved a very particular case of our L ∞ -estimate under some technical conditions that they could check in the case of surfaces. Their method, which is completely dierent, is based on an idea developed in [De-Pa]. Our L ∞ -estimate allows us to completely solve the following conjecture of Tian stated in [Ti-Ko].

Conjecture 1.5 Let (X, ω X ) be a polarized compact connected Kähler manifold of complex dimension n, let (Y, ω Y ) be a compact irreducible Kähler space of complex dimension m ≤ n, let π : X → Y be a surjective holomorphic map and let 0 ≤ f ∈ L log n+ε L(X, ω n X ), for some ε > 0 such that 1 = X f ω n X . Then the solutions of the complex Monge-Ampère equations

π * ω Y + tω X + i∂ ∂ψ t n = {π * ω Y + tω X } n f ω n X , satisfy the uniform L ∞ -estimate Osc(ψ t ) := sup X ψ t -inf X ψ t ≤ C < +∞ for all t ∈ (0, 1).
The present manuscript expands and completes a paper published in the International Journal of Mathematics, which had to be shortened in view of the length of the manuscript and of the demands of referees -in particular it gives more details about the relation with the existing literature (see Appendix C).

2 General L ∞ -estimates for the solutions Let X be a compact connected complex manifold of complex dimension n and let γ be a closed real (1, 1)-current with continuous local potentials or a closed positive (1, 1)-current with bounded local potentials. Then to any distribution Ψ on X such that γ + i∂ ∂Ψ ≥ 0 we can associate a unique locally integrable and bounded from above function ψ : X → [-∞, +∞) such that the corresponding distribution coincides with Ψ and such that for any continuous or plurisubharmonic local potential h of γ the function h + ψ is plurisubharmonic. The set of functions ψ obtained in this way will be denoted by P γ . We set

P 0 γ := {ψ ∈ P γ | sup X ψ = 0}.
Denition 2.1 Let X be a compact complex manifold of complex dimension n. A closed positive (1, 1)-current with bounded local potentials such that {γ} n := X γ n > 0, will be called big.

If X is compact Kähler, one knows by [De-Pa] that the class {γ} is big if and only if it contains a Kähler current T = γ + i∂ ∂ψ ≥ εω (the inequality is in the sense of currents), for some Kähler metric ω on X and ε > 0.

Basic facts about Orlicz spaces. Let P : R ≥0 → R ≥0 , P (0) = 0, be a convex increasing function and Ω > 0 be a smooth volume form over a manifold M and let X ⊂ M be a Borel set of Ω-nite volume. According to [Ra-Re] we introduce the vector space

L P (X) := f : X → R ∪ {±∞} | ∃λ > 0 : X P (|f |/λ) Ω < +∞ ,
(with the usual identication of functions equal a.e.), equipped with the norm

f L P (X) := inf λ > 0 | X P (|f |/λ) Ω ≤ 1 .
The space L P (X) equipped with this norm is called the Orlicz space associated with the convex function P . Moreover this norm is order preserving, i.e

f L P (X) ≤ g L P (X) , if |f | ≤ |g| a.e. If P (t) = |t| p , p ≥ 1, then L P (X) is the usual Lebesgue space.
More rened examples of Orlicz spaces are given by the functions

P β := t log β (e + t) ,
and

Q β := e t 1/β -1 , with β ≥ 1 . In these cases, we set L log β L(X) := L P β (X) ,
and

Exp 1/β L(X) := L Q β (X) .
An important class of Orlicz spaces is given by considering functions P satisfying the doubling property: P (2t) ≤ 2 C P (t) for some constant C ≥ 1. This is the case of the functions |t| p and P β (t), but not the case of Q β (t). For functions satisfying the doubling condition one has (see proposition 6 page 77 in [Ra-Re])

L P (X) = f : X → R ∪ {±∞} | X P (|f |) Ω < +∞ ,
and

X P ( f -1 L P (X) |f |) Ω = 1
for all f ∈ L P (X) {0}. So in the particular case of the function P β , one obtains the inequality

f L log β L(X) ≤ X |f | log β e + f -1 L 1 (X) |f | Ω , (2.1) since f L 1 (X) ≤ f L log β L(X)
. It is quite hard to get precise estimates of the norm Exp 1/β L(X), however it is easy to see that

1 Exp 1/β L(X) = 1 log β (1 + 1/ Vol Ω (X))
.

(2.

2)

The relation between the Orlicz spaces L log β L(X) and Exp 1/β L(X) is expressed by the Hölder inequality (see [Iw-Ma])

X f g Ω ≤ 2C β f L log β L(X) g Exp 1/β L(X) , (2.3)
which follows from the inequality xy ≤ C β (P β (x) + Q β (y)) for all x, y ≥ 0.

(Observe moreover that C 1 = 1.)

We dene the oscillation operator Osc := sup -inf. With the notations so far introduced we state the following result.

Theorem 2.2 Let X be a compact connected Kähler manifold of complex dimension n, let Ω > 0 be a smooth volume form and let γ be a big closed positive (1, 1)-current with bounded local potentials over X and with continuous local potentials in the complement of a closed pluripolar set of X. Let also ψ ∈ P γ ∩ L ∞ (X) be a solution of the degenerate complex Monge-Ampère equation

(γ + i∂ ∂ψ) n = f Ω , with f ∈ L log n+ε 0 L(X, Ω) for some ε 0 > 0.
Then the following conclusions holds.

(A). The L ∞ -estimate. There exists a constant

C 1 = C 1 (ε 0 , γ, Ω) > 0 such that for all ε ∈ (0, ε 0 ] hold the estimate Osc(ψ) ≤ (C 1 /ε) n 2 /ε I γ,ε (f ) n ε + 1 , where I γ,ε (f ) := {γ} -n X f log n+ε e + {γ} -n f Ω .
(B). The stability of the solutions. Assume that the solution ψ is normalized by the condition sup X ψ = 0 and consider also a solution ϕ ∈ P γ ∩ L ∞ (X), sup X ϕ = 0 of the degenerate complex Monge-Ampère equation

(γ + i∂ ∂ϕ) n = g Ω , with g ∈ L log n+ε 0 L(X, Ω). Assume also I γ,ε 0 (f ), I γ,ε 0 (g) ≤ K for some constant K > 0. Then there exists a constant C 2 = C 2 (ε 0 , γ, Ω, K) > 0 such that ϕ -ψ L ∞ (X) ≤ 2C α 0 2 log ϕ -ψ -1 L 1 (X, Ω) -α 0 , α 0 := 1 (n + 1 + n 2 /ε 0 ) , provided that ϕ -ψ L 1 (X, Ω) ≤ min{1/2, e -C 2 }.
(C). The stability of the constants. Let (γ t ) t>0 be a family of currents satisfying the same properties as γ, with uniformly bounded local potentials and let

C 1,t := C 1 (ε 0 , γ t , Ω), C 2,t = C 2 (ε 0 , γ t , Ω, K). Assume;
(C1) there exist a decomposition of the type γ t = θ t + i∂ ∂u t , with θ t smooth, min X u t = 0, sup t>0 max X u t < +∞ and θ t ≤ ({γ t } n ) 1/n ω for some Kähler metric ω > 0 on X, or (C2) the distributions γ n t /Ω are represented by L 1 -functions and

sup t>0 {γ t } -n X log e + {γ t } -n γ n t /Ω γ n t < +∞ .
Then sup t>0 C j,t < +∞ for j = 1, 2.

Statement (C) will follow from the arguments of the proof of Statements (A) and (B) of Theorem 2.2. We start by proving a few basic facts about pluripotential theory, in a way which is best adapted for the understanding of the proof of the theorem 2.2. The reader can also consult and compare with the related results in [Be-Ta], [START_REF] Demailly | Potential Theory in Several Complex Variables[END_REF], [START_REF] Demailly | Complex analytic and dierential geometry[END_REF], [G-Z] and [Sic].

Let X be a compact complex manifold of complex dimension n, let γ be a big closed positive (1, 1)-current with bounded local potentials. Set

P γ [0, 1] := {ϕ ∈ P γ | 0 ≤ ϕ ≤ 1} , γ ϕ := γ + i∂ ∂ϕ and Cap γ (E) := sup ϕ∈P γ [0,1] {γ} -n E γ n ϕ ,
for all Borel sets E ⊂ X. We remark that if (E j ) j , E j ⊂ E j+1 ⊂ X is a family of Borel sets and E = j E j then clearly, we have

Cap γ (E) = lim j→+∞ Cap γ (E j ) .
(2.4) Lemma 2.3 Let X be a compact connected complex manifold of complex dimension n, let γ be a closed real (1, 1)-current with continuous local potentials or a closed positive (1, 1)-current with bounded local potentials and let Ω > 0 be a smooth volume form. Then there exist constants

α = α(γ, Ω) > 0, C = C(γ, Ω) > 0 such that X -ψ Ω ≤ C
and X e -αψ Ω ≤ C for all ψ ∈ P 0 γ . (We notice that the rst inequality follows from the second one.) The rst two integral estimates of Lemma 2.3 are quite standard in the elementary theory of plurisubharmonic functions and the dependence of the constants α and C on γ is only on the L ∞ bound of its local potentials (see e.g. [Hör] and [Skoda]). To be more precise in sight of the uniform estimate X e -αψ Ω ≤ C one can make the constant α depending only on the cohomology class of γ as in [START_REF] Tian | On Kähler-Einstein metrics on certain Kähler manifolds with c 1 (M ) > 0[END_REF], but in this case the constant C will depend on the L ∞ bound of the local potentials of γ and on the volume form Ω. One can also make C depending only on the volume form Ω, but in this case α will depend on the L ∞ bound of the local potentials of γ and on the volume form Ω. We prove now the following quite elementary integration by parts formula. (See also [Sib], [Fo-Si] and [Di-Si] for more general statements.) Claim 2.4 Let (X, ω) be a compact and connected Kähler manifold of complex dimension n, let θ be a closed and real smooth (1, 1)-form, let T be a closed positive (n -1, n -1)-current and let

ϕ ∈ P 0 θ ∩ L ∞ (X), ψ ∈ P 0 θ such that - X ψ T ∧ ω < +∞ . (2.5) Then - X ψ θ ϕ ∧ T < +∞ ,
and

X ϕ i∂ ∂ψ ∧ T = X ψ i∂ ∂ϕ ∧ T . (2.6)
Moreover the same conclusion hold true if θ is a closed positive (1, 1)-current with bounded local potentials.

P roof . By the regularization result in [START_REF] Demailly | Estimations L 2 pour l'opérateur d-bar d'unbré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète[END_REF] there exists a family of functions

(ϕ ε ) ε>0 , ϕ ε ∈ P θ+εω ∩C ∞ (X) such that ϕ ε ↓ ϕ as ε → 0 + . The standard formula [Dem2] d ϕ ε d c (ψT ) -ψ d c (ϕ ε T ) = ϕ ε dd c ψ ∧ T -ψ dd c ϕ ε ∧ T . implies X ϕ ε i∂ ∂ψ ∧ T = X ψ i∂ ∂ϕ ε ∧ T .
by Stokes formula. We assume rst ψ ∈ L ∞ (X). Then the fact that

Θ ε := (θ + εω + i∂ ∂ϕ ε ) ∧ T -→ θ ϕ ∧ T ,
weakly as ε → 0 + implies by lemma (3.9) page 189 in [START_REF] Demailly | Complex analytic and dierential geometry[END_REF], that any weak limit Ξ of the uniformly bounded mass family (ψΘ ε ) ε>0 satises the inequality Ξ ≤ ψ θ ϕ ∧ T . We infer by the monotone convergence theorem applied to the family

(ϕ ε ) ε>0 , X ϕ i∂ ∂ψ ∧ T = lim ε→0 + X ψ i∂ ∂ϕ ε ∧ T = lim ε→0 +   X ψ Θ ε - X ψ (θ + εω) ∧ T   = X Ξ - X ψ θ ∧ T ≤ X ψ i∂ ∂ϕ ∧ T .
Then the integration by parts formula (2.6) in the bounded case follows by replacing the roles of ϕ with ψ. We prove now the unbounded case. Let

ψ k := max{ψ, ϕ -k} ∈ P θ , k ∈ Z <0 . Thus X ϕ i∂ ∂ψ k ∧ T = X ψ k i∂ ∂ϕ ∧ T .
As before the fact that R k := θ ψ k ∧ T → θ ψ ∧ T , weakly as ε → 0 + implies by lemma (3.9) page 189 in [START_REF] Demailly | Complex analytic and dierential geometry[END_REF], that any weak limit Γ of the uniformly bounded mass family (ϕ R k ) k<0 satises the inequality Γ ≤ ϕ θ ψ ∧ T . Moreover applying the monotone convergence theorem to the sequence (ψ k ) k<0 via the trivial decomposition

X ψ k i∂ ∂ϕ ∧ T = X ψ k (Cω + i∂ ∂ϕ) ∧ T -C X ψ k ω ∧ T , C >> 0 ,
we deduce, thanks to the assumption (2.5),

X ψ i∂ ∂ϕ ∧ T = lim k→-∞ X ϕ i∂ ∂ψ k ∧ T ≤ X ϕ i∂ ∂ψ ∧ T .
On the other hand the trivial decomposition

- X ψ (θ + εω + i∂ ∂ϕ ε ) ∧ T = - X ϕ ε i∂ ∂ψ + ψ (θ + εω) ∧ T = - X ϕ ε θ ψ + ψ (θ + εω) ∧ T + X ϕ ε θ ∧ T ,
combined with the uniform L ∞ -bound of the family ϕ ε and the assumption (2.5) imply the uniform mass bound

sup ε>0 X -ψ (θ + εω + i∂ ∂ϕ ε ) ∧ T < +∞ .
We infer the reverse inequality

X ϕ i∂ ∂ψ ∧ T ≤ X ψ i∂ ∂ϕ ∧ T ,
as in the case ψ bounded. The case when θ is a closed positive (1, 1)-current with bounded local potentials follows by linearity.

The following corollary will be very useful for the rest of the paper.

Corollary 2.5 Let (X, ω) be a polarized compact connected Kähler manifold of complex dimension n and let γ, T be closed positive (1, 1)-currents with bounded local potentials. Then for all l = 0, ..., n

C l := sup ψ∈P 0 γ X -ψ T l ∧ ω n-l < +∞ and γ ψ ∧ T l = T l ∧ γ ψ for all ψ ∈ P γ .
Proof. The proof of the convergence of the constants C l goes by induction on l = 0, ..., n. The statement is true for l = 0 by the rst integral estimate of Lemma 2.3. So we assume it is true for l and we prove it for l + 1. Let us write T = θ + i∂ ∂u, with θ smooth, θ ≤ Kω and u bounded with inf X u = 0.

Then ψ, u ∈ P γ+Kω and the integration by parts formula applies thanks to the inductive hypothesis. Therefore we can expand the integral

X -ψ T l+1 ∧ ω n-l-1 = X -ψ (θ + i∂ ∂u) ∧ T l ∧ ω n-l-1 ≤ X -ψ T l ∧ Kω n-l - X u i∂ ∂ψ ∧ T l ∧ ω n-l-1 ≤ KC l + X (u γ -u γ ψ ) ∧ T l ∧ ω n-l-1 ≤ KC l + sup X u X γ ∧ T l ∧ ω n-l-1 < +∞ ,
by the inductive hypothesis. In sight of the symmetry of the exterior product we remark that the decreasing monotone convergence theorem implies

lim c→-∞ X (ψ c -ψ)T l ∧ ω n-l = 0 ,
which means the convergence of the mass (ψ c -ψ)T l ω (X) → 0 as c → -∞, in particular ψ c T l → ψT weakly as c → -∞. So by the weak continuity of the i∂ ∂ operator we deduce

γ ψ c ∧ T l -→ γ ψ ∧ T l , (2.7)
weakly as c → -∞. Moreover the weak continuity of the i∂ ∂ operator implies by induction on l

T l ∧ γ ψc -→ T l ∧ γ ψ , weakly as c → -∞. This combined with (2.7) implies γ ψ ∧ T l = T l ∧ γ ψ .
The following lemma is the key technical tool which allows to deduce Statement (C) of Theorem 2.2.

Lemma 2.6 Let X be a compact connected Kähler manifold of complex dimension n and let γ be a big closed positive (1, 1)-current with bounded local potentials.

