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Degenerate complex Monge-Ampeére equations
over compact Kihler manifolds

Jean-Pierre Demailly and Nefton Pali

Abstract

We prove the existence and uniqueness of the solutions of some
very general type of degenerate complex Monge-Ampére equations,
and investigate their regularity. This type of equations are precisely
what is needed in order to construct Kéhler-Einstein metrics over ir-
reducible singular K#hler spaces with ample or trivial canonical sheaf
and singular Kéhler-Einstein metrics over varieties of general type.
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1 Introduction

In a celebrated paper [Yau| published in 1978, Yau solved the Calabi conjec-
ture. As is well known, the problem of prescribing the Ricci curvature can be
formulated in terms of non-degenerate complex Monge-Ampére equations.
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Theorem 1.1 (Yau). Let X be a compact Kdihler manifold of complex
dimension n and let « € HY'Y(X,R) be a Kihler class. Then for any
smooth density v > 0 on X such that fXU = fX o, there exists a unique
(smooth) Kihler metric w € « (i.e. w = wy + 100 with wy € « ) such that
Ww" = (wp + 100p)" = v.

Another breakthrough concerning the study of complex Monge-Ampére equa-
tions was achieved by Bedford-Taylor |Be-Ta|. They initiated a new method
for the study of very degenerate complex Monge-Ampére equations. In fact,
by combining these results, Kotodziej [Kol1| proved the existence of solutions
for equations of type

(w+i00p)" = v,

where w a Kédhler metric and v > 0 a density in L? or in some general Orlicz
spaces. However, in various geometric applications, it is necessary to consider
the case where w is merely semipositive. This more difficult situation has
been examined first by Tsuji [Ts|, and his technique has been reconsidered
in the recent works [Ca-Lal, [Ti-Zha], [E-G-Z1] and [Pau].

In this paper we push further the techniques developed so far and we
obtain some very general and sharp results on the existence, uniqueness and
regularity of the solutions of degenerate complex Monge-Ampére equations.
In order to define the relevant concept of uniqueness of the solutions, we
consider a suitable subset of the space of closed (1, 1)-currents, namely the
domain of definition BT of the complex Monge-Ampére operator “in the sense
of Bedford-Taylor”: a current © is in BT if the the successive exterior powers
can be computed as

Ot = j09(pO*),

where ¢ is a potential of © and ¢OF is locally of finite mass. Then for
every pseudoeffective (1,1)-cohomology class a € H“'(X,R), we prove a
monotone convergence result for exterior powers of currents in the subset
BT, := BTN a. The case where the local potentials ¢ are bounded has
been considered in [Be-Ta|. The unbounded case considered here appears first
in [Sib] and also in the subsequent papers [Fo-Si|, [Di-Si]. The uniqueness
of the solutions of the degenerate complex Monge-Ampére equations in a
reasonable class of unbounded potentials has been a big issue and the object
of intensive studies, see e.g. |Ts|, |[Ti-Zha|, |Blo1|, |E-G-Z1]. In this direction,
we introduce the subset
BT c BT,,



of (closed positive) currents T € BT, which have a Monge-Ampére product
T" possessing an L'-density such that

/ —log(T"/Q) Q < 400,
b

for some smooth volume form 2 > 0. For example this is the case when the
current 7™ possesses an L'-density with complex analytic singularities (see
Theorem 6.1). We observe that the Ricci operator is well defined in the class
BT,

In the last section we prove existence and fine regularity properties of the
solutions of complex Monge-Ampére equations with respect to a given degen-
erate metric w > 0, when the right hand side possesses an L log"" L-density
or a density carrying complex analytic singularities (see Theorems 6.2 and
6.1). As a consequence of this results, we derive the following generalization
of Yau’s theorem.

Theorem 1.2 Let X be a compact Kdhler manifold of complex dimension n
and let o be a (1,1)-cohomology class with [ o™ > 0, which admits a closed
positive (1,1)-current v € o with bounded local potentials.

(A) For any Llog"* L-density v > 0, ¢ > 0 such that [, v = [, a", there
exists a unique closed positive current T' € BT, such that T" = v. Moreover,
this current possesses bounded local potentials over X and continuous local
potentials outside a complex analytic set X, C X. This set depends only on
the class o and can be taken to be empty if the class o is Kdhler.