(A) There exists a constant C = C(γ) > 0 such that Cap γ ({ψ < -t}) ≤ C/t for all ψ ∈ P 0 γ and t > 0. Moreover the constant C stays bounded for perturbations of γ satisfying the hypothesis of Statement (C) with assumption (C1) in Theorem 2.2.

(B) If γ n /Ω ∈ L log L(X), for a smooth volume form Ω > 0 then the conclusion of Statement (A) holds with a constant C = C(γ, Ω) > 0 which stays bounded for perturbations of γ satisfying the hypothesis of Statement (C) with assumption (C2) in Theorem 2.2.

Proof. We rst notice that the obvious inequality

ψ<-t γ n ϕ ≤ 1 t X -ψ γ n ϕ , implies Cap γ ({ψ < -t}) ≤ 1 t sup ϕ∈P γ [0,1] {γ} -n X -ψ γ n ϕ .
(2.8)

We show now the elementary inequality.

X -ψ γ n ϕ ≤ X -ψ γ n + n X γ n .
(2.9)

For this purpose we consider the integrals

I j := X -ψ γ j ∧ γ n-j ϕ ,
for all j = 0, ..., n. Then I j ≤ I j+1 + X γ n . In fact integrating by parts we obtain

I j = I j+1 - X ψ γ j ∧ i∂ ∂ϕ ∧ γ n-j-1 ϕ = I j+1 - X i∂ ∂ψ ∧ ϕ γ j ∧ γ n-j-1 ϕ ≤ I j+1 + X ϕ γ j+1 ∧ γ n-j-1 ϕ ≤ I j+1 + X γ n .
In this way we deduce the inequality I 0 ≤ I n + n X γ n , i.e. the inequality (2.9). Combining this with the inequality (2.8) we infer the required capacity estimate of Statement (A) in Lemma 2.6, with constant

0 < C(γ) := n + sup ψ∈P 0 γ {γ} -n X -ψ γ n < +∞ ,
thanks to corollary (2.5). Let now (γ t ) t>0 be a family satisfying the hypothesis of Statement (C) with assumption (C1) in Theorem 2.2 and K t = ({γ t } n ) 1/n . We can use the induction in the proof of corollary 2.5 with

T = γ t , θ = θ t , u = u t and K = K t to get C 1 ≤ K t X -ψ ω n + sup X u t X γ t ∧ ω n-1 ≤ K t X -ψ ω n + RK t X ω n ,
where R ≥ sup X u t . In general we obtain the inequality

C l+1 ≤ K t C l + R X γ l+1 t ∧ ω n-l-1 ≤ K t C l + RK l+1 t X ω n .
We deduce the estimate

C n ≤ K n t X -ψ ω n + nRK n t X ω n ,
which combined with the stability properties of the constant in lemma 2.3 implies the stability properties of the constant C(γ) in the Statement (A) of the Lemma 2.6. We now prove Statement (B) of Lemma 2.6. In fact let f := {γ} -n γ n /Ω ≥ 0.

Then the uniform estimate for the integral

{γ} -n X -ψ γ n = 1 α X -αψf Ω
follows from the elementary inequality

-αψf ≤ e -αψ -1 + f log(1 + f ) ,
combined with the uniform estimate X e -αψ Ω ≤ C of Lemma 2.3. In this case the required stability properties of the constant C(γ, Ω) > 0 in the capacity estimate are obvious.

Lemma 2.7 (Comparison Principle). Let X be a compact complex manifold of complex dimension n and let γ be a closed real (1, 1)-current with bounded local potentials and consider ϕ, ψ

∈ P γ ∩ L ∞ (X). Then ϕ<ψ γ n ψ ≤ ϕ<ψ γ n ϕ .
Proof. Let Θ := γ + i∂ ∂ max{ϕ, ψ} n . By the inequality of measures

Θ ≥ I ϕ≥ψ γ n ϕ + I ϕ<ψ γ n ψ ,
proved in [START_REF] Demailly | Potential Theory in Several Complex Variables[END_REF], we infer

ϕ<ψ Θ ≥ ϕ<ψ γ n ψ , ϕ≥ψ Θ ≥ ϕ≥ψ γ n ϕ .
This combined with Stokes' formula implies

ϕ<ψ γ n ψ ≤ X Θ - ϕ≥ψ Θ ≤ X γ n ϕ - ϕ≥ψ γ n ϕ = ϕ<ψ γ n ϕ .
We recall now the following lemma due to Koªodziej [Kol1], (see also , ).

Lemma 2.8 Let a : (-∞, 0] → [0, 1], be a monotone non-decreasing function such that for some B > 0, δ > 0 the inequality t a(s) ≤ B a(s + t) 1+δ holds for all s ≤ 0, t ∈ [0, 1], s+t ≤ 0. Then for all S < 0 such that a(S) > 0 and all D ∈ [0, 1], S + D ≤ 0 we have the estimate

D ≤ e(3 + 2/δ)B a(S + D) δ .
The following lemma is a simple application of the main result in Bedford-Taylor [Be-Ta] and of the monotone increasing convergence theorem in pluripotential theory.

Lemma 2.9 Let X be a compact connected complex manifold of complex dimension n, let γ be a big closed positive (1, 1)-current with bounded local potentials over X and with continuous local potentials in the complement of a closed pluripolar set Z ⊂ X. Let Ω > 0 be a smooth volume form. Then there exist constants α = α(γ, Ω) > 0, C = C(γ, Ω) > 0 such that for all Borel sets E ⊂ X hold the inequality

E Ω ≤ e α Ce -α/ Cap γ (E) 1/n .
(2.10)

In particular Cap γ (E) = 0 implies E Ω = 0.

Proof. It is sucient to prove this estimate for an arbitrary compact set. In fact assume (2.10) for compact sets and let (K j ) j , K j ⊂ K j+1 ⊂ E be a family of compact sets such that K j Ω → E Ω as j → +∞. Set U := ∪ j K j ⊂ E and take the limit in (2.10) with E replaced by K j . By (2.4) we deduce

E Ω ≤ e α Ce -α/ Cap γ (U ) 1/n ≤ e α Ce -α/ Cap γ (E) 1/n .
We prove now (2.10) for compact sets K ⊂ X. For this purpose, consider the function introduced in [Sic], [G-Z]

Ψ K (x) := sup{ϕ(x) | ϕ ∈ P γ , ϕ | K ≤ 0} .
We remark that Ψ K ≥ 0 over X and (Ψ K ) | K = 0 since 0 ∈ P γ by the positivity assumption on γ.

Assume K Ω = 0 ,
otherwise there is nothing to prove. In this case there exists a constant

C K > 0 such that sup X ϕ ≤ C K for all ϕ ∈ P γ , ϕ | K ≤ 0. In fact let S K := {ϕ ∈ P γ | ϕ | K ≤ 0}
and set φ := ϕ -sup X ϕ. By contradiction we would get a sequence ϕ j ∈ S K such that sup X ϕ j → +∞. This implies

sup K φj → -∞ and so K -φj Ω ≥ - K Ω sup K φj → +∞ ,
which contradicts the rst integral estimate of Lemma 2.3. Then it follows from quite standard local arguments that the upper regularization over X Z satises

Ψ * K ∈ P γ (X Z) ∩ L ∞ (X)
. By a standard extension result (see theorem 5.24 in [START_REF] Demailly | Complex analytic and dierential geometry[END_REF]) there exists a unique extension

Ψ * K ∈ P γ . Moreover Ψ * K ≥ 0 over X and Ψ * K = 0 over the interior K 0 of K.
We recall now the following well known consequence of a result of Bedford and Taylor [Be-Ta].

Theorem 2.10 Let ϕ ∈ P γ ∩ L ∞ (X) and let B be an open coordinate ball.

Then there exists φ

∈ P γ ∩ L ∞ (X), φ ≥ ϕ such that γ n φ = 0 on B and φ = ϕ on X B. Moreover if ϕ 1 ≤ ϕ 2 , then φ1 ≤ φ2 .
This implies the following quite standard fact in pluripotential theory [Sic]

, [Dem1], [G-Z]. Corollary 2.11 Let K ⊂ X be a compact set such that K Ω = 0. Then the extremal function Ψ * K ∈ P γ ∩ L ∞ (X), previously introduced, satises Ψ * K ≥ 0 over X, Ψ * K = 0 over the interior K 0 of K and (γ + i∂ ∂ Ψ * K ) n = 0 over X K.
Proof. By the classical Choquet lemma there exists a sequence (ϕ j ) j ⊂ S K , ϕ j ≥ 0 such that Ψ * K = (sup j ϕ j ) * over X Z. We can assume that this sequence is increasing. Otherwise, set φ1 := ϕ 1 and

φj := max{ϕ j , φj-1 } ∈ S K .
Let B be an open coordinate ball in X K and let φj ∈ S K be a solution of the Dirichlet problem γ n φj = 0 over B as in Theorem 2.10. Thus the sequence ( φj ) j ⊂ S K is still increasing and Ψ * K = (sup j φj ) * over X Z. Remember also that the plurisubharmonicity implies that Ψ * K = lim j φj al- most everywhere over X. By the monotone increasing theorem from classical pluripotential theory, we infer (γ + i∂ ∂ Ψ * K ) n = 0 over B, and the conclusion follows from the fact that B is arbitrary.

The fact that the current γ has continuous local potentials in the complement of a closed pluripolar set Z ⊂ X implies that any ϕ ∈ P γ is upper semicontinuous outside Z. Moreover the proof of Corollary 2.11 shows that the decreasing sequence of open sets

U j := {x ∈ X Z : ϕ j (x) < 1/j} ⊃ K Z , (with (ϕ j ) j increasing) satises Ψ * K = lim j ↑ Ψ * U j * , (2.11) over X Z. In fact we infer from the inequalities ϕ j -1/j ≤ Ψ * U j ≤ Ψ * K , Ψ * K = lim j ↑ ϕ j * = lim j ↑ (ϕ j -1/j) * ≤ lim j ↑ Ψ * U j * ≤ Ψ * K ,
over X Z. This implies (2.11) which combined with the monotone convergence theorem and with the second integral estimate of Lemma 2.3 gives

K Ω = lim j U j Ω ≤ lim j X e -α Ψ * U j Ω = X e -α Ψ * K Ω ≤ Ce -α A K , where A K := sup X Ψ * K . If A K > 1 set ϕ := A -1 K Ψ * K . Then 0 ≤ γ + i∂ ∂ Ψ * K ≤ A K γ ϕ ,
and so ϕ ∈ P γ [0, 1]. By corollary 2.11 we deduce

{γ} n A -n K = A -n K K (γ + i∂ ∂ Ψ * K ) n ≤ K γ n ϕ ≤ {γ} n Cap γ ( K ) , thus -αA K ≤ -α/ Cap γ ( K ) 1/n ,
by the bigness assumption on the current γ.

If A K ≤ 1 then Ψ * K ∈ P γ [0, 1] and so 1 = {γ} -n K (γ + i∂ ∂ Ψ * K ) n ≤ Cap γ ( K ) ≤ Cap γ (X) = 1 .
In both cases we reach the required conclusion.

Proof of Theorem 2.2, part A.

We can assume sup X ψ = 0.

Let U s := {ψ < s}, s ≤ 0, t ∈ [0, 1], s + t ≤ 0, ϕ ∈ P γ [-1, 0] and set V := {ψ -s -t < tϕ} .
Then we have inclusions U s ⊂ V ⊂ U s+t . By using the Comparison Principle (2.7) we infer

t n Us γ n ϕ ≤ Us γ n tϕ ≤ V γ n tϕ ≤ V γ n ψ ≤ U s+t γ n ψ ,
thus combining this with Hölder inequality in Orlicz spaces (2.3), formula (2.2) and Lemma 2.9 we obtain

t n Cap γ (U s ) ≤ {γ} -n U s+t γ n ψ = {γ} -n U s+t f Ω ≤ {γ} -n C ε 0 f L log n+ε L(X) • 1 Exp 1 n+ε L(U s+t ) = {γ} -n C ε 0 f L log n+ε L(X) log n+ε (1 + 1/ Vol Ω (U s+t )) ≤ {γ} -n C ε 0 f L log n+ε L(X) log n+ε 1 + e -α C -1 e α/ Cap γ (U s+t ) 1/n ≤ C ε 0 (k/α) n+ε {γ} -n f L log n+ε L(X) Cap γ (U s+t ) (n+ε)/n .
(Here the constant C > 0 depends on the same quantities as the constant

C 1 in Statement A and k > 0 is a constant such that k -1 α/x ≤ log(1 + e -α C -1 e α/x ) ,
for all x ∈ (0, 1]). So if we set δ := ε/n and

B := C 1/n ε 0 (k/α) 1+ε/n I γ,ε (f ) 1/n ,
we deduce that the function a(s) := Cap γ (U s ) 1/n , s ≤ 0, satises the hypothesis of Lemma 2.8. (We use here the inequality (2.1).) Consider now the function κ(t) := K δ B t δ , with constant K δ := e(3 + 2/δ). Remember also the uniform capacity estimate

a(s) ≤ C (-s) -1/n ,
of Lemma 2.6. Let now η > 1 be arbitrary. We claim that a(S η ) = 0 for

-S η = C n (K δ B η) n/δ + 1 .
The fact that the function a is left continuous (by formula (2.4)) will imply that a(S 1 ) = 0 also. Remark that S η is a solution of the equation

C(-S η -1) -1/n = κ -1 (η -1 ) ,
where κ -1 is the inverse of the function κ. So if we assume by contradiction that a(S η ) > 0 we deduce by Lemmas 2.8 and 2.6

1 ≤ κ(a(S η + 1)) ≤ κ(C(-S η -1) -1/n ) = η -1 < 1 , which is a contradiction. Thus if we set -I := max{s ≤ 0 | a(s) = 0} we obtain I ≤ -S 1 ≤ C n (K δ B) n/δ + 1 ,
which by arranging the coecients yields the right hand side of the estimate in Statement A of Theorem 2.2. Moreover by denition Cap γ (U -I ) = 0, thus Vol Ω (U -I ) = 0 by Lemma 2.9. The fact that the current γ has continuous local potentials in the complement of a closed pluripolar set Z ⊂ X implies that the function ψ is upper semicontinuous outside Z, so the set U -I Z is open, thus empty. This implies the required conclusion by elementary properties of plurisubharmonic functions.

Proof of part B.

Set

a := max{ ϕ L ∞ (X) , ψ L ∞ (X) }, consider θ ∈ P γ [0, 1], s ≥ 0, t ∈ [0, 1] and set V := ϕ < t 1 + a θ + 1 - t 1 + a ψ -s -t .
Then the obvious inequality 0

≤ -t 1+a ψ ≤ at 1+a implies the inclusions {ϕ -ψ < -s -t} ⊂ V ⊂ {ϕ -ψ < -s}.
Thus by applying the Comparison Principle (2.7) as in [START_REF] Koªodziej | Stability of solutions to the complex Monge-Ampère on compact Kähler manifolds[END_REF] we obtain

t n (1 + a) n ϕ-ψ<-s-t γ n θ ≤ V t 1 + a γ θ + 1 - t 1 + a γ ψ n ≤ V γ n ϕ ≤ ϕ-ψ<-s γ n ϕ .
By inverting the roles of ϕ and ψ in the previous inequality and by summing up we get

t n (1 + a) n |ϕ-ψ|>s+t γ n θ ≤ |ϕ-ψ|>s (f + g) Ω .
By taking the supremum over θ we obtain the capacity estimate

t n Cap γ (|ϕ -ψ| > s + t) ≤ (1 + a) n {γ} -n |ϕ-ψ|>s (f + g) Ω ,
(2.12)

for all s ≥ 0, t ∈ [0, 1]. Set U s := {|ϕ -ψ| > s} ⊂ X.
By combining Lemma 2.9 with a computation similar to the one in the proof of part A we obtain

t n Cap γ (U s+t ) ≤ (1 + a) n {γ} -n C ε 0 f + g L log n+ε 0 L(X) Cap γ (U s ) (n+ε 0 )/n ≤ B n Cap γ (U s ) (n+ε 0 )/n ,
where the constant B > 0 depends on the same quantities as the constant C 2 in Statement (B) of Theorem 2.2. We deduce that the function a(s) := Cap γ (U -s ) 1/n , s ≤ 0, satises the hypothesis of Lemma 2.8 with δ = ε 0 /n. On the other hand, the capacity estimate (2.12) combined with Hölder's inequality in Orlicz spaces implies for all t ∈ [0, 1] the inequalities

t n Cap γ (|ϕ -ψ| > 2t) ≤ (1 + a) n {γ} -n |ϕ-ψ|>t (f + g) Ω ≤ (1 + a) n {γ} -n t X |ϕ -ψ|(f + g) Ω ≤ 2(1 + a) n {γ} -n t ϕ -ψ Exp L(X) f + g L log L(X) ≤ 4K(1 + a) n t ϕ -ψ Exp L(X) . (2.13) Claim 2.12 If ϕ -ψ L 1 (X) ≤ 1/2, then there exists a constant C a > 0 such that ϕ -ψ Exp L(X) ≤ C a / log ϕ -ψ -1 L 1 (X) . Proof. We assume ϕ -ψ L 1 (X) > 0, otherwise there is nothing to prove. Set C k,a := k(e 2a/k -1)/(2a) , k > 0. Then for all k > 0 and all x ∈ [0, 2a/k] the inequality e x -1 ≤ C k,a x holds. Thus the inequality |ϕ -ψ|/k ≤ 2a/k implies X e |ϕ-ψ|/k -1 Ω ≤ C k,a X |ϕ -ψ| k Ω .
We get from there the implication

ϕ -ψ L 1 (X) = k/C k,a =⇒ ϕ -ψ Exp L(X) ≤ k , (2.14)
since by denition

ϕ -ψ Exp L(X) := inf    k > 0 | X e |ϕ-ψ|/k -1 Ω ≤ 1    . So if we set µ(k) := k/C k,a > 0 we deduce by the implication (2.14) ϕ -ψ Exp L(X) ≤ µ -1 ϕ -ψ L 1 (X) , (2.15)
where µ -1 : R >0 → R >0 is the inverse function of µ. Explicitly

µ -1 (y) = 2a/ log(1 + 2a/y) ,
for all y > 0. Now there exists a constant C a > 0 such that

µ -1 (y) ≤ C a / log(1/y) ,
for all y ∈ (0, 1/2]. This combined with (2.15) implies the conclusion.