(B) In the special case of a density v > 0 possessing complex analytic sin-
gularities the current T is also smooth outside the complex analytic subset
Yo UZ(v) C X, where Z(v) is the set of zeros and poles of v.

(C) For all X € R>q and all smooth (1,1)-forms p € 2mci(X) + A« there ex-
ists a unique closed positive current O kg € Bng solution of the generalised
Kahler-FEinstein equation

R,iC(@KE> = —)\@KE + p-

Moreover the current O possesses bounded local potentials over X and
defines a smooth Kdhler metric outside the subset Y.

The type of complex Monge-Ampére equation solved in Theorem 6.1 is pre-
cisely what is needed in order to construct Kéahler-Einstein metrics over ir-
reducible singular Kéhler spaces with ample or trivial canonical sheaf. The



relevant L>-estimate needed in the proof of Theorem 6.1 (in the case re-
lated with Kéhler-Einstein metrics) is obtained combining the L*>-estimate
in Statement (A) of Theorem 2.2 with an important iteration method in-
vented by Yau [Yau| (see the Lemma 2.14). The main issue here is that
one can not use directly the maximum principle since the reference metric is
degenerate.

The proof of our Laplacian estimate in Theorem 6.1, which is obtained
as a combination of the ideas of in |Yau|, |Ts|, [Blo2|, provides in particular
a drastic simplification of Yau’s most general argument for complex Monge-
Ampére equations with degenerate right hand side. Moreover, it can be
applied immediately to certain singular situations considered in [Pau| and
it reduces the Laplacian estimate in [Pau| to a quite simple consequence
(however, one should point out that the argument in [Pau| contains a gap
due to the fact that the LP-norm of the exponential exp(¢y . — ¥a.) of &-
regularized quasi-plurisubharmonic functions need not be uniformly bounded
in € under the assumption that exp(i; — ) is LP, as our Lemma 5.4 clearly
shows if we do not choose carefully the constant A there). Theorem 6.1 gives
also some metric results for the geometry of varieties of general type. In this
direction, we obtain the following results.

Theorem 1.3 Let X be a smooth complex projective variety of general type.
If the canonical bundle is nef, then there exists a unique closed positive cur-

rent w, € BT1§§CI(KX) solution of the Einstein equation

Ric(w,) = — w,. (1.1)

This current possesses bounded local potentials over X and defines a smooth
Kihler metric outside a complex analytic subset X, which is empty if and
only if the canonical bundle is ample.

The existence part has been studied in [Ts|, [Ca-La| and [Ti-Zha| by a Kéhler-
Ricci flow method. The importance of the uniqueness statement in Theorem
1.3 is the following. If a current
lo
w, € BTfml(KX)
satisfies the Einstein equation (1.1) then it has bounded local potentials. In
the non nef case we obtain the following statement.

Theorem 1.4 Let X be a smooth variety of general type and let SB C X be
respectively the stable and augmented stable base locus of the canonical bundle
Kx. Then there ezists a closed positive current w,, € 2mwcy(Kx) over X, with



locally bounded potentials over X ~ SB, solution of the Einstein equation
(1.1) over X ~ SB, which restricts to a smooth (non-degenerate) Kdhler-
FEinstein metric over X N\ X. Moreover w,, is unique in the class of currents
in 2me1(Kx) with singularities equivalent to w,. In particular if w, has
minimal singularities, then it is unique in the class of currents with minimal
singularities in 2mey (Kx).

Quite recently Tian and Kotodziej | Ti-Ko| proved a very particular case
of our L*-estimate under some technical conditions that they could check in
the case of surfaces. Their method, which is completely different, is based
on an idea developed in [De-Pal. Our L*™-estimate allows us to completely
solve the following conjecture of Tian stated in [Ti-Ko].

Conjecture 1.5 Let (X, wx) be a polarized compact connected Kihler mani-
fold of complex dimension n, let (Y,wy) be a compact irreducible Kihler space
of complex dimension m < n, let m: X — Y be a surjective holomorphic map
and let 0 < f € Llog"** L(X,w%), for some ¢ > 0 such that 1 = [ fwk.
Then the solutions of the complex Monge-Ampére equations

(W*WY + th + 285%)" = {W*wy + th}nf w} s

satisfy the uniform L*-estimate Osc(1);) = supy ¢y — infx ¢, < C < 400
for allt € (0,1).