Combining Claim 2.12 with the estimate (2.13) we infer the capacity estimate

a(-t) ≤ C t 1+1/n log ϕ -ψ -1 L 1 (X) -1/n , (2.16)
where the constant C > 0 depends on the same quantities as the constant

C 2 in Statement B. Set now C 2 := C n (2K δ B) n/δ > 0 (with K δ > 0 as in the proof of Statement (A)) and dene t := C α 0 2 log ϕ -ψ -1 L 1 (X) -α 0 .
The hypothesis t ∈ (0, 1] combined with the hypothesis of Claim 2.12 forces the condition ϕ -

ψ L 1 (X) ≤ min{1/2, e -C 2 }. Moreover t is solution of the equation C t 1+1/n log ϕ -ψ -1 L 1 (X) -1/n = κ -1 t 2 ,
where κ -1 is the inverse of the function κ introduced in the proof of part A.

We claim that a(-2t) = 0. Otherwise, by Lemma 2.8 and inequality (2.16), we infer

0 < t ≤ κ(a(-t)) ≤ κ(κ -1 (t/2)) = t/2 ,
which is absurd. We deduce

Vol Ω (|ϕ -ψ| > 2t) = 0
by Lemma 2.9. We prove now that the set

U 2t = {|ϕ -ψ| > 2t} ⊂ X ,
is empty, which will imply the desired L ∞ -stability estimate. The fact that |ϕ -ψ| ≤ 2t a.e. over X, implies

- B(x,r) (ϕ -ψ) dλ ≤ 2t ,
for all coordinate open balls B(x, r) ⊂ X. (The symbol -B represents the mean value operator.) By elementary properties of plurisubharmonic functions follows

ϕ(x) -ψ(x) = lim r→0 + - B(x,r) (ϕ -ψ) dλ ,
for all x ∈ X. We infer |ϕ -ψ| ≤ 2t over X.

Corollary 2.13 Let (X, ω) be a polarized compact connected n-dimensional Kähler manifold, let α ∈ H 1,1 (X, R) be a (1, 1)-cohomology class with X α n > 0, which admits a closed positive (1, 1)-current with bounded local potentials and let Γ := (γ ε ) ε>0 ⊂ α be a family of smooth (1, 1)-forms with uniformly bounded potentials such that

γ ε + εω > 0. Moreover let Ω > 0 be a smooth volume form, let f ∈ L log n+δ L(X), δ > 0, such that X α n = X f Ω and let (f ε ) ε>0 ⊂ C ∞ (X) be a family converging to f in the L log n+δ L(X)-norm as ε → 0 + , satisfying the integral condition X (γ ε + εω) n = X f ε Ω . (2.17)
Then, for any real number λ ≥ 0, the unique solution of the non-degenerate complex Monge-Ampère equation

(γ ε + εω + i∂ ∂ψ ε ) n = f ε e λ ψε Ω , (2.18)
given by Yau's and Aubin-Yau's solution of Calabi's conjecture (which in the case λ = 0 is normalized by max X ψ ε = 0) satises the uniform L ∞ -estimate

ψ ε L ∞ (X) ≤ C(δ, Γ, Ω) I α,δ (f ) n δ + 1 . (2.19)
Proof. The existence of a regularizing family f ε of f in L log n+δ L(X) follows from [Ra-Re] page 364 or [Iw-Ma], Theorem 4.12.2, page 79. We can always assume the integral condition (2.17) otherwise we multiply f ε by a constant c ε > 0 which converges to 1 by the normalizing condition X α n = X f Ω.

We distinguish two cases.

Case λ = 0. The hypothesis of Statement (C) with assumption (C1) of Theorem 2.2 are obviously satised for the family (γ ε + εω) ε∈(0,1) . We deduce that the constant C 1 = C 1 (δ , γ ε + εω , Ω) > 0 in the Statement of Theorem 2.2, A does not blow up as ε → 0 + . Moreover the uniform estimate

f ε L log n+δ L(X) ≤ C f L log n+δ L(X) =: K (2.20)
holds for all ε ∈ (0, 1). Thus by Theorem 2.2, A we obtain the required uniform estimate (2.19).

Case λ > 0. We start by proving the following lemma, which is a particular case of a more general result due to Yau (see [Yau], sect. 6, page 376).

Lemma 2.14 Let (X, ω) be a polarized compact Kähler manifold of complex dimension n, let h be a smooth function such that X ω n = X e h ω n and let ϕ ∈ P ω be the unique solution of the complex Monge-Ampère equation

(ω + i∂ ∂ϕ) n = e h+λϕ ω n , (2.21) λ > 0.
Consider also two solutions ϕ , ϕ ∈ P ω of the complex Monge-Ampère equation

(ω + i∂ ∂ψ) n = e h ω n such that min X ϕ = 0 = max X ϕ . Then ϕ ≤ ϕ ≤ ϕ .
Proof. The argument is a simplication, in our particular case, of Yau's original argument for the proof of Theorem 4, sect. 6 in [Yau]. Set ϕ 0 := ϕ , ϕ 0 := ϕ and consider the solutions ϕ j , ϕ j of the complex Monge-Ampère equations given by the iteration

(ω + i∂ ∂ϕ j ) n = e h+(λ+1)ϕ j -ϕ j-1 ω n , ( 2.22) 
(ω + i∂ ∂ϕ j ) n = e h+(λ+1)ϕ j -ϕ j-1 ω n .

(2.23)

Notice that we can solve these equations even if the terms e h-ϕ j-1 , e h-ϕ j-1 are not normalized, see Lemma 2 page 378 in [Yau]. Set L := λ + 1 and consider

(ω + i∂ ∂ϕ 1 ) n = e h+L(ϕ 1 -ϕ 0 )+λϕ 0 ω n ≥ e L(ϕ 1 -ϕ 0 ) e h ω n = e L(ϕ 1 -ϕ 0 ) (ω + i∂ ∂ϕ 0 ) n .
At a maximum point of ϕ 1 -ϕ 0 we have the inequality

(ω + i∂ ∂ϕ 0 ) n ≥ (ω + i∂ ∂ϕ 1 ) n .
By plugging this into the previous one, we deduce ϕ 1 ≤ ϕ 0 . We now prove by induction the inequality ϕ j ≤ ϕ j-1 . In fact by dividing (2.22) j with (2.22) j-1 we get

(ω + i∂ ∂ϕ j ) n (ω + i∂ ∂ϕ j-1 ) n = e L(ϕ j -ϕ j-1 )-(ϕ j-1 -ϕ j-2 ) ≥ e L(ϕ j -ϕ j-1 ) .
At a maximum point of ϕ j -ϕ j-1 we nd again the inequality

(ω + i∂ ∂ϕ j ) n ≤ (ω + i∂ ∂ϕ j-1 ) n .
Combining this with the previous one we deduce ϕ j ≤ ϕ j-1 . By applying a quite similar argument to (2.23) we obtain also ϕ j-1 ≤ ϕ j . We also prove by induction the inequality ϕ j ≤ ϕ j , which is true by denition in the case j = 0. By dividing (2.22) j with (2.23) j we get

(ω + i∂ ∂ϕ j ) n (ω + i∂ ∂ϕ j ) n = e L(ϕ j -ϕ j )-(ϕ j-1 -ϕ j-1 ) ≤ e L(ϕ j -ϕ j ) ,
by the induction hypothesis ϕ j-1 ≤ ϕ j-1 . At a minimum point of ϕ j -ϕ j we get

(ω + i∂ ∂ϕ j ) n ≥ (ω + i∂ ∂ϕ j ) n ,
hence ϕ j ≤ ϕ j . As a conclusion, we have proved the sequence of inequalities

ϕ 0 ≤ ϕ j-1 ≤ ϕ j ≤ ϕ j ≤ ϕ j-1 ≤ ϕ 0 .
(2.24)

We now prove a uniform estimate for the Laplacian of the potentials ϕ j . The inequalities 2.24 imply 0 < 2n + ∆ ω ϕ j ≤ C B j , where B j > 0 satises the uniform estimate

0 ≥ C 1 B 1 n-1 j -2n + max X ∆ ω ϕ j-1 B -1 j -C 0 , (2.25) C 0 , C 1 > 0,
which is obtained by applying the maximum principle in a similar way as in Yau's proof of the second order estimate for the solution of the Calabi conjecture [Yau]. (It can also be obtained by setting δ = l = h = 0 and ωε = ω in step (B) in the proof of Theorem 6.1, (see Appendix B). In the case n = 1 the uniform estimate 0 < 2n + ∆ ω ϕ j ≤ C follows immediately from the inequalities (2.24).) Fix now a constant C 2 > 0 such that the inequality

C 1 x 1+ 1 n-1 ≥ (C 0 + 2C)x -C 2 ,
holds for all x ≥ 0. This implies by (2.25) the estimate

2(2n + ∆ ω ϕ j ) ≤ 2C B j ≤ 2n + max X ∆ ω ϕ j-1 + C 2 , thus 2n + max X ∆ ω ϕ j ≤ 2 -j 2n + max X ∆ ω ϕ 0 + C 2 ,
by iteration. By taking the derivative in the Green Formula (see [Aub], Th. 4.13 page 108) we get the identity

d x ϕ j = - X d x G ω (x, •) ∆ ω ϕ j ω n ,
which implies the estimate

|∇ ω ϕ j | ω ≤ C ω max X ∆ ω ϕ j ≤ K .
By applying the complex version of the Evans-Krylov theory [START_REF] Tian | On the existence of solutions of a class of Monge-Ampère equations, (A Chinese summary appears in[END_REF] we deduce the uniform estimate ϕ j C 2,α (X) ≤ K . This combined with (2.22) implies that the monotone sequence (ϕ j ) j converges in the C 2,α -topology to the unique solution ϕ of the complex Monge-Ampère equation (2.21). Then the conclusion follows from the inequalities (2.24).

Consider now the solutions ψ ε , ψ ε , min X ψ ε = 0 = max X ψ ε of the complex Monge-Ampère equation (2.18) for λ = 0. By applying Lemma 2.14 we deduce

ψ ε ≤ ψ ε ≤ ψ ε for all ε > 0. By the argument in the case λ = 0, we infer ψ ε L ∞ (X) , ψ ε L ∞ (X) ≤ C, thus ψ ε L ∞ (X) ≤ C.
3 Basic properties of currents in the class BT

In the situation we have to consider, the relevant class of currents which can be used as the input of Monge-Ampère operators is dened as follows.

Denition 3.1 On a complex manifold, we consider the class BT of closed positive (1, 1)-currents Θ whose exterior products Θ k , 0 ≤ k ≤ n, can be dened inductively in the sense of Bedford-Taylor, namely, if Θ = i∂ ∂ψ on any open set, then ψΘ k is locally of nite mass and

Θ k+1 = i∂ ∂(ψΘ k ) for k < n.
Notice that the local niteness of the mass of ψΘ k is independent of the choice of the psh potential ψ, and that this assumption allows indeed to compute inductively i∂ ∂(ψΘ k ) in the sense of currents. The case where the local potentials ϕ are bounded has been considered in [Be-Ta]. The unbounded case considered here appears rst in [Sib] and also in the subsequent papers [Fo-Si]

, [Di-Si]. Now, if α ∈ H 1,1 (X, R) is a pseudoeective class, we set BT α = BT ∩ α.
Let γ ≥ 0 be a closed positive (1, 1)-current with bounded local potentials. We dene corresponding classes of potentials

P BT γ := ϕ ∈ P γ | γ + i∂ ∂ϕ ∈ BT {γ} , P BT 0 γ := {ϕ ∈ P BT γ | sup X ϕ = 0} .
Let ϕ ∈ P BT γ with zero Lelong numbers. It is well known from the work of the rst author [START_REF] Demailly | Regularization of closed positive currents and Intersection Theory[END_REF] (which becomes drastically simple in this particular case), that there exists a family (ϕ ε ) ε>0 , ϕ ε ∈ P γ+εω ∩ C ∞ (X), such that ϕ ε ↓ ϕ as ε ↓ 0 + . In the case the Lelong numbers of ϕ are not zero we can chose R > 0 suciently big such that 0 ≤ γ + Rω + i∂ ∂ϕ ε for all ε ∈ (0, 1) and ϕ ε ↓ ϕ as ε → 0 + . We have the following crucial result.

Theorem 3.2 (Degenerate monotone convergence result).

Let (X, ω) be a polarized compact Kähler manifold of complex dimension n and let γ, T be closed positive (1, 1)-currents with bounded local potentials.

Then the following statements hold true.

(A) For all ϕ ∈ P BT γ , ϕ ≤ 0 and k, l ≥ 0, k

+ l ≤ n, k ≤ n -1 I k,l := X -ϕ γ k ϕ ∧ T l ∧ ω n-k-l < +∞ , and γ k+1 ϕ ∧ T l = T l ∧ γ k+1 ϕ . (B) Let ϕ ∈ P BT γ , ϕ ≤ 0 with zero Lelong numbers and ϕ ε ∈ P γ+εω ∩ C ∞ (X), such that ϕ ε ↓ ϕ as ε → 0 + . Then for all k, l ≥ 0, k + l ≤ n, k ≤ n -1 ϕ ε (γ ϕ ε + εω) k ∧ T l -→ ϕ γ k ϕ ∧ T l , ( 3.1) 
(γ ϕε + εω) k+1 ∧ T l -→ γ k+1 ϕ ∧ T l , (3.2) weakly as ε → 0 + . (C) Let ϕ ∈ P BT γ , ϕ ≤ 0 and ϕ ε ∈ P γ+Rω ∩ C ∞ (X) such that ϕ ε ↓ ϕ as ε → 0 + . Then for all k, l ≥ 0, k + l ≤ n, k ≤ n -1 ϕ ε (γ ϕ ε + Rω) k ∧ T l -→ ϕ (γ ϕ + Rω) k ∧ T l , (3.3) (γ ϕ ε + Rω) k+1 ∧ T l -→ (γ ϕ + Rω) k+1 ∧ T l , (3.4)
weakly as ε → 0 + .

As follows immediately from the proof, the statement of this theorem still holds if we replace T l with a product T 1 ∧ .... ∧ T l , where the currents T j have the same properties as T . As a matter of fact, we wrote the statement in the previous special case only for the sake of notation simplicity. However, in the course of the proof, it is useful to notice that statements concerning terms involving T l are still valid if we replace T l with γ r ∧ T l-r .

Proof. Statement (3.2) follows from (3.1) by using the weak continuity of the i∂ ∂ operator. The argument for Statement (B) is the same as for (C).

Proof of (A). We denote by A k,l the special case of Statement (A) in the theorem for the relative indices (k, l). We prove Statements A k,l , l = 0, ..., n -k by using an induction on k = 0, ..., n -1. We remark that corollary 2.5 asserts Statement (A) in full generality for k = 0. So we assume Statement A k-1,• and we prove A k,l , l = 0, ..., n -k by using an induction on l. We remark that A k,0 holds by the hypothesis ϕ ∈ P BT γ . So we assume A k,l and we prove A k,l+1 . In fact let ϕ c := max{ϕ, c} ∈ P γ , c ∈ R <0 and write T = θ + i∂ ∂u, with θ smooth, θ ≤ Cω and u bounded with inf X u = 0. By using the monotone convergence theorem, the symmetry of the wedge product provided by the inductive hypothesis in k and the integration by parts formula (2.6) (which applies thanks to the inductive hypothesis in l), we expand the integral

I k,l+1 = - X ϕ (θ + i∂ ∂u) ∧ T l ∧ γ k ϕ ∧ ω n-k-l-1 ≤ C I k,l - X u i∂ ∂ϕ ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 = C I k,l + X u (γ -γ ϕ ) ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 ≤ C I k,l + sup X u X γ ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 < +∞ ,
by the inductive hypothesis in l. We now prove the symmetry relation

γ k+1 ϕ ∧ T l = T l ∧ γ k+1 ϕ . (3.5)
The decreasing monotone convergence theorem implies

lim c→-∞ X (ϕ c -ϕ) γ k ϕ ∧ T l ∧ ω n-k-l = 0 ,
which means the convergence of the mass

(ϕ c -ϕ) γ k ϕ ∧ T l ω (X) → 0 as c → -∞. In particular ϕ c γ k ϕ ∧ T l -→ ϕ γ k ϕ ∧ T ,
weakly as c → -∞. So by the weak continuity of the i∂ ∂ operator we deduce

γ ϕc ∧ γ k ϕ ∧ T l -→ γ k+1 ϕ ∧ T l , (3.6)
weakly as c → -∞. The symmetry of the wedge product provided by the inductive hypothesis in k implies

γ ϕc ∧ γ k ϕ ∧ T l = γ ϕc ∧ T l ∧ γ k ϕ = T l ∧ γ ϕc ∧ γ k ϕ
By the other hand (3.6) k,0 combined with the weak continuity of the i∂ ∂ operator implies, by an induction on l

T l ∧ γ ϕ c ∧ γ k ϕ -→ T l ∧ γ k+1 ϕ ,
weakly as c → -∞. This combined with (3.6) implies the required symmetry (3.5).

Proof of (B). For all k = 0, ..., n -1 and l = 0, ..., n -k we consider the following statement B k,l : for all p = 0, ..., k

ϕ ε γ p ϕ ∧ (γ ϕε + εω) k-p ∧ T l -→ ϕ γ k ϕ ∧ T l , (3.7) i∂ ∂ϕ ε ∧ γ p ϕ ∧ (γ ϕε + εω) k-p ∧ T l -→ i∂ ∂ϕ ∧ γ k ϕ ∧ T l , (3.8) γ p ϕ ∧ (γ ϕε + εω) k-p+1 ∧ T l -→ γ k+1 ϕ ∧ T l , (3.9) ϕ γ p ϕ ∧ (γ ϕε + εω) k-p ∧ T l -→ ϕ γ k ϕ ∧ T l , (3.10)
weakly as ε → 0 + . We remark that (3.8) follows from (3.7) by the weak continuity of the i∂ ∂ operator. By combining (3.8) with the weak continuity of the i∂ ∂ operator we obtain

(γ ϕε + εω) ∧ γ p ϕ ∧ (γ ϕε + εω) k-p ∧ T l -→ γ k+1 ϕ ∧ T l ,
weakly as ε → 0 + . On the other hand the symmetry of the wedge product proved in part (A) of the theorem implies

(γ ϕε + εω) ∧ γ p ϕ ∧ (γ ϕε + εω) k-p ∧ T l = (γ ϕε + εω) k-p+1 ∧ T l ∧ γ p ϕ = γ p ϕ ∧ (γ ϕε + εω) k-p+1 ∧ T l .
In this way we deduce (3.9). The statements B 0,• are true by the proof of corollary 2.5. We now prove by induction on k = 0, ..., n -1 that Statements B k,l , l = 0, ..., n -k hold true. In fact we prove the following claim.

Claim 3.3 If B j,• holds true for all j = 0, ..., k -1, then B k,l holds also true for all l = 0, ..., n -k.

As pointed out before in order to prove B k,l it is sucient to show (3.7) and (3.10). The proof of (3.10) is quite similar to the proof of (3.7) that we now explain. We rst prove by induction on s = 0, ..., k -p the inequality 1) Let α be a smooth closed real (q, q)-form, R be a closed positive (r, r)current, v ≥ 0 be a measurable function such that X vR ∧ ω n-r < +∞. This implies that the currents i∂ ∂v∧R := i∂ ∂(v R) and i∂ ∂v∧α∧R := i∂ ∂(vα∧R) are well dened. Then the Leibniz formula implies

X -ϕ ε γ p ϕ ∧ (γ ϕε + εω) k-p ∧ T l ∧ ω n-k-l ≤ X -ϕ γ p+s ϕ ∧ (γ ϕε + εω) k-p-s ∧ T l ∧ ω n-k-l + s-1 r=0 X (ϕ ε -ϕ) γ p+r ϕ ∧ (γ ϕε + εω) k-p-r-1 ∧ γ ∧ T l ∧ ω n-k-l - s-1 r=0 X εϕ γ p+r ϕ ∧ (γ ϕε + εω) k-p-r-1 ∧ T l ∧ ω n-k-l+1 . ( 3 
α ∧ i∂ ∂v ∧ R = i∂ ∂v ∧ α ∧ R . (3.12)
2) Thanks to part (A) of the theorem we have

X -ϕ γ p+r ϕ ∧ γ h ∧ T l ∧ ω n-p-r-h-l < +∞ for all h = 0, ..., k -p -r -1. By (3.12) this implies X -ϕ γ p+r ϕ ∧ (γ ϕ ε + εω) k-p-r-1 ∧ T l ∧ ω n-k-l+1 < +∞ , so the current S := ϕ γ p+r ϕ ∧ (γ ϕ ε + εω) k-p-r-1 ∧ T l
is well dened and we can dene the current

i∂ ∂ϕ ∧ γ p+r ϕ ∧ (γ ϕε + εω) k-p-r-1 ∧ T l := i∂ ∂S .
Then the integration by parts formula

X i∂ ∂ϕ ε ∧ S ∧ ω n-k-l = X ϕ ε i∂ ∂S ∧ ω n-k-l
can be written explicitly as

X i∂ ∂ϕ ε ∧ ϕ γ p+r ϕ ∧ (γ ϕε + εω) k-p-r-1 ∧ T l ∧ ω n-k-l = X ϕ ε i∂ ∂ϕ ∧ γ p+r ϕ ∧ (γ ϕε + εω) k-p-r-1 ∧ T l ∧ ω n-k-l . (3.13)
We suppose now the inequality (3.11) true for s and we prove it for s + 1.

We start by expanding, thanks to formula (3.12), the integral

J := X -ϕ γ p+s ϕ ∧ (γ ϕε + εω) k-p-s ∧ T l ∧ ω n-k-l = X -ϕ γ p+s ϕ ∧ (γ + εω) ∧ (γ ϕε + εω) k-p-s-1 ∧ T l ∧ ω n-k-l + X -ϕ γ p+s ϕ ∧ i∂ ∂ϕ ε ∧ (γ ϕε + εω) k-p-s-1 ∧ T l ∧ ω n-k-l = X -εϕ γ p+s ϕ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ T l ∧ ω n-k-l+1 - X ϕ γ p+s ϕ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ γ ∧ T l ∧ ω n-k-l - X i∂ ∂ϕ ε ∧ ϕ γ p+s ϕ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ T l ∧ ω n-k-l .
By applying the integration by parts formula (3.13) to the last integral we deduce

J = X -ϕ ε γ p+s+1 ϕ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ T l ∧ ω n-k-l + X ϕ ε γ ∧ γ p+s ϕ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ T l ∧ ω n-k-l - X ϕ γ p+s ϕ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ γ ∧ T l ∧ ω n-k-l - X εϕ γ p+s ϕ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ T l ∧ ω n-k-l+1 .
By combining the symmetry of the wedge product proved in part (A) with formula (3.12) we get

γ ∧ γ p+s ϕ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ T l = γ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ T l ∧ γ p+s ϕ = (γ ϕ ε + εω) k-p-s-1 ∧ γ ∧ T l ∧ γ p+s ϕ = γ p+s ϕ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ γ ∧ T l .
By plugging this into the previous expression of J we obtain

J = X -ϕ ε γ p+s+1 ϕ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ T l ∧ ω n-k-l + X (ϕ ε -ϕ) γ p+s ϕ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ γ ∧ T l ∧ ω n-k-l - X εϕ γ p+s ϕ ∧ (γ ϕ ε + εω) k-p-s-1 ∧ T l ∧ ω n-k-l+1 ,
which implies inequality (3.11) for s + 1. For s = k -p the inequality (3.11) rewrites as

X -ϕ ε γ p ϕ ∧ (γ ϕ ε + εω) k-p ∧ T l ∧ ω n-k-l ≤ X -ϕ γ k ϕ ∧ T l ∧ ω n-k-l + k-1 r=p X (ϕ ε -ϕ) γ r ϕ ∧ (γ ϕ ε + εω) k-r-1 ∧ γ ∧ T l ∧ ω n-k-l - k-1 r=p X εϕ γ r ϕ ∧ (γ ϕ ε + εω) k-r-1 ∧ T l ∧ ω n-k-l+1 .
By using the inductive convergence hypothesis (3.7) j,• , (3.10

) j,• in B j,• for j ≤ k -1 we deduce lim sup ε→0 + X -ϕ ε γ p ϕ ∧ (γ ϕε + εω) k-p ∧ T l ∧ ω n-k-l ≤ X -ϕ γ k ϕ ∧ T l ∧ ω n-k-l < +∞ , ( 3.14) 
by Statement A. (We can always arrange ϕ ε ≤ 0 for all ε ∈ (0, 1) by changing ϕ into ϕ-C.) Thus by weak compactness of the mass there exists a sequence (ε j ) j , ε j ↓ 0 + and a current of order zero Θ ∈ D n-k-l,n-k-l (X) such that

ϕ ε j γ p ϕ ∧ (γ ϕ ε j + ε j ω) k-p ∧ T l -→ Θ ,
weakly as j → +∞. So for any smooth and strongly positive form α of bidegree (n -k -l, n -k -l), we have

ϕ ε j γ p ϕ ∧ (γ ϕ ε j + ε j ω) k-p ∧ T l ∧ α -→ Θ ∧ α ,
weakly as j → +∞. The fact that ϕ ε j ↓ ϕ and

γ p ϕ ∧ (γ ϕ ε j + ε j ω) k-p ∧ T l ∧ α -→ γ k ϕ ∧ T l ∧ α ,
weakly as j → +∞, by the convergence inductive hypothesis (3.9

) k-1,l , im- plies Θ ∧ α ≤ ϕ γ k ϕ ∧ T l ∧ α ,
thanks to Lemma (3.9), page 189 in [START_REF] Demailly | Complex analytic and dierential geometry[END_REF]. Thus Θ ≤ ϕ γ k ϕ ∧T l . Combining this with the inequality (3.14) we obtain

X Θ ∧ ω n-k-l ≤ X ϕ γ k ϕ ∧ T l ∧ ω n-k-l ≤ lim inf ε→0 + X ϕ ε γ p ϕ ∧ (γ ϕε + εω) k-p ∧ T l ∧ ω n-k-l ≤ lim j→+∞ X ϕ ε j γ p ϕ ∧ (γ ϕε j + ε j ω) k-p ∧ T l ∧ ω n-k-l = X Θ ∧ ω n-k-l .
We deduce Tr ω (ϕ

γ k ϕ ∧ T l -Θ) = 0, which implies ϕ γ k ϕ ∧ T l = Θ since 0 ≤ ϕ γ k ϕ ∧ T l -Θ. This proves Statement B k,l .
We introduce also the subsets

P BT γ := ϕ ∈ P BT 0 γ | X -ϕ γ n ϕ < +∞ + R ⊂ P BT γ , P BT 0 γ := {ϕ ∈ P BT γ | sup X ϕ = 0} .
Without changes in the proof of Theorem 3.2 we get the following corollary.

Corollary 3.4 For all ϕ ∈ P BT γ , ϕ ≤ 0, the assertions A), B) and C) of Theorem 3.2 hold for all k = 0, ..., n.

Let now Θ be a closed positive (n-1, n-1)-current and consider the L 2 -space

L 2 (X, Θ) :=    α ∈ Γ(X, Λ 1,0 T * X ) | X iα ∧ ᾱ ∧ Θ < +∞    Θ-a.e
, equipped with the hermitian product α, β Θ := X iα ∧ β ∧ Θ, which is well dened by the polarization identity. The Θ-almost everywhere equivalence relation is dened by : α

∼ β i X i(α -β) ∧ (α -β) ∧ Θ = 0 .
The subscript Θ-a.e. in the denition of L 2 (X, Θ) above is Θ-almost everywhere. Let α k , α ∈ L 2 (X, Θ). We say that the sequence α k converges L 2 (X, Θ)-weakly to α if

X iα ∧ β ∧ Θ = lim k→+∞ X iα k ∧ β ∧ Θ , for all β ∈ L 2 (X, Θ). Let ϕ ∈ P 0 γ such that X -ϕ Θ ∧ ω < +∞.
Then one can dene ∂ϕ ∧ Θ := ∂(ϕΘ). We write ∂ϕ ∈ L 2 (X, Θ) if there exists α ∈ L 2 (X, Θ) such that ∂(ϕΘ) = α ∧ Θ in the sense of currents. In this case we write

X i∂ϕ ∧ ∂ϕ ∧ Θ := X iα ∧ ᾱ ∧ Θ .
With these notations we have the following corollary.

Corollary 3.5 Let (X, ω) be a polarized compact Kähler manifold of complex dimension n and let γ, T be closed positive (1, 1)-currents with bounded local potentials, let Θ be a closed positive (n -1, n -1)-current and consider ϕ ∈

P BT γ , ϕ ≤ 0, ψ ∈ P γ ∩ L ∞ (X), ψ ≤ 0. Then for all k, l ≥ 0, k + l ≤ n -1, X i∂ϕ ∧ ∂ϕ ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 < +∞ , (3.15) X i∂ψ ∧ ∂ψ ∧ Θ < +∞ . (3.16) Moreover let (ϕ ε ) ε>0 , (ψ ε ) ε>0 ⊂ C ∞ (X), ϕ ε ∈ P γ+Rω , ψ ε ∈ P γ+εω such that ϕ ε ↓ ϕ, ψ ε ↓ ψ as ε → 0 + . Then lim ε→0 + X i∂(ϕ ε -ϕ) ∧ ∂(ϕ ε -ϕ) ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 = 0 , (3.17) lim ε→0 + X i∂(ψ ε -ψ) ∧ ∂(ψ ε -ψ) ∧ Θ = 0 . (3.18)
Proof. By integrating by parts we obtain

X i∂ϕ ε ∧ ∂ϕ ε ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 = - X ϕ ε i∂ ∂ϕ ε ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 = X ϕ ε (γ + Rω) ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 - X ϕ ε (γ ϕ ε + Rω) ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 .
By the proof of Theorem 3.2, B we can take the limit, so

0 ≤ lim ε→0 + X i∂ϕ ε ∧ ∂ϕ ε ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 = X ϕ (γ -γ ϕ ) ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 < +∞ . (3.19)
On the other hand the weak convergence of the sequence

ϕ ε γ k ϕ ∧ T l ∧ ω n-k-l-1 -→ ϕ γ k ϕ ∧ T l ∧ ω n-k-l-1
, combined with the weak continuity of the ∂ operator implies

∂ϕ ε ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 -→ ∂ϕ ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 , weakly as ε → 0 + . Then the L 2 (X, γ k ϕ ∧ T l ∧ ω n-k-l-1
)-weak compactness provided by (3.19) implies (3.15) and the L 2 (X, γ k ϕ ∧ T l ∧ ω n-k-l-1 )-weak convergence ∂ϕ ε → ∂ϕ as ε → 0 + . This implies

X i∂ϕ ∧ ∂ϕ ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 = lim ε→0 + X i∂ϕ ε ∧ ∂ϕ ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 = lim ε→0 + X -ϕ ε i∂ ∂ϕ ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 = lim ε→0 + X -ϕ ε (γ -γ ϕ ) ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 = X -ϕ (γ -γ ϕ ) ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 = lim ε→0 + X i∂ϕ ε ∧ ∂ϕ ε ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 ,
by identity (3.19). This implies (3.17) by elementary facts about Hilbert spaces. The proof of (3.16) and (3.18) is quite similar.