The present manuscript expands and completes a paper published in the
International Journal of Mathematics, which had to be shortened in view of
the length of the manuscript and of the demands of referees - in particu-
lar it gives more details about the relation with the existing literature (see
Appendix C).

2 General L*-estimates for the solutions

Let X be a compact connected complex manifold of complex dimension n
and let v be a closed real (1,1)-current with continuous local potentials or
a closed positive (1,1)-current with bounded local potentials. Then to any
distribution ¥ on X such that v + i00¥ > 0 we can associate a unique
locally integrable and bounded from above function ¢ : X — [—o00,+00)
such that the corresponding distribution coincides with ¥ and such that for
any continuous or plurisubharmonic local potential h of v the function h+
is plurisubharmonic. The set of functions ¢ obtained in this way will be
denoted by P,. We set P := {1) € P, | supy 1) = 0}.



Definition 2.1 Let X be a compact compler manifold of complexr dimen-
sion n. A closed positive (1,1)-current with bounded local potentials such
that {v}" := [, 7" >0, will be called big.

If X is compact Kéhler, one knows by [De-Pa| that the class {7} is big if and
only if it contains a Kéhler current 7' = 7 + 100¢) > cw (the inequality is in
the sense of currents), for some Kéhler metric w on X and € > 0.

Basic facts about Orlicz spaces. Let P : Rsg — Rsg, P(0) = 0, be
a convex increasing function and 2 > 0 be a smooth volume form over a
manifold M and let X C M be a Borel set of ()-finite volume. According to
[Ra-Re| we introduce the vector space

LP(X) = {f:XﬁRU{ioo}|El)\>O : /XP(|f|/)\)Q<+oo},

(with the usual identification of functions equal a.e.), equipped with the norm

HfHLP(X) = 11’1f{)\> O’ /){P(‘f‘/)\)ﬂ < 1} .

The space L¥(X) equipped with this norm is called the Orlicz space asso-
ciated with the convex function P. Moreover this norm is order preserving,
ie

1fllercey < Mlgllerx
if |f| < |g| a.e. If P(t) = [t|P, p > 1, then LT (X) is the usual Lebesgue space.
More refined examples of Orlicz spaces are given by the functions

Py :=tlog’(e +1),

and
1
Qg :——et/ﬁ—l,

with 6 > 1. In these cases, we set

Llog’ L(X) := LT (X),
and

Exp'/P L(X) := L9 (X).

An important class of Orlicz spaces is given by considering functions P sat-
isfying the “doubling property™ P(2t) < 2¢P(t) for some constant C' > 1.
This is the case of the functions [¢t|P and Pg(t), but not the case of Qs(t). For



functions satisfying the doubling condition one has (see proposition 6 page
77 in [Ra-Re|)

LP(X)Z{f:XHRU{iOO}I/XP(IfI)Q<+OO},
and
| PUsIl2 =1

for all f € LP(X) ~ {0}. So in the particular case of the function Pj, one
obtains the inequality

o0 < [ 1111087 (e-+ 1715 1) (21)

since || fll1x) < [1fllp10g? Lixy- It is quite hard to get precise estimates of
the norm Exp'/? L(X), however it is easy to see that

1
1 = '
111/ L(X) log”(1 4+ 1/ Volg(X))

(2.2)

The relation between the Orlicz spaces Llog? L(X) and Exp? L(X) is ex-
pressed by the Holder inequality (see [Iw-Mal)

\ / fgﬂl < 205 1 Fll1ogt 100 19l 1y - (2.3)

which follows from the inequality zy < Cg(Ps(x) + Qs(y)) for all z,y > 0.
(Observe moreover that C; = 1.)

We define the oscillation operator Osc := sup —inf. With the notations
so far introduced we state the following result.



Theorem 2.2 Let X be a compact connected Kdihler manifold of complex
dimension n, let @ > 0 be a smooth volume form and let v be a big closed
positive (1, 1)-current with bounded local potentials over X and with contin-
uous local potentials in the complement of a closed pluripolar set of X. Let
also ¢ € P,NL>(X) be a solution of the degenerate complex Monge-Ampére
equation

(v +i000)" = fQ,

with f € Llog"™® L(X,Q) for some g9 > 0. Then the following conclusions
holds.

(A). The L*-estimate. There exists a constant Cy = C(eg,y,2) > 0 such
that for all € € (0,&0] hold the estimate

Osc(h) < (Cfe)" FLo(f)F + 1,

where

L) = () [ flog™ (e + (") 0

(B). The stability of the solutions. Assume that the solution 1 is
normalized by the condition supy ¥ = 0 and consider also a solution ¢ €
P,NL>®(X), supy ¢ = 0 of the degenerate complex Monge-Ampére equation

(y +100p)" = g,

with g € Llog"™™ L(X,Q). Assume also I, ,(f), I, (9) < K for some
constant K > 0. Then there exists a constant Co = Cs(go,7,2, K) > 0 such
that

—ag

lo =ty < 265° (logllo—vlZ )

L1(X,Q)

1
(n+14n?/ep)’

Qp =

provided that || — || min{1/2, e~“2}.

Ll(x,9) S
(C). The stability of the constants. Let (V)0 be a family of currents

satisfying the same properties as vy, with uniformly bounded local potentials
and let Cyy = Cy(e0, v, 2), Cop = Colen, 11, 2, K). Assume;

(C1) there exist a decomposition of the type vy, = 0, +i00u,, with 6, smooth,
miny u; = 0, sup,.,maxy u; < +oo and 0; < ({1:}")"w for some Kdihler
metric w > 0 on X,



or
(C2) the distributions v /S are represented by L'-functions and

sup {1} / log (¢ + {71} /) 17t < +o0.
X

Then sup,~,Cj: < +oo for j =1,2.

Statement (C) will follow from the arguments of the proof of Statements (A)
and (B) of Theorem 2.2.

We start by proving a few basic facts about pluripotential theory, in a
way which is best adapted for the understanding of the proof of the theorem
2.2. The reader can also consult and compare with the related results in
[Be-Ta], [Deml|, [Dem2|, [G-Z| and [Sic].

Let X be a compact complex manifold of complex dimension n, let v be
a big closed positive (1, 1)-current with bounded local potentials. Set

P,0,1]:={peP, | 0<p <1},

Y, = + 03¢ and

Cap,(E) :== sup {7} [},
p€EP[0,1]

for all Borel sets £ C X. We remark that if (E;);, £; C E;;; C X is a
family of Borel sets and £/ = (J; E; then clearly, we have

Cap, (F) = jEIJPoo Cap, (E;) . (2.4)
Lemma 2.3 Let X be a compact connected complex manifold of complex
dimension n, let v be a closed real (1,1)-current with continuous local poten-
tials or a closed positive (1,1)-current with bounded local potentials and let

Q> 0 be a smooth volume form. Then there exist constants o = «(y,$2) > 0,
C = C(v,9) > 0 such that [, —pQ < C and [ e~V Q< C forally € 77,(3.

(We notice that the first inequality follows from the second one.) The first
two integral estimates of Lemma 2.3 are quite standard in the elementary
theory of plurisubharmonic functions and the dependence of the constants «
and C on 7 is only on the L*> bound of its local potentials (see e.g. [Hor| and
|Skodal). To be more precise in sight of the uniform estimate [, e=**Q < C
one can make the constant a depending only on the cohomology class of
as in [Til|, but in this case the constant C' will depend on the L bound of



the local potentials of v and on the volume form 2. One can also make C'
depending only on the volume form €2, but in this case a will depend on the
L bound of the local potentials of v and on the volume form 2. We prove
now the following quite elementary integration by parts formula. (See also
[Sib], [Fo-Si] and [Di-Si| for more general statements.)

Claim 2.4 Let (X,w) be a compact and connected Kdihler manifold of com-
plex dimension n, let 0 be a closed and real smooth (1,1)-form, let T be a
closed positive (n — 1,n — 1)-current and let o € Py N L>®(X), ¢ € P§ such
that

—/wT/\w < +o00. (2.5)
b's
Then
— /wewAT < 400,
X
and
/maéw/\T = /wz@égo/\T. (2.6)
X s

Moreover the same conclusion hold true if 0 is a closed positive (1,1)-current
with bounded local potentials.