The conclusion of the corollary 3.5 still holds true if we replace the current γ k ϕ ∧ T l ∧ ω n-k-l-1 with a sum of currents

Ξ := k+l≤n-1 C k,l γ k ϕ ∧ T l ∧ ω n-k-l-1 ,
where C k,l ∈ R such that Ξ ≥ 0. We infer the linearity formula

X i∂ϕ ∧ ∂ϕ ∧ Ξ = k+l≤n-1 C k,l X i∂ϕ ∧ ∂ϕ ∧ γ k ϕ ∧ T l ∧ ω n-k-l-1 .

Uniqueness of the solutions

We start with a renormalization result for the density volume form of a big and nef (1, 1)-cohomology class. This uses [De-Pa] in a crucial way.

Lemma 4.1 Let (X, ω) be a compact Kähler manifold of complex dimension n, let T be a big closed positive (1, 1)-current with bounded local potentials. Then there exist a big closed positive (1, 1)-current γ with bounded local potentials, cohomologous to T , a continuous function λ ≥ 0 and a complex analytic subset Z ⊂ X such that γ ≥ λω over X and λ > 0 over X Z.

Proof. Let θ be a smooth closed (1, 1)-form representing the cohomology class of T . The assumption on T means that we can write T = θ + i∂ ∂ψ ≥ 0 where ψ is a bounded quasi-plurisubharmonic function. By the approximation theorem of [START_REF] Demailly | Regularization of closed positive currents and Intersection Theory[END_REF], there exists a decreasing sequence ψ j of smooth quasi-plurisubharmonic functions converging to ψ such that θ + i∂ ∂ψ j ≥ -j -1 ω, in particular the class {T } = {θ} is nef (i.e. numerically eective in the sense of [START_REF] Demailly | Regularization of closed positive currents and Intersection Theory[END_REF]) and big. By Theorem 0.5 of [De-Pa], there also exists a Kähler current Θ = θ + i∂ ∂ϕ ∈ {θ}, with Θ ≥ εω (in the sense of currents) and ε > 0, such that ϕ has logarithmic poles on some analytic subset Z ⊂ X and ϕ is smooth on X Z. The function

ϕ j := max(ϕ, ψ -j) ,
is a bounded quasi-subharmonic function which coincides with ϕ on the open set W j = {z ∈ X Z ; ψ(z) -ϕ(z) < j} .

Clearly we have θ + i∂ ∂ϕ j ≥ 0 on X and θ + i∂ ∂ϕ j = θ + i∂ ∂ϕ = Θ ≥ εω on W j .

Therefore the function Φ = j≥1 2 -j ϕ j is a bounded quasi-plurisubharmonic potential on X (notice that there is uniform convergence since

-j -C ≤ ϕ j ≤ C on X) such that θ + i∂ ∂Φ ≥ 0 over X. Moreover θ + i∂ ∂Φ ≥ εω j≥l+1 2 -j on W l ,
for all l ≥ 1. We infer the existence of a continuous function λ ≥ 0 on X such that γ := θ + i∂ ∂Φ ≥ λ ω over X and λ(x) > 0 on W j = X Z.

Theorem 4.2 Let X be a compact connected Kähler manifold of complex dimension n and let γ be a big closed positive (1, 1)-current with bounded local potentials.

(A) Let ψ ∈ P 0 γ ∩ L ∞ (X) and ϕ ∈ P BT 0 γ such that

(γ + i∂ ∂ψ) n = (γ + i∂ ∂ϕ) n .
Then ψ = ϕ.

(B) Let ψ, ϕ ∈ P γ ∩ L ∞ (X) such that e -λψ (γ + i∂ ∂ψ) n = e -λϕ (γ + i∂ ∂ϕ) n .

with λ > 0. Then ψ = ϕ.

Proof of A. By the ∂ ∂-lemma and by the previous statement 4.1 we can assume that the current γ satises the estimate γ ≥ λω, with λ as in lemma 4.1. The identity γ n ϕ = γ n ψ implies ϕ ∈ P BT 0 γ by corollary 2.5. Let ϕ ε , ψ ε be as in the statement of corollary 3.5 and set u := ψ -ϕ, u ε := ψ ε -ϕ ε . Let us also recall the formula

α k -β k = (α -β) ∧ k-1 l=0 α l ∧ β k-l-1 .
From this we deduce

0 = X -u(γ n ψ -γ n ϕ ) = lim ε→0 + X -u ε (γ n ψ -γ n ϕ ) = lim ε→0 + n-1 l=0 X -u ε i∂ ∂u ∧ γ l ψ ∧ γ n-l-1 ϕ = lim ε→0 + n-1 l=0 X i∂u ε ∧ ∂u ∧ γ l ψ ∧ γ n-l-1 ϕ = n-1 l=0 X i∂u ∧ ∂u ∧ γ l ψ ∧ γ n-l-1 ϕ =: I , (4.1) since ∂u ε → ∂u in L 2 (X, γ l ψ ∧ γ n-l-1 ϕ
) by corollary 3.5. Inspired by an idea of S. Bªocki [START_REF] Bªocki | Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds[END_REF], we will prove by induction on k = 0, ..., n -1 that

X i∂u ∧ ∂u ∧ γ r ψ ∧ γ s ϕ ∧ γ k = 0 (4.2)
for all r, s ≥ 0, r + s = n -k -1. For k = 0 this follows from (4.1). So we assume (4.2) for k -1 and we prove it for k. In fact consider the identity

γ k = γ k ψ -i∂ ∂ψ ∧ k-1 l=0 γ l ψ ∧ γ k-l-1 and set Ξ := γ r ψ ∧ γ s ϕ ∧ k-1 l=0 γ l ψ ∧ γ k-l-1 .
By applying several times corollary 3.5 and by integrating by parts we derive

X i∂u ∧ ∂u ∧ γ r ψ ∧ γ s ϕ ∧ γ k = lim ε→0 + X i∂u ε ∧ ∂u ∧ γ r ψ ∧ γ s ϕ ∧ γ k = lim ε→0 +   X i∂u ε ∧ ∂(uγ r+k ψ ∧ γ s ϕ ) - X i∂u ε ∧ ∂(u i∂ ∂ψ ∧ Ξ)   = lim ε→0 +   X i∂u ε ∧ ∂u ∧ γ r+k ψ ∧ γ s ϕ + X u ε i∂ ∂u ∧ i∂ ∂ψ ∧ Ξ   = X i∂u ∧ ∂u ∧ γ r+k ψ ∧ γ s ϕ -lim ε→0 + X u ε i∂ ∂ψ ∧ (γ ϕ -γ ψ ) ∧ Ξ ≤ I + lim ε→0 + X i∂u ε ∧ ∂ [ ψ (γ ϕ -γ ψ ) ∧ Ξ ] = lim ε→0 +   X i∂u ε ∧ ∂ψ ∧ γ ϕ ∧ Ξ - X i∂u ε ∧ ∂ψ ∧ γ ψ ∧ Ξ   = X i∂u ∧ ∂ψ ∧ γ ϕ ∧ Ξ - X i∂u ∧ ∂ψ ∧ γ ψ ∧ Ξ . (4.3) Set χ = ϕ or χ = ψ. Then the Cauchy-Schwarz inequality implies X i∂u ∧ ∂ψ ∧ γ χ ∧ Ξ ≤   X i∂u ∧ ∂u ∧ γ χ ∧ Ξ   1/2   X i∂ψ ∧ ∂ψ ∧ γ χ ∧ Ξ   1/2 = 0 ,
by the inductive hypothesis. This combined with (4.3) implies (4.2) for k. So at the end of the induction we get

0 = X i∂u ∧ ∂u ∧ γ n-1 ≥ X i∂u ∧ ∂u ∧ (λω) n-1 ≥ 0 .
This implies ϕ = ψ by elementary properties of plurisubharmonic functions.

Proof of B. By applying the comparison principle (2.7) as in [E-G-Z1] we get

ϕ<ψ γ n ψ ≤ ϕ<ψ γ n ϕ = ϕ<ψ e λ(ϕ-ψ) γ n ψ ,
which implies ϕ<ψ γ n ψ = 0 since e λ(ϕ-ψ) < 1. This implies that the inequality ϕ ≥ ψ holds γ n ψ -almost everywhere, thus the inequality

γ n ϕ = e λ(ϕ-ψ) γ n ψ ≥ γ n ψ ,
weakly over the open set U := X UB ϕ as ε → 0. We infer

U Θ k ∧ T ∧ ω n-k-q ≤ U (Θ + Cω) k ∧ T ∧ ω n-k-q ≤ lim inf ε→0 U (Θ ε + Cω) k ∧ T ∧ ω n-k-q ≤ X (θ + Cω) k ∧ T ∧ ω n-k-q < +∞ ,
which concludes the proof of statement (A). Statement (B) follows from the fact that, thanks to the work in [START_REF] Demailly | Regularization of closed positive currents and Intersection Theory[END_REF], we can replace the loss of positivity constant C with constants

C ε > 0 such that C ε ↓ 0 as ε → 0.
The following lemma can be found in [Be-Bo] and is based on a simple but ecient increasing singularity approach introduced by the rst named author.

Lemma 4.4 Let X be a compact Kähler manifold of complex dimension n, let T be a closed positive (n-q, n-q)-current, q ≥ 1, let θ be a smooth closed real (1, 1)-form and consider ϕ, ψ ∈ P θ such that ϕ ≥ ψ over X. Then

X UB ψ (θ + i∂ ∂ϕ) q ∧ T ≥ X UB ψ (θ + i∂ ∂ψ) q ∧ T .
P roof . Consider the closed positive current Θ := (θ + i∂ ∂ψ) q-1 ∧ T over X UB ψ . In order to conclude, it is sucient to prove the inequality

X UB ψ (θ + i∂ ∂ϕ) ∧ Θ ≥ X UB ψ (θ + i∂ ∂ψ) ∧ Θ , (4.5)
thanks to the symmetry of the wedge product and to an obvious induction.

(Notice that the integral on the left hand side of the inequality (4.5) is also nite by the same type of argument as in the proof of Lemma 4.3.) Let C > 0 be a suciently big constant such that i∂ ∂ψ ≥ -Cω and set ψ ε := (1 + ε)ψ ∈ P θ ε , with θ ε := θ + εCω. Then the inequality (4.5) will follow by letting ε → 0 in the inequality

X UB ψ (θ ε + i∂ ∂ϕ) ∧ Θ ≥ X UB ψ (θ ε + i∂ ∂ψ ε ) ∧ Θ , (4.6)
that we prove now. Let k > 0 be an arbitrary constant. The fact that ϕ -k > ψ ε over the open set {ψ < -k/ε} implies

X UB ψ (θ ε + i∂ ∂ϕ) ∧ Θ = X UB ψ θ ε + i∂ ∂ max{ϕ -k , ψ ε } ∧ Θ =: I ,
by Stokes' formula. Let L ⊂ X UB ψ be an arbitrary compact set and let U ⊂ U ⊂ X UB ψ be an open set such that L ⊂ U ⊂ {ψ ε ≥ -R} for a suciently big constant R > 0. We infer

I ≥ U θ ε + i∂ ∂ max{ϕ -k , ψ ε } ∧ Θ ≥ L (θ ε + i∂ ∂ψ ε ) ∧ Θ ,
for k such that ϕ -k < -R over X. Then the inequality (4.6) follows by taking the supremum over L.

We now dene the potential with minimal singularities

ϕ θ (x) := sup ψ(x) | ψ ∈ P 0 θ ,
and we observe that ϕ θ ∈ P 0 θ . Let θ ∈ {θ} be another smooth element in the cohomology class of θ. We write θ = θ + i∂ ∂u. By denition, we infer ϕ θ + u -C ≤ ϕ θ and ϕ θ -u -C ≤ ϕ θ for some constants C, C > 0. By Lemmas 4.3 and 4.4 we infer the equality

X UB θ (θ + i∂ ∂ϕ θ ) q ∧ T = max ψ∈P θ X UB ψ (θ + i∂ ∂ψ) q ∧ T < +∞ .
Notice that the closed set UB θ depends only on the cohomology class {θ}.

We observe that the regularising result in [START_REF] Demailly | Regularization of closed positive currents and Intersection Theory[END_REF] implies that if a class α ∈ H 1,1 (X, R) is big then UB α is contained in a complex analytic set. We prove now the following lemma (see also [Be-Bo]).

Lemma 4.5 Let α ∈ H 1,1 (X, R) be a nef and big class over a compact Kähler manifold (X, ω) of complex dimension n and let θ ∈ α a smooth (1, 1)-form.

Then the potential with minimal singularities ϕ θ associated to θ is with zero Lelong numbers over X. Moreover for any q = 1, ..., n and any closed positive (n -q, n -q)-current T over X such that its mass does not charge proper complex analytic subsets of X, hold the identity

X UB α (θ + i∂ ∂ϕ θ ) q ∧ T = α q • {T } .
P roof . The nef assumption implies the existence of a family

(u ε ) ε∈(0,1) ⊂ C ∞ (X, R), u ε ≤ 0 such that θ + εω + i∂ ∂u ε ≥ 0 ,
for all ε ∈ (0, 1). Moreover the big assumption combined with the regularising result in [START_REF] Demailly | Regularization of closed positive currents and Intersection Theory[END_REF] implies the existence of a quasi-plurisubharmonic function ψ ≤ 0 with analytic singularities such that θ + i∂ ∂ψ ≥ ε 0 ω, for some ε 0 > 0.

We infer

0 ≤ 1 1 + εε -1 0 θ + εω + i∂ ∂u ε + εε -1 0 (θ -ε 0 ω + i∂ ∂ψ) = 1 1 + εε -1 0 (1 + εε -1 0 )θ + i∂ ∂(u ε + εε -1 0 ψ) = θ + i∂ ∂ψ ε ,
with

ψ ε := u ε + εε -1 0 ψ 1 + εε -1 0 ≤ 0 .
Therefore ψ ε ≤ ϕ θ and so λ x (ψ ε ) ≥ λ x (ϕ θ ) for all ε ∈ (0, 1) and x ∈ X. The fact that the Lelong numbers of ψ ε become arbitrary small as ε → 0 implies λ x (ϕ θ ) = 0. We prove now the last statement of the lemma. We observe rst the inclusion UB α ⊂ Z := ψ -1 (-∞). The previous computation implies also the inequality

1 1 + εε -1 0 θ + εω + i∂ ∂u ε ≤ θ + i∂ ∂ψ ε ,
which combined with lemma 4.4 provides

X UB α (θ + i∂ ∂ϕ θ ) q ∧ T ≥ X Z (θ + i∂ ∂ψ ε ) q ∧ T ≥ 1 (1 + εε -1 0 ) q X (θ + εω + i∂ ∂u ε ) q ∧ T = 1 (1 + εε -1 0 ) q X (θ + εω) q ∧ T .
If we let ε → 0 we infer the inequality

X UB α (θ + i∂ ∂ϕ θ ) q ∧ T ≥ α q • {T } .
The reverse inequality follows from the statement (B) of lemma 4.3.

In the case UB θ is contained in a complete pluripolar set E ⊂ X, the trivial extension of the current

I X E (θ + i∂ ∂ϕ θ ) q ,
over X is closed and positive by the Skoda-El Mir extension theorem, which applies thanks to Lemma 4.3. Moreover this extension is independent of E by the denition of UB θ . In fact the current (θ + i∂ ∂ϕ θ ) q , does not carry any mass on pluripolar sets contained in the open set X UB θ , since ϕ θ is locally bounded over this set. In this case we will still denote by (θ + i∂ ∂ϕ θ ) q the extension over X. In this setting, for any smooth and closed (n-q, n-q)-form T over X, q ≥ 1, we can dene the cohomology invariant {θ} [q] • {T } :=

X (θ + i∂ ∂ϕ θ ) q ∧ T = max ψ∈P θ X UB ψ (θ + i∂ ∂ψ) q ∧ T < +∞ .
In general the number α [q] • {ω} n-q associated to a pseudoeective class α ∈ H 1,1 (X, R) over a compact Kähler manifold (X, ω) of complex dimension n is not a cohomology invariant, so we will denote it by α [q] • ω n-q . However the numerical dimension of α, namely the number ν(α) := max{q ∈ {0, ..., n} | α [q] • ω n-q > 0 } . is well dened. In fact it is independent of the choice of the Kähler metric ω since the trace operator controls the mass of a positive (q, q)-current.

We prove now the following degenerate version of the Comparison Principle which is also based on the increasing singularity approach previously used. (Compare with the statement and the proof of corollary 1.4 in [Be-Bo]).

Lemma 4.6 (Degenerate Comparison Principle). Let X be a compact Kähler manifold of complex dimension n, let θ be a smooth closed real (1, 1)form and consider ϕ, ψ ∈ P θ such that ϕ ≥ ψ -K for some constant K > 0.

Then

{ϕ<ψ} UB ψ (θ + i∂ ∂ψ) n ≤ {ϕ<ψ} UB ψ (θ + i∂ ∂ϕ) n .
Proof. For any set E ⊂ X we put E ψ := E UB ψ and dene the closed positive current Θ := θ + i∂ ∂ max{ϕ, ψ} n over X ψ . We start by proving the inequality

X ψ (θ + i∂ ∂ϕ) n ≥ X ψ Θ . (4.7)
Let R > 0 be a suciently big constant such that i∂ ∂ψ ≥ -Rω and set

ψ ε := (1 + ε)ψ ∈ P θε , with θ ε := θ + εRω. The fact that ϕ > ψ ε on the open set {ψ < -K/ε} implies X ψ (θ ε + i∂ ∂ϕ) n = X ψ θ ε + i∂ ∂ max{ϕ, ψ ε } n ,
by Stokes' formula. We infer

X ψ (θ + i∂ ∂ϕ) n = lim inf ε→0 X ψ θ ε + i∂ ∂ max{ϕ, ψ ε } n ≥ X ψ Θ .
by the weak convergence

Θ ε := θ ε + i∂ ∂ max{ϕ, ψ ε } n -→ Θ , ( 4.8) 
as ε → 0 over the open set X ψ . In order to prove the convergence (4.8) we restrict our considerations to an arbitrary open set U ⊂ U ⊂ X ψ . Let C > 0 be a constant such that ψ ≥ -C over U . Then the function

Φ ε := max{ϕ + εC, ψ ε + εC} ∈ P θε ,
decreases to max{ϕ, ψ} over U as ε → 0 and satises

Θ ε = θ ε + i∂ ∂Φ ε n .
Then the convergence (4.8) over U follows from the monotone decreasing theorem in pluripotential theory. On the other hand the inequality of measures

Θ ≥ I ϕ≥ψ θ n ϕ + I ϕ<ψ θ n ψ ,
over the open set X ψ (see [START_REF] Demailly | Potential Theory in Several Complex Variables[END_REF]), implies

{ϕ<ψ} ψ Θ ≥ {ϕ<ψ} ψ θ n ψ , {ϕ≥ψ} ψ Θ ≥ {ϕ≥ψ} ψ θ n ϕ .
This combined with the inequality (4.7) implies

{ϕ<ψ} ψ θ n ψ ≤ X ψ Θ - {ϕ≥ψ} ψ Θ ≤ X ψ θ n ϕ - {ϕ≥ψ} ψ θ n ϕ = {ϕ<ψ} ψ θ n ϕ .
Corollary 4.7 Let X be a compact Kähler manifold of complex dimension n, Ω > 0 a smooth volume form and θ a smooth closed real (1, 1)-form.

Assume that ϕ j ∈ P θ , j = 1, 2 is such that UB ϕ j is a zero measure set and

(θ + i∂ ∂ϕ j ) n = e ϕ j Ω over X UB ϕ j . If ϕ 1 ≥ ϕ 2 -K over X, for some constant K > 0 then ϕ 1 ≥ ϕ 2 over X. Moreover if there exists a Kähler-Einstein current ω E ∈ 2πc 1 (K X )
, then it is unique in the class of currents in 2πc 1 (K X ) with singularities equivalent to ω E . In particular if ω E has minimal singularities, then it is unique in the class of currents with minimal singularities in 2πc 1 (K X ).

Proof. We set E := {ϕ 1 < ϕ 2 } UB ϕ 2 and we apply the degenerate comparison principle 4.6 as before. We obtain

E (θ + i∂ ∂ϕ 2 ) n ≤ E (θ + i∂ ∂ϕ 1 ) n = E e ϕ 1 -ϕ 2 (θ + i∂ ∂ϕ 2 ) n .
We infer 0 = E e ϕ 2 Ω, and so ϕ 1 ≥ ϕ 2 almost everywhere over X, thus everywhere by elementary properties of quasi-plurisubharmonic functions.

Generalized Kodaira lemma

We rst recall a few standard denitions of algebraic and analytic geometry which will be useful in our situation.

Denition 5.1 Let (X, ω) be a compact Kähler manifold. (A) A modication of X is a bimeromorphic morphism µ : X → X of compact complex manifolds with connected bers. Then there is a smallest analytic set Z ⊂ X such that the restriction µ : X µ -1 (Z) → X Z is a biholomorphism; we say that Exc(µ) = µ -1 (Z) is the exceptional locus of µ.

(B) A class α ∈ H 1,1 (X, R) is called big if there exist a current T ∈ α such that T ≥ εω, for some ε > 0.
By a result of [De-Pa], a nef class α on a compact Kähler manifold is big if and only if X α n > 0. By the proof of Theorem 3.4 in [De-Pa] we obtain the following generalization of Kodaira's lemma. Lemma 5.2 Let X be a compact Kähler manifold and α ∈ H 1,1 (X, R) be a big class. Then there exist a modication µ : X → X of X, an eective integral divisor D on X with support |D| ⊃ Exc(µ) and a number δ ∈ Q >0 , such that the class µ * α -δ{D} is Kähler. is an ample class, and the intersection of all these divisors E is contained in Σ α . Therefore

E∈Div + (X), δ∈Q >0 , α-δ{E} ample |E| ⊂ Σ α .
The opposite inclusion is obvious.

The following lemma gives us an important class of densities which will be allowable as the right hand side of degenerate complex Monge-Ampère equations.

Lemma 5.4 Let X be a compact complex manifold, let Ω > 0 be a smooth volume form and let σ j ∈ H 0 (X, E j ), τ r ∈ H 0 (X, F r ), j = 1, ..., N , r = 1, ..., M be, non identically zero, holomorphic sections of some holomorphic vector bundles over X such that the integral condition

X N j=1 |σ j | 2l j • M r=1 |τ r | -2hr Ω < +∞
holds for some real numbers l j ≥ 0, h r ≥ 0. Then the integrand function belongs to some L p space, p > 1, and for A ≥ A 0 ≥ 0 large enough, the family of functions

G ε := N j=1 (|σ j | 2 + ε A ) l j • M r=1 (|τ r | 2 + ε) -h r , ε ∈ [0, 1)
converges in L p -norm to the function G 0 when ε → 0. In fact, for N = 0 and l j > 0, one can take A 0 := ( r h r )/(min j l j ).

Proof. By blowing-up the coherent ideals generated by the components of any of the sections σ j , τ r , we obtain a modication µ : X → X such that the pull-back of these ideals by µ is a divisorial ideal. Using Hironaka's desingularization theorem, we can even assume that all divisors obtained in this way form a family of normal crossing divisors in X. Then each square |σ j • µ| 2 (resp. |τ r • µ| 2 ) can be written as the square |z α | 2 (resp. |z β | 2 ) of a monomial in suitable local coordinates U on a neighborhood of any point of X, up to invertible factors. The Jacobian of µ can also be assumed to be equal to a monomial z γ , up to an invertible factor. In restriction to such a neighborhood U , the convergence of the integral is equivalent to that of

U |z γ | 2 N j=1 |z α j | 2l j M r=1 |z β r | -2h r dz.
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Notice also that X can be covered by nitely many such neighborhoods, by compactness. Now it is clear that if the integral is convergent, then the integrand must be in some L p , p > 1, because the integrability condition is precisely that each coordinate z j appears with an exponent > -1 in the n-tuple γ + l j α j -h r β r ,

(so that we can still replace l j , h r with pl j , ph r with p close to 1). In order to prove the convergence of the functions G ε in the L p norm we distinguish two cases. In the case where l j = 0 for all j, the claim follows immediately from the monotone convergence theorem. The other possible case is l j > 0 for all j. In this case the convergence statement will follow if we can prove that for A large enough the functions

|z γ | 2 N j=1 (|z α j | 2 + ε A ) l j M r=1 (|z β r | 2 + ε) -h r
converge in L p -norm as ε → 0. This is trivial my monotonicity when N = 0.

When N > 0 and l j > 0, we have

N j=1 (|z α j | 2 + ε A ) l j ≤ C N j=1 (|z α j | 2l j + ε A min l j , M r=1 (|z β r | 2 + ε) -h r ≤ ε - P h r ,
so it is sucient to take A ≥ ( h r )/(min l j ) to obtain the desired uniform L p -integrability in ε.

6 Existence and higher order regularity of solutions

We are ready to prove the following fundamental existence theorem.

Theorem 6.1 Let X be a compact connected Kähler manifold of complex dimension n and let α ∈ H 1,1 (X, R) be a (1, 1)-cohomology class with X α n > 0, which admits a closed positive (1, 1)-current γ ∈ α with bounded local potentials. Let θ ∈ α be a smooth (1, 1)-form and let Ω > 0 be a smooth volume form. Consider also σ j ∈ H 0 (X, E j ), τ r ∈ H 0 (X, F r ), j = 1, ..., N , r = 1, ..., M be non identically zero holomorphic sections of some holomorphic vector bundles over X, such that the integral condition

X N j=1 |σ j | 2l j • M r=1 |τ r | -2h r Ω = X θ n (6.1)
holds for certain real numbers l j ≥ 0, h r ≥ 0. Then there exists a unique solution ϕ ∈ P BT θ of the degenerate complex Monge-Ampère equation

(θ + i∂ ∂ϕ) n = N j=1 |σ j | 2l j • M r=1 |τ r | -2h r e λϕ Ω , λ ≥ 0 , (6.2)
which in the case λ = 0 is normalized by sup X ϕ = 0. Moreover let Σ α be the augmented singular locus of the (1, 1)-cohomology class α as dened in (5.1), which is empty if the class α is Kähler, and consider the complex analytic sets

S := Σ α ∪ r {τ r = 0} , S := S ∪ j {σ j = 0} . Then ϕ ∈ P θ ∩ L ∞ (X) ∩ C 0 (X Σ α ) ∩ C 1,1 (X S ) ∩ C ∞ (X S) .
Proof. We rst assume the existence of an eective divisor D in X and of a small number δ > 0 such that α -δ{D} is a Kähler class on X. (We will later be able to remove this assumption thanks to Lemma 5.2). By using the Lelong-Poincaré formula we infer the existence of a smooth hermitian metric on O(D) such that

0 < ω δ := θ -2πδ[D] + δ i∂ ∂ log |s| 2 ,
with div(s) = D. By convention we will put δ = 0 if α is a Kähler class (so that ω δ = θ in that case), and in general we will denote by |D| the support of the divisor D.

(A) Setup.

We decompose the current γ = θ + i∂ ∂v ∈ α and we remind that the regularisation result in [START_REF] Demailly | Regularization of closed positive currents and Intersection Theory[END_REF] provides a family a family of smooth (1, 1)-forms γ ε = θ + i∂ ∂v ε , with v ε smooth, uniformly bounded and with v ε ↓ v as ε → 0, such that γ ε +εω is a Kähler metric for every ε > 0. For the sake of simplicity of notation we will use the function G ε , ε ∈ [0, 1) dened in the statement of lemma 5.4. In the case λ > 0 we assume that the potential v is normalised by the condition

X G 0 e λv Ω = X θ n . (6.3)
Let ω > 0 be a Kähler metric, let ε ∈ (0, 1) and let c ε be a normalizing constant for the integral condition (6.4) with A := h/l. Condition (6.3) combined with Lemma 5.4 and the fact that the potentials v ε are uniformly bounded, implies c ε → 0, when ε → 0 + . Consider the standard solutions Φ ε ∈ C ∞ (X) of the complex Monge-Ampère equations

e c ε X G ε e λv ε Ω = X (θ + εω) n > 0 ,
γ ε + εω + i∂ ∂Φ ε n = G ε e cε+λ(vε+Φε) Ω ,
given by Yau's and Aubin-Yau's solution of the Calabi conjecture [Yau], [Aub]. Notice that the integral condition (6.4) implies that a non identically zero solution Φ ε changes signs in the case λ > 0. If we set ϕ ε := Φ ε + v ε then the previous equation rewrites as

θ + εω + i∂ ∂ϕ ε n = G ε e c ε +λϕ ε Ω . (6.5)
As usual, in the case λ = 0, we normalize the solution ϕ ε with the condition max X ϕ ε = 0. By combining Lemma 5.4 with the estimate of corollary 2.13 we obtain a uniform bound for the oscillations Osc(Φ ε ) ≤ C and thus a uniform bound for the oscillations Osc(ϕ ε ) ≤ Osc(Φ ε ) + Osc(v ε ) ≤ C. We set now ωε := ω δ + εω , and

ψ ε := ϕ ε -δ log |s| 2 .
As the notation indicates, we will keep δ xed (until step (E)). Then we get a Kähler metric dened over X

ωε := θ + εω + i∂ ∂ϕ ε = ωε + i∂ ∂ψ ε + 2πδ[D], (6.6) 
thus ωε = ωε + i∂ ∂ψ ε over X |D|. In this setting, equation (6.5) can be rewritten as

(ω ε + i∂ ∂ψ ε ) n = e F ε +λδ log |s| 2 +λψ ε ωn ε (6.7) on X |D|, with F ε := f ε + a ε -b ε ,

and with

f ε := c ε + log(Ω/ω n ε ) , a ε := N j=1 l j • log(|σ j | 2 + ε A ) , b ε := M r=1 h r • log(|τ r | 2 + ε) .
(Here the superscripts in ε are indices and not powers.) Let C ωε be the Chern curvature form of the Kähler metric ωε > 0 and let

Γ ε := min x∈X min ξ,η∈T X,x 0 x C ωε (ξ ⊗ η, ξ ⊗ η) |ξ| -2 ωε |η| -2 ωε .
(We remark that the minimum is always achieved by an easy compactness argument, see e.g. [Kat], Chap II, Sect. 5.1, Theorem 5.1, page 107.) We observe that the family of metrics (ω ε ) ε has bounded geometry for δ xed and ε ∈ [0, 1] arbitrary. In particular, for all ε ∈ [0, 1] hold the uniform bounds

Γ ε ≥ Γ , |f ε | ≤ K 0 , λ(ω δ -θ) + i∂ ∂f ε ≥ -K 0 ωε .
Moreover we can assume i∂ ∂a ε , i∂ ∂b ε ≥ -K 0 ωε , (see Appendix A.) (B) The Laplacian estimate.