Proof. By the regularization result in [Dem3| there exists a family of func-
tions (e )es0, Y € PorewNC(X) such that ¢, | ¢ ase — 07. The standard
formula [Dem?2|

dp- WT) = vd(p.T)] = poddw AT ~ Yddp. AT
implies

/goeiaéw/\T = /ma&pg AT.
X X
by Stokes formula. We assume first ) € L>°(X). Then the fact that

O, = (0 + ew + i00p ) NT — 0, N\ T,
weakly as ¢ — 0% implies by lemma (3.9) page 189 in [Dem?2|, that any

weak limit = of the uniformly bounded mass family (¢©.).~( satisfies the

10



inequality = < ¢ 0, A T. We infer by the monotone convergence theorem
applied to the family (¢;)eo,

/gm'aéwAT = 11%/¢@'35%AT
X

e—0t

X
~ lim ){/¢@6—!¢(0+WMT

_ /E—/zpe/\T
X X

< /wiaégo/\T.
X

Then the integration by parts formula (2.6) in the bounded case follows by
replacing the roles of ¢ with ¢. We prove now the unbounded case. Let
Yy = max{y,p — k} € Py, k € Z~o. Thus

X X

As before the fact that Ry := 0y, AT — 0, AT, weakly as ¢ — 0" implies
by lemma (3.9) page 189 in |[Dem2|, that any weak limit I" of the uniformly
bounded mass family (¢ Ry)r<o satisfies the inequality I' < ¢ 6, A T". More-
over applying the monotone convergence theorem to the sequence ()r<o
via the trivial decomposition

/wkiaégo/\T = /wk(C’w + i00p) NT — C/¢kwAT, C>>0,
X X X

we deduce, thanks to the assumption (2.5),

/wiaago/\T = klir_n /@i@@@bk/\T < /gpi@@@/}/\T.
b X

X

11



On the other hand the trivial decomposition

—/WQ + ew 4 i00p) AT = —/[soeiaéw + (0 + w)}/\T
X

X

— —/[gpeed, + (0 + ew)}AT

X
+ /9059/\T,
X

combined with the uniform L°°-bound of the family . and the assumption
(2.5) imply the uniform mass bound

sup/—¢(9 + ew + 1000 ) NT < +oo.
e>0
b

We infer the reverse inequality
/gm'@éi/}/\T < /wiaégo/\T,
X X

as in the case 1) bounded. The case when 0 is a closed positive (1, 1)-current
with bounded local potentials follows by linearity. 0

The following corollary will be very useful for the rest of the paper.

Corollary 2.5 Let (X,w) be a polarized compact connected Kihler manifold
of complex dimension n and let v, T be closed positive (1,1)-currents with
bounded local potentials. Then for all | =0, ....n

C) := sup /—w T'Aw™ < 400
pePY hé

and vy NT' =T" N~y for all € P,,.

Proof. The proof of the convergence of the constants C; goes by induction
on [ = 0,...,n. The statement is true for [ = 0 by the first integral estimate
of Lemma 2.3. So we assume it is true for [ and we prove it for [ + 1. Let us
write T = 6 +i00u, with 8 smooth, # < Kw and u bounded with infx u = 0.

12



Then 1, u € P 4k, and the integration by parts formula applies thanks to
the inductive hypothesis. Therefore we can expand the integral

/ —p T A = / —p (0 +i00u) AT A w1
b

X

< / —pT' N KWt — / widOp AT A w1

X X

< KC + /(u7 — uyy) AT AW !

X

< KC; + Supu/fy/\Tl/\u)"l1 < 400,
X

X

by the inductive hypothesis. In sight of the symmetry of the exterior product
we remark that the decreasing monotone convergence theorem implies

lim [ (Yo — ) T" AW =0,
X

which means the convergence of the mass ||(¢.—1)T"||.(X) — 0 as ¢ — —o0,
in particular Y I — YT weakly as ¢ — —oo. So by the weak continuity of
the 700 operator we deduce

Y NTH— 7y AT, (2.7)

weakly as ¢ — —oo. Moreover the weak continuity of the 190 operator implies
by induction on [
T' Ay — TH Ay,

weakly as ¢ — —oo. This combined with (2.7) implies v, AT =T' A, .0

The following lemma is the key technical tool which allows to deduce State-
ment (C) of Theorem 2.2.