This estimate is obtained as a combination of ideas of Yau, Bªocki and Tsuji, [Yau], [START_REF] Bªocki | Regularity of the degenerate Monge-Ampère equation on compact Kähler manifolds[END_REF], [Ts]. Consider the continuous function Λ ε : X → (0, +∞) given by the maximal eigenvalue of ωε = ωε + i∂ ∂ψ ε with respect to the Kähler metric ωε ,

Λ ε (x) := max ξ∈T X,x 0 x (ω ε + i∂ ∂ψ ε )(ξ, Jξ)|ξ| -2 ωε ,
i.e. we extend Λ ε over |D| by continuity, as is permitted by (6.6). Consider also the continuous function over X |D|,

A ε := log Λ ε -k • ψ ε + b ε , with 0 < k := 2(1 + K 0 /2 -K 1 )
and with

K 1 := min{-λ -K 0 /n , Γ} < -λ .
The reason for this crucial choice will be clear in a moment. The singularity of the function ψ ε implies the existence of a maximum of the function A ε at a certain point x ε ∈ X |D|. Let g ε be a smooth real valued function in a neighborhood of x ε in X |D| such that ωε = i 2 ∂ ∂g ε , and let

u ε := g ε + 2ψ ε . Then ωε + i∂ ∂ψ ε = i 2 ∂ ∂u ε .
For the simplicity of notation, we just put g = g ε and u = u ε from now on, and we also set u l, m := ∂ 2 u ∂z l ∂ zm . Let (z 1 , . . . , z n ) be ωε -geodesic holomorphic coordinates centered at the point x ε , such that the metric ωε = ωε + i∂ ∂ψ ε can be written in diagonal form in x ε . Explicitly, we have the local expression ωε = i 2 l,m g l, m dz l ∧ dz m , with

g l, m = δ l,m - j,k C j, k l, mz j zk + O(|z| 3 ) , g j, k,l, m(x ε ) = -C j, k l, m , C ωε (x ε ) = j,k,l,m C j, k l, m dz j ⊗ dz l ⊗ dz k ⊗ dz m . and i 2 ∂ ∂u = i 2 l u l, l dz l ∧ dz l , with 0 < u 1, 1 ≤ ... ≤ u n,n at the point x ε . For every ζ ∈ C n we set g ζ, ζ := l,m g l, m ζ l ζm . Then Λ ε (x) = max ξ∈T X,x 0 x ∂ ∂u(ξ 1,0 , ξ 0,1 ) ∂ ∂g(ξ 1,0 , ξ 0,1 ) = max |ζ|=1 u ζ, ζ g ζ, ζ ,
and so Λ ε (x ε ) = u n,n (x ε ), with un,n g n,n ≤ Λ ε . We also set

Ãε := log u n,n g n,n -k • ψ ε + b ε . Then Ãε ≤ A ε , with Ãε (x ε ) = A ε (x ε )
. This implies that the function Ãε also reaches a maximum at the point x ε , thus ∆ ωε Ãε (x ε ) ≤ 0. All the subsequent computations in this part of the proof will be made at the point x ε . By the local expressions for the Ricci tensor we obtain |u n,p,q | 2 u p,p u q,q , and in a similar way ∂ 2 n,n log det(g j, k) = p g n,n,p,p . Then by dierentiating with respect to the operator ∂ 2 n,n the identity (6.7), which can be rewritten as

∂ 2 n,n log det(u j, k) = l,p u n,
log det(u j, k) = F ε + λδ log |s| 2 + λ(u -g)/2 + log det(g j, k) , we obtain p u n,n,p,p u p,p - p,q |u n,p,q | 2 u p,p u q,q = f ε n,n + λ[(ω δ ) n,n -θ n,n ]/2 + a ε n,n -b ε n,n + λ(u n,n -1)/2 + p g n,n,p,p .
Consider now the function B ε := e Aε = Λ ε e -k•ψε+b ε . Then x ε is also a maximum point for B ε over X |D| and the previous inequality can be written as

0 ≥ e (k-λ)ψε-λδ log |s| 2 -b ε -F ε n-1 (x ε ) B ε (x ε ) 1 n-1 -C 0 = e (k-λ)ϕ ε -δk log |s| 2 -a ε -f ε n-1 (xε) B ε (x ε ) 1 n-1 -C 0 .
Then by the inequalities k -λ > 0,

|s| 2 ≤ C, a ε ≤ C and |f ε | ≤ K 0 , we get the estimate 0 ≥ C 1 e (k-λ) n-1 min X ϕ ε B ε (x ε ) 1 n-1 -C 0 .
In conclusion we have found over X |D| the estimates

0 < 2n + ∆ ωε ϕ ε -δ∆ ωε log |s| 2 = Tr ωε (ω ε + i∂ ∂ψ ε ) ≤ 2nΛ ε ≤ 2n e k•ψ ε -b ε B ε (x ε ) ≤ C 2 e k•ϕε-(k-λ) min X ϕε |s| 2δk (|τ | 2 + ε) h ≤ C 2 e k Osc(ϕε) |s| 2δk |τ | 2h .
(Here Tr ωε is the trace operator with respect to the Kähler metric ωε .) The last inequality follows from the fact that λ min X Φ ε ≤ 0, since a non identically zero solution Φ ε changes signs in the case λ > 0. Thus λ min X ϕ ε ≤ λ max X v ε ≤ C. Moreover using the inequality

δ∆ ωε log |s| 2 = | Tr ωε (θ -ω δ )| ≤ C 3
over X |D|, we deduce the singular Laplacian estimate

-C 3 < 2n + ∆ ωε ϕ ε ≤ C 2 e k Osc(ϕε) |s| 2δk |τ | 2h + C 3 .
(C) Higher order estimates.

By the previous estimates we infer 0 < 2u l, l < Tr ωε (θ + εω + i∂ ∂ϕ ε ) ≤ 2Υ ε , for all l = 1, ..., n, with

Υ ε := C 2 e k Osc(ϕ ε ) |s| 2δk (|τ | 2 + ε) h .
The equation (6.5) can be rewritten as

θ + εω + i∂ ∂ϕ ε n = e F ε +λϕ ε ωn ε .
We infer

e F ε +λϕ ε = l u l, l ≤ Υ n-1 ε u m, m ,
for all m = 1, ..., n. The fact that a non identically zero solution Φ ε changes signs in the case λ > 0 implies λ min

X Φ ε ≥ -λ Osc(Φ ε ). Thus λ min X ϕ ε ≥ -λ Osc(ϕ ε ) + λ max X v ε ,
and therefore

e F ε +λ max X v ε -λ Osc(ϕ ε ) Υ 1-n ε ωε ≤ θ + εω + i∂ ∂ϕ ε .
Then an elementary computation yields the singular estimate

C -1 4 |s| 2δk(n-1) |σ| 2l |τ | 2h(n-2) e -kn Osc(ϕε) ωε ≤ θ + εω + i∂ ∂ϕ ε ≤ C 4 e k Osc(ϕ ε ) |s| 2δk |τ | 2h ωε . (6.8)
Moreover the fact that ϕ ε ∈ P θ+εω implies

2|∂ ∂ϕ ε | ωε ≤ ∆ ωε ϕ ε + 2 Tr ωε (θ + εω) .
At this step of the proof we consider

S := |D| ∪ r {τ r = 0} , S := S ∪ j {σ j = 0} .
By the Interpolation Inequalities [Gi-Tru] we nd that for any coordinate compact set K ⊂ X S there are uniform constants

C K > 0 such that max K |∇ C n ϕ ε | ≤ C K max K ∆ C n ϕ ε + max K |ϕ ε | .
Therefore, we can apply the complex version of Evans-Krylov theory [START_REF] Tian | On the existence of solutions of a class of Monge-Ampère equations, (A Chinese summary appears in[END_REF] on every compact set K ⊂ X S to get uniform constants C 2,K > 0 such that ϕ ε C 2,η (K) ≤ C 2,K for some η ∈ (0, 1). Now, let U ⊂ X S be an open set and let ξ ∈ O(T X )(U ). We rewrite the complex Monge-Ampère equation (6.5) under the form

θ + εω + i∂ ∂ϕ ε n = e H ε +λϕ ε ω n , with H ε := c ε + log(Ω/ω n ) + a ε -b ε .
By taking the derivative with respect to the complex vector eld ξ, we obtain (see the proof of formula 11 in [Pal])

∆ ωε (ξ . ϕ ε ) -2λ ξ . ϕ ε = -Tr ωε L ξ (θ + εω) + Tr ω L ξ ω + 2ξ . H ε , (6.9)
By the uniform estimates (6.8) and ϕ ε C 2,η (K) ≤ C 2,K it follows that the operator ∆ ωε is uniformly elliptic with coecients uniformly bounded in C η -norm at least, over any compact set K ⊂ U . The right hand side of equation (6.9) is also uniformly bounded in C η -norm at least, over K. By the standard regularity theory for linear elliptic equations [Gi-Tru] we deduce ξ . ϕ ε C 2,η (K) ≤ C K for all ε > 0. We infer the uniform estimate ϕ ε C 3,η (K) ≤ C 3,K . In its turn, this estimate implies that the coecients of the Laplacian ∆ ωε and the right hand side of equation (6.9) are uniformly bounded in C 1,η -norm at least. By iteration we get the uniform estimates ϕ ε C r,η (K) ≤ C r,K for all ε > 0 and r ∈ N. We infer that the family (ϕ ε ) ε>0 ⊂ C ∞ (X S) is precompact in the smooth topology.

(CI) The smooth regularity.

By elementary properties of plurisubharmonic functions (see [START_REF] Demailly | Complex analytic and dierential geometry[END_REF], chapter 1), the uniform estimate ϕ ε L ∞ (X) ≤ C implies the existence of a L 1convergent sequence (ϕ j ) j , ϕ j := ϕ ε j , ε j ↓ 0 with limit ϕ ∈ P θ ∩ L ∞ (X). We can assume that a.e.-convergence holds also. The precompactness of the family (ϕ ε ) ε>0 ⊂ C ∞ (X S) in the smooth topology implies the convergence of the limits (6.10) over X S, with c j := c ε j , G j := G ε j . The fact that ϕ is a bounded potential implies that the global complex Monge-Ampère measure (θ+i∂ ∂ϕ) n does not carry any mass on complex analytic sets. We infer that ϕ is a global bounded solution of the complex Monge-Ampère equation (6.2) which belongs to the class

(θ + i∂ ∂ϕ) n = lim l→+∞ (θ + i∂ ∂ϕ j ) n = lim j→+∞ G j e λ ϕ j +c j Ω = G 0 e λ ϕ Ω
P θ ∩ L ∞ (X) ∩ C ∞ (X S).
(CII) The C 1,1 -regularity.

Let U ⊂⊂ X S be a coordinate open set. By a classical result in [Gi-Tru] (see Theorem 8.32, page 210) for all open sets U ⊂⊂ U there exists a constant C = C(U , U ) > 0 such that for all η ∈ (0, 1) the uniform estimate

ϕ ε C 1,η (U ) ≤ C ϕ ε L ∞ (U ) + ∆ C n ϕ ε L ∞ (U ) (6.11)
holds. By applying the Ascoli-Arzela theorem to the sequence (ϕ j ) j , we infer the uniform estimate ϕ C 1,η (U ) ≤ C for all η ∈ (0, 1), thus ϕ ∈ C 1,1 (X S ).

(D) Uniqueness of the solution.

We observe rst that Theorem 4.2 still hold true if we replace γ there with any θ ∈ {γ} smooth. We prove now the uniqueness of the solution ϕ in the class P BT θ . In the case λ = 0 this follows immediately from Theorem 4.2.

In the case λ > 0 let ψ ∈ P BT θ be an other solution. The fact that ψ ∈ P θ implies that we can solve the degenerate complex Monge-Ampère equation (6.12) with the methods so far explained, so as to obtain a solution U ∈ P 0 θ ∩L ∞ (X). In fact as in step (A) we consider the solutions U ε of the non-degenerate complex Monge-Ampère equations

θ + i∂ ∂U n = G 0 e λψ Ω ,
θ + εω + i∂ ∂U ε n = G ε e λψ ε +c ε Ω , with ψ ε ↓ ψ, ψ ε ∈ C ∞ (X), ψ ε ≤ C, i∂ ∂ψ ε ≥ -K 0 ωε
and c ε being a normal- izing constant converging to 0 as ε → 0. By combining Lemma 5.4 with the dominated convergence theorem we infer that the family G ε e λψε+c ε converges in L p -norm to G 0 e λψ . These conditions are sucient to provide the singular Laplacian estimate of step (B). Thus by the C 1,η -compactness argument of step (CII) we infer the existence of the solution U of the degenerate complex Monge-Ampère equation (6.12). By the uniqueness result in the case λ = 0 we infer U = ψ -sup X ψ, thus ψ ∈ L ∞ (X). Then the required uniqueness follows immediately from Theorem 4.2 (B).

(E) Eliminating the assumption on the existence of divisors D in X.

By section 5, the divisors D which we have assumed to exist in X up to now, can only be constructed (at least, in the non-projective case) by applying a blow-up process to X, i.e. we can nd a modication µ : X → X of X, a divisor D in X with |D| ⊃ Exc(µ) and a number δ > 0 such that the class µ * α -δ{D} is Kähler on X. For this reason, we use pull-back the Monge-Ampère equation by µ so as to transform equation (6.2) into

(µ * θ + i∂ ∂Φ) n = N j=1 |σ j • µ| 2l j • M r=1 |τ r • µ| -2h r e λΦ µ * Ω , λ ≥ 0 .
Here µ * Ω is no longer a positive volume form on X but we have µ

* Ω = |Jµ| 2 Ω
where Ω is such a volume form, and |Jµ| 2 is the square of the Jacobian of µ expressed with respect to the pair (Ω, Ω). Observe that Jµ is just a section of the relative canonical divisor K X/X and that |Jµ| 2 is its norm with respect to the metric induced by (Ω, Ω). Thus our equation again takes the form

(µ * θ + i∂ ∂Φ) n = |Jµ| 2 N j=1 |σ j • µ| 2l j • M r=1 |τ r • µ| -2h r e λΦ Ω ,
and it is clear that the analogue of condition (6.1)

0 < X µ * θ n = X |Jµ| 2 N j=1 |σ j • µ| 2l j • M r=1 |τ r • µ| -2hr Ω ,
holds. By steps (A)(D), we obtain a unique solution

Φ ∈ P µ * θ ∩ L ∞ ( X) ∩ C 1,1 ( X S µ,D,δ ) ∩ C ∞ ( X Sµ,D,δ ) , with S µ,D,δ = |D| ∪ r {τ r • µ = 0} , Sµ,D,δ = S µ,D,δ ∪ j {σ j • µ = 0} ∪ Exc(µ).
Actually, taking the union with Exc(µ) will not be needed since |D| ⊃ Exc(µ). Moreover j * q µ * θ = 0, where j q : µ -1 (q) → X, q ∈ µ(Exc(µ)) is the inclusion map. Thus Φ • j q ∈ Psh(µ -1 (q)) since Φ ∈ P µ * ω ∩ L ∞ ( X). By hypothesis µ -1 (q) is compact and connected, which implies that Φ is constant along the bers µ -1 (q). Therefore we can dene ϕ := π * Φ ∈ P θ ∩ L ∞ (X). The fact that ϕ is bounded implies that the current (θ + i∂ ∂ϕ) n does not carry any mass on complex analytic sets. This, combined with the fact that

µ : X Exc(µ) → X µ(Exc(µ))
is a biholomorphism, implies (see Theorem 4.2) that ϕ is the unique solution in P θ ∩L ∞ (X) of the complex Monge-Ampère equation (6.2) with the required C 1,1 , C ∞ -regularity over the adequate subsets of X µ(|D|). We set nally

Σ α = (µ,D,δ)∈I α µ(|D|) , S = Σ α ∪ r {τ r = 0} , S = S ∪ j {σ j = 0} .
Then the conclusion about the (F) C 0 regularity on X Σ α .

P θ ∩ L ∞ (X) ∩ C 1,1 (X S ) ∩ C ∞ (X S)
The proof will be complete if we show that ϕ ∈ C 0 (X Σ α ). This follows from the following statement.