Lemma 2.6 Let X be a compact connected Kdhler manifold of complex di-
mension n and let vy be a big closed positive (1,1)-current with bounded local
potentials.

(A) There exists a constant C' = C(7) > 0 such that Cap,({¢ < —t}) < C/t
for ally € 772 andt > 0. Moreover the constant C stays bounded for pertur-
bations of v satisfying the hypothesis of Statement (C) with assumption (C1)

13



in Theorem 2.2.

(B) If y"/Q € Llog L(X), for a smooth volume form > 0 then the con-
clusion of Statement (A) holds with a constant C' = C(v,§) > 0 which stays
bounded for perturbations of v satisfying the hypothesis of Statement (C) with

assumption (C2) in Theorem 2.2.
Proof. We first notice that the obvious inequality
n 1 n
rng S ; _w 74,9 9
p<—t b

implies

Cap, ({1 < —1}) < + sup {7} / .

t p€EP,[0,1]

We show now the elementary inequality.

X/—l/wz SX/—QM"JrnX/V

For this purpose we consider the integrals

L= [—ninay,

X

(2.8)

(2.9)

forall j =0,...,n. Then I; < I + fX ~". In fact integrating by parts we

obtain

i = Lin —/wﬂM@é’so/\v”] '

= Ly - /i(?(?w/\wj/\ﬂ‘j‘l

< L + /sm]“/\v" =< IJ+1+/’V"-

X X

In this way we deduce the inequality [y < I, + an ", i.e. the inequality
(2.9). Combining this with the inequality (2.8) we infer the required capacity

estimate of Statement (A) in Lemma 2.6, with constant

0<C(y) ==mn+ sup {7} [ —¢9" < +o0,

pePy

14



thanks to corollary (2.5). Let now (7)o be a family satisfying the hy-
pothesis of Statement (C) with assumption (C'1) in Theorem 2.2 and K; =
({7 }™)Y™. We can use the induction in the proof of corollary 2.5 with T = ~,,
0 =0 u=1wu and K = K; to get

C, < Kt/—¢w"+suput/fytAw”_l
X * %

< m/¥¢m+3m/bm
X X

where R > supy u;. In general we obtain the inequality

QHgma+R/%HAwllgma+Rmﬂ/@¢
X X

We deduce the estimate
Ch §Kf/ —Q/Jw"—{—nRKf/ w",
b X

which combined with the stability properties of the constant in lemma 2.3
implies the stability properties of the constant C(y) in the Statement (A) of
the Lemma 2.6.

We now prove Statement (B) of Lemma 2.6. In fact let f := {} """/ > 0.
Then the uniform estimate for the integral

oy Z = ! v f O

follows from the elementary inequality
—apf < e =1+ flog(1+f),

combined with the uniform estimate fX e () < C of Lemma 2.3. In this
case the required stability properties of the constant C(y,Q) > 0 in the
capacity estimate are obvious. 0

Lemma 2.7 (Comparison Principle). Let X be a compact complex man-
ifold of complex dimension n and let v be a closed real (1,1)-current with
bounded local potentials and consider ¢, ¥ € P, N L>*(X). Then

/WZ§/7$

<y <t

15



Proof. Let © := (v + 00 max{p, w})n By the inequality of measures
@ Z szw VZ + H<p<w 737
proved in [Deml|, we infer

foufs [ou[x

p<th <ty > P>
This combined with Stokes’ formula implies
[isfo-fosfun[i-][x
p<t X P> X o> p<tp
O

We recall now the following lemma due to Kotodziej [Koll]|, (see also [Ti-Zhul],
[Ti-Zhu2]).

Lemma 2.8 Let a : (—00,0] — [0,1], be a monotone non-decreasing func-
tion such that for some B > 0, § > 0 the inequality

ta(s) < Ba(s+t)'*?

holds for all s <0, t € [0,1], s+t < 0. Then for all S < 0 such that a(S) > 0
and all D € [0,1], S+ D < 0 we have the estimate

D <e(3+2/8)Ba(S + D).

The following lemma is a simple application of the main result in Bedford-
Taylor [Be-Ta| and of the monotone increasing convergence theorem in pluripo-
tential theory.

Lemma 2.9 Let X be a compact connected complexr manifold of complex
dimension n, let vy be a big closed positive (1,1)-current with bounded local
potentials over X and with continuous local potentials in the complement of
a closed pluripolar set Z C X. Let Q0 > 0 be a smooth volume form. Then
there exist constants o = a(y,Q) > 0, C = C(v,Q) > 0 such that for all
Borel sets E C X hold the inequality

/ Q< " Cee Camy (B} (2.10)
E

In particular Cap.(E) = 0 implies [, Q = 0.
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Proof. 1t is sufficient to prove this estimate for an arbitrary compact set. In
fact assume (2.10) for compact sets and let (K;);, K; C K;41 C E be a family
of compact sets such that ij Q— [,Qas j — +oo. Set U :=U;K; C E

and take the limit in (2.10) with E replaced by K;. By (2.4) we deduce

/Q < e*Ce® Capy (V" < paxrg=a/ Capy (B)'/™
E
We prove now (2.10) for compact sets K C X. For this purpose, consider
the function introduced in [Sic|, |[G-Z]
U (z) :==sup{p(z) | ¢ € Py, ¢ <0}

We remark that Wi > 0 over X and (Vg), = 0 since 0 € P, by the
positivity assumption on 7. Assume

/ng%o,

otherwise there is nothing to prove. In this case there exists a constant
Ck > 0 such that supy ¢ < Ck for all ¢ € P, ¢, <0. In fact let

Sk ={p € Py | ¢ <0}

and set ¢ := ¢ —supy ¢. By contradiction we would get a sequence ¢; € Sk
such that supy ¢; — +o00. This implies

sup ¢; — —00
K

/—@-QZ—(/ Q)supgbj—>+oo,
K K K

which contradicts the first integral estimate of Lemma 2.3.

Then it follows from quite standard local arguments that the upper regu-
larization over X \ Z satisfies U}, € P,(X \ Z) N L>(X). By a standard
extension result (see theorem 5.24 in [Dem?2]) there exists a unique extension
T% € P,. Moreover % > 0 over X and W% = 0 over the interior K° of K.

and so

We recall now the following well known consequence of a result of Bedford
and Taylor [Be-Ta|.

Theorem 2.10 Let ¢ € P, N L>®(X) and let B be an open coordinate ball.
Then there exists p € P, N L>(X), ¢ > ¢ such that v} =0 on B and ¢ = ¢
on X \ B. Moreover if o1 < @o, then ¢1 < Qs.
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This implies the following quite standard fact in pluripotential theory [Sic],
[Deml1], [G-Z].

Corollary 2.11 Let K C X be a compact set such that fK Q #0. Then the

extremal function \IJ € P,NL>(X), previously introduced, satisfies \I/ >0
over X, W% = 0 over the interior K° of K and (v + i000%)" = 0 over
XNK.

Proof. By the classical Choquet lemma there exists a sequence (¢;); C Sk,
¢j > 0 such that W} = (sup, ;)" over X \ Z. We can assume that this
sequence is increasing. Otherwise, set @1 := 1 and

@ = max{y;, pj 1} € Sk .

Let B be an open coordinate ball in X ~\ K and let ¢; € Sk be a solu-
tion of the Dirichlet problem ygj = 0 over B as in Theorem 2.10. Thus the
sequence (¢;); C Sk is still increasing and U3 = (sup; ¢;)* over X \ Z.
Remember also that the plurisubharmonicity implies that @% = lim; ¢; al-
most everywhere over X. By the monotone increasing theorem from classical
pluripotential theory, we infer (v -+ 2'65@})" = 0 over B, and the conclusion
follows from the fact that B is arbitrary. OJ

The fact that the current v has continuous local potentials in the comple-
ment of a closed pluripolar set Z C X implies that any ¢ € P, is upper
semicontinuous outside Z. Moreover the proof of Corollary 2.11 shows that
the decreasing sequence of open sets

Uy={zeX\Z:pjx)<l/j}DK\NZ,
(with (¢;); increasing) satisfies
Tt = (lim 1 %) , (2.11)
J J
over X \ Z. In fact we infer from the inequalities ¢; —1/j < \if*Uj < \iJ*K,

Uy = (limwj>* — (llmT( _1/]))* < (hmT\ifz}j)* < Wy