Theorem 6.2 . Let X, α, γ, θ, Ω as in the statement of Theorem 6.1 Let also f ∈ L log n+δ L(X), δ > 0 such that X θ n = X f Ω and λ ≥ 0 be a real number. Then there exists a unique solution ϕ ∈ PBT θ of the degenerate complex Monge-Ampère equation

(θ + i∂ ∂ϕ) n = f e λ ϕ Ω , (6.13) which in the case λ = 0 is normalized by sup X ϕ = 0. Moreover the solution ϕ is in the class P θ ∩ L ∞ (X) ∩ C 0 (X Σ α ). P roof . We consider a regularizing family (f j ) j ⊂ C ∞ (X), f j > 0 of f in the Orlicz space L log n+δ L(X).
(The existence of such family follows from [Ra-Re] page 364 or [Iw-Ma], Theorem 4.12.2, page 79.) We can assume as usually the normalisation X θ n = X f j Ω. By the proof of Theorem 6.1 and the L ∞ -estimate in corollary 2.13 we deduce the existence of a unique solution of the degenerate complex Monge-Ampère equation

(θ + i∂ ∂ϕ j ) n = f j e λ ϕ j Ω , (6.14) with the properties ϕ j ∈ P θ ∩ L ∞ (X) ∩ C ∞ (X Σ α ) and ϕ j L ∞ (X) ≤ C := C(δ, γ, θ, Ω) I α,δ (f ) n δ + C(γ, θ) . (6.15)
(With sup X ϕ j = 0 in the case λ = 0.) We deduce in particular the uniform estimate (6.16) for all j. (See [Ra-Re] page 364 or [Iw-Ma], Theorem 4.12.2, page 79.) On the other hand the uniform estimate (6.15) implies (see [START_REF] Demailly | Complex analytic and dierential geometry[END_REF], chapter 1) the existence of a L 1 -convergent subsequence (ϕ j ) j (which by abuse of notation we denote in the same way). Any solution of (6.14) provides a current γ = θ + i∂ ∂ϕ j ≥ 0 satisfying the hypothesis of Theorem 2.2. Therefore we can apply the L ∞ -stability estimate of Theorem 2.2 (B) (replacing there γ with any θ ∈ {γ} smooth) to the complex Monge-Ampère equation (6.14) thanks to the estimates (6.15) and (6.16). Notice that by (6.15), the L ∞ -stability estimate of Theorem 2.2 (B) applies even if in the case λ > 0, the solutions ϕ j are not necessarily normalized by the supremum condition.

f j e λ ϕ j L log n+δ L(X) ≤ Ke λC f L log n+δ L(X) ,
We infer that the sequence (ϕ j ) j is a Cauchy sequence in the L ∞ (X)-norm, thus convergent to some function ϕ ∈ P θ ∩ L ∞ (X) ∩ C 0 (X Σ α ). This yields weakly convergent limits (θ + i∂ ∂ϕ) n = lim j→+∞ (θ + i∂ ∂ϕ j ) n = lim j→+∞ f j e λ ϕ j Ω = f e λ ϕ Ω , over X Σ α . Moreover the fact that the global Monge-Ampère measure (θ + i∂ ∂ϕ) n does not carry any mass on complex analytic sets of X implies that ϕ is the unique (in the class PBT θ ) global solution of the degenerate complex Monge-Ampère equation (6.13) with the required regularity and with ϕ L ∞ (X) ≤ C. (We remark that the uniqueness of the solution in the case λ > 0 follows from the same argument in step (D) in the proof of the Theorem 6.1 .)

Proof of Theorem 1.2. Let θ ∈ α be a smooth (1, 1)-form and let Ω > 0 be the unique smooth volume form over X such that Ric(Ω) = ρ -λθ and X Ω = α n . According to Theorem 6.1 we can nd a unique solution ϕ ∈ P BT α of the degenerate complex Monge-Ampère equation θ n ϕ = e λϕ Ω. Moreover ϕ ∈ P θ ∩ L ∞ (X) ∩ C ∞ (X Σ α ), and so Θ KE := θ ϕ is the required unique generalised Kähler-Einstein current in the class BT log α .

Proof of Theorem 1.3. A result of Kawamata [Kaw] claims that in our case the canonical bundle is base point free, and so, for all m 0 suciently big and divisible, mK X has no base points. So we can x m such that the pluricanonical map f m : X → CP N is holomorphic. Consider also the semipositive and big Kähler form ω m := f * m ω F S /m ∈ 2πc 1 (K X ), where ω F S is the Fubini-Study metric of CP N . Therefor we can apply theorem 1.2 (C) to the class α := 2πc 1 (K X ) with ρ = 0 and λ = 1. We infer the existence and uniqueness of the Einstein current ω E ∈ BT log 2πc 1 (K X ) with the required regularity.

Proof of Theorem 1.4. The uniqueness statement in the theorem 1.4 follows from the corollary 4.7.

In order to prove the existence of a Kähler-Einstein current ω E ∈ 2πc 1 (K X ) let m be a suciently large integer such that the base locus of mK X coincides with the stable base locus SB and let f m : X SB -→ X m := f m (X SB) , be the rational map associated to the linear system H 0 (X, mK X ). Let Γm 

Φ m ∈ (P θ m ∩ L ∞ )( Γm ) ∩ C ∞ (V m ) ,
of the degenerate complex Monge-Ampère equation (6.17) over Γm . The fact that θ m = π * m γ m over U m and the bers of π m are connected allows to π m -push forward the equation (6.17). We infer a solution ϕ m ∈ L ∞ (X) ∩ C ∞ (X Σ) of the degenerate complex Monge-Ampère equation (γ m + i∂ ∂ϕ m ) n = e ϕ m Ω m , (6.18) over X SB. We observe that (6.18) can be rewritten in an equivalent way as -Ric(Ω) + i∂ ∂ψ m n = e ψ m Ω , over X SB, with

(θ m + i∂ ∂Φ m ) n = e Φ m π * m Ω m ,
ψ m := ϕ m + m -1 log N m j=1 |σ m,j | 2 Ω -1 .
Thus ω E := -Ric(Ω) + i∂ ∂ψ m is the required Kähler-Einstein current.

Proof of the conjecture of Tian 1.5 Set K t := {π * ω Y + tω X } n > 0 for t ∈ (0, 1). The hypothesis of Statement (C) with assumption (C2) in Theorem 2.2 is satised since

lim t→0 (π * ω Y + tω X ) n K t ω n X =    y∈Y ω m Y (y) • z∈π -1 (y) ω n-m X    -1 π * ω m Y ∧ ω n-m X ω n X < +∞.
We deduce Osc(ψ t ) ≤ C < +∞ for all t ∈ (0, 1) by Statements (C) and (A) of Theorem 2.2. This solves in full generality the conjecture of Tian 1.5.

Appendix

Appendix A. Computation of a complex Hessian. Let σ ∈ H 0 (X, E) be a holomorphic section of a holomorphic hermitian vector bundle (E, h) and set S ε := log(|σ| 2 + ε), for some ε > 0. We denote by {•, •} the exterior product of E-valued forms respect to the hermitian metric h. We have

i∂S ε = i{∂ h σ, σ} |σ| 2 + ε ,
since σ is a holomorphic section. We compute now the complex hessian where C E,h ∈ C ∞ (X, Λ 1,1 T * X ⊗ End(E, E)) is the curvature tensor of (E, h). We show that the (1, 1)-form iT (S ε ) is nonnegative. In fact by using twice the Lagrange inequality i{∂ h σ, σ} ∧ {σ, ∂ h σ} ≤ |σ| 2 i{∂ h σ, ∂ h σ} (which is an equality in the case of line bundles), we get

i∂ ∂S ε = - ∂ i{∂ h σ,
iT (S ε ) ≥ εi{∂ h σ, ∂ h σ} (|σ| 2 + ε) 2 ≥ εi{∂ h σ, σ} ∧ {σ, ∂ h σ} |σ| 2 (|σ| 2 + ε) 2 = ε |σ| 2 i∂S ε ∧ ∂S ε ≥ 0 .
Observe that the last form is smooth. Consequently, we nd the inequalities

i∂ ∂S ε ≥ ε |σ| 2 i∂S ε ∧ ∂S ε - {iC E,h σ, σ} |σ| 2 + ε ≥ ε |σ| 2 i∂S ε ∧ ∂S ε -C E,h h,ω |σ| 2 |σ| 2 + ε ω
where ω is a positive (1, 1)-form.

We wish to point out that in a quite recent preprint [Di-Zh] the authors claim (in Theorem 1.1) boundedness and continuity of the solutions of some particular type of degenerate complex Monge-Ampère equations. No proof of this claim seems to be provided. The authors also claim a stability result which is not sucient to imply the continuity of solutions in the degenerate case. In fact a sequence of discontinuous functions converging in L ∞ -norm does not have necessarily a continuous limit ! Moreover the same claim (Theorem 1.1) has been stated in [START_REF] Zhang | On degenerate Monge-Ampère equations over closed Kähler manifolds[END_REF], [START_REF] Zhang | Degenerate Monge-Ampère equations over projective manifolds[END_REF], but again no proof of continuity seems to be given (see page 12 in [START_REF] Zhang | On degenerate Monge-Ampère equations over closed Kähler manifolds[END_REF] and page 146 in [START_REF] Zhang | Degenerate Monge-Ampère equations over projective manifolds[END_REF]). The arguments for the boundedness of the solutions in [START_REF] Zhang | On degenerate Monge-Ampère equations over closed Kähler manifolds[END_REF], [START_REF] Zhang | Degenerate Monge-Ampère equations over projective manifolds[END_REF] are quite informal in the degenerate case and seem impossible to follow.

Concerning the stability of the solutions, the continuity assumption is quite natural and often available in the applications. In fact in the applications one works with smooth solutions provided by the Aubin-Yau solution of the Calabi conjecture with respect to variable Kähler forms of type ω +εα, as in the proof of theorem 6.1. This perturbation process is one of the reasons of trouble for the continuity of the solutions. Moreover the stability with respect to the data f considered in [Di-Zh] is not essential in this context since one has L 1 -compactness of quasi-plurisubharmonic functions normalized by the supremum condition. In fact a particular case of the stability result, namely Theorem 2.2 B, implies the continuity of the solution of the complex Monge-Ampère equation (ω + i∂ ∂ϕ) n = e λϕ f Ω, whenever ω > 0 is a Kähler metric and f ∈ L log n+ε L. This fact has been observed also in [START_REF] Koªodziej | Stability of solutions to the complex Monge-Ampère on compact Kähler manifolds[END_REF].

Finally we mention that a nice and simple proof of the regularization of quasi-plurisubharmonic functions in the case of zero Lelong numbers can be found in [Bl-Ko].

  .11)Inequality (3.11) is obviously true for s = 0. (Here we adopt the usual convention of neglecting a sum when it runs over an empty set of indices.) Before proceding to the proof of the inequality (3.11), we need to point out two useful facts.

  regularity of the solution ϕ follows by letting (µ, D, δ) ∈ I α vary. The proof of the uniqueness of the solution ϕ in the class P BT θ is the same as in step D, modulo the use of modications.

  be the desingularization of the Zariski closure of the graph Γ m ⊂ X × X m of f m , let π m : Γm → X and p m : Γm → X m be the natural projections. By denition of the graph there exists a Zariski dense open setU m ⊂ Γm such that X SB = π m (U m ) and p m = f m • π m over U m . Consider also bases (σ m,j ) N m j=1 ⊂ H 0 (X, mK X ) ,and the induced curvature currents0 ≤ γ m := 1 r m f * m ω F S,m = -Ric(Ω m ) ∈ 2πc 1 (K X ) ,where ω F S,m is the Fubini-Study metric of CP Nm-1 and Ω -1 m is the induced singular hermitian metric over mK X . Explicitly κ ∈ H 0 (X, K X ) and Ω > 0 a smooth volume form. Observe now that the smooth form0 ≤ θ m := m -1 p * m ω F S,m , is big. Moreover the Zariski dense open set V m := Γm Σ θm satises X Σ = π m (V m ). By Theorem 6.1 we infer the existence of a solution

  σ} |σ| 2 + ε = -i{ ∂∂ h σ, σ} + i{∂ h σ, ∂ h σ} |σ| 2 + ε + i{∂ h σ, σ} ∧ ∂ 1 |σ| 2 + ε = i{∂ h σ, ∂ h σ} -{iC E,h σ, σ} |σ| 2 + ε -i{∂ h σ, σ} ∧ {σ, ∂ h σ} (|σ| 2 + ε) 2 = (|σ| 2 + ε)i{∂ h σ, ∂ h σ} -i{∂ h σ, σ} ∧ {σ, ∂ h σ} (|σ| 2 + ε) 2

	-	{iC E,h σ, σ} |σ| 2 + ε
	iT (S ε )	
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holds γ n ψ -almost everywhere. By symmetry we also deduce that γ n ψ ≥ γ n ϕ holds γ n ϕ -almost everywhere. The fact that the potentials ϕ and ψ satisfy

implies that a property holds γ n ψ -almost everywhere if and only if it holds γ n ϕ -almost everywhere. We infer γ n ψ = γ n ϕ , hence ψ -ϕ = Const by part (A), and equality (4.4) now implies ψ = ϕ.

We now show a uniqueness result in the non-nef case. We denote by UB ϕ ⊂ X the unbounded locus of a quasi-plurisubharmonic function ϕ. Let us rst recall the following well known lemma [START_REF] Demailly | Potential Theory in Several Complex Variables[END_REF], [Be-Bo].

Lemma 4.3 Let (X, ω) be a compact Kähler manifold of complex dimension n, T a closed positive (q, q)-current on X, θ a smooth closed real (1, 1)form and ϕ a quasi-plurisubharmonic function such that θ+i∂ ∂ϕ ≥ 0 over X. Then the following holds (A) For all k = 1, ..., n -q

(B) If in addition ϕ has zero Lelong numbers, then

. By the monotone decreasing theorem in pluripotential theory we infer that

We associate to α the set I α of triples (µ, D, δ) satisfying the generalized Kodaira lemma 5.2, and a complex analytic set Σ α which we call the augmented singular locus of α, dened as

(5.1)

A trivial approximation argument shows that the set Σ α depends only on the half line R >0 α. In the case the class α is Kähler, (id X , 0, 1)

) is a Kähler current contained in the class α, which is smooth on X µ(|D|) and possesses logarithmic poles on µ(|D|) ; by taking the regularized upper envelope of a nite family of potentials of such currents Θ j with µ(|D j |) = ∅, we obtain a (smooth) Kähler metric on X. In the case the class α is integral or rational, the set Σ α can be characterized as follows.

Lemma 5.3 Let L be a big line bundle over a compact Kähler manifold.

Then the class α := c 1 (L) satises

where SB(L) is the stable base locus of L, i.e. the intersection of the base loci of all line bundles kL, and E runs over all eective integral divisors of X.

Proof. First notice that the existence of a big line bundle implies that X is Moishezon. This combined with the assumption that X is Kähler shows that X must in fact be projective (see [Moi], and also [START_REF] Peternell | Algebraicity criteria for compact complex manifolds[END_REF], [START_REF] Peternell | Moishezon manifolds and rigidity theorems[END_REF] for a simple proof). The inclusion SB(L) ⊂ Σ α in (5.2) is quite easy: Let (µ, D, ρ) ∈ I α . Then Kodaira's theorem implies that {A} := µ * α -ρ{D} is a Q-ample class on X and so the integer multiples kA are base point free for k large enough. 

We observe at this point that the sum of the two rst terms following the second equality is nonnegative and the trivial inequality

By plugging these inequalities in the previous computations and by using the denition of the constants k and K 1 , we get

where C 0 > 0 and all the following constants are independents of ε. Let denote by (x 1 , ..., x n ) the real part of the complex coordinates (z 1 , ..., z n ).

Then the inequality

Appendix B. Proof of the estimate (2.25) in Lemma 2.14. We will apply the computations of step (B) in the proof of Theorem 6.1 to the nondegenerate complex Monge-Ampère equation

In this setting, the notation of setup (A) in the proof of the Theorem 6.1 reduces to δ = l = h = 0, ωε = ω and i∂ ∂h ≥ -K 0 ω. By replacing the term f with h -ϕ j-1 in the expansion of the term p Ãp,p /u p,p in step (B) in the proof of Theorem 6.1, we infer

by the estimates

This estimate implies also that at the maximum point x j we have

with B j := max X B j > 0. Then estimate (2.25) in Lemma 2.14 follows from (7.1) and the fact that

which is itself a consequence of (7.2).

Appendix C. Relation with other works. As explained in the introduction the present work has its foundations in the papers [Yau], [Be-Ta] and especially in [START_REF] Koªodziej | The complex Monge-Ampère equation[END_REF], [START_REF] Koªodziej | Stability of solutions to the complex Monge-Ampère on compact Kähler manifolds[END_REF]. A few months after that the rst version of the present paper appeared on the arXiv server, P. Eyssidieux, V. Guedj, A. Zeriahi posted on the same server a related preprint [E-G-Z2]. In this preprint the authors obtain a weaker version of Statement (C) given in our Theorem 2.2, which is sucient to imply Tian's conjecture as stated in [Ti-Ko]. The statement in [E-G-Z2] is weaker since it requires the (somehow stronger) assumption Ω/ω n ∈ L ε (X), where ω ≥ 0 is smooth, big and degenerate. For the same reason a weaker version of Lemma 2.9 is stated in [E-G-Z1]. At this point one should observe that the essence of the capacity method introduced in [START_REF] Koªodziej | The complex Monge-Ampère equation[END_REF] does not allow to produce the required L ∞ -estimate in the case of a big and non nef class. It is possible to see that in this case the constants blow-up. This blow-up phenomenon has been one of the motivations of our work, which has led us to the proof of Tian's conjecture [Ti-Ko]. Moreover xed point methods do not produce a priori the L ∞ -estimate needed to construct singular Kähler-Einstein metrics and to investigate their regularity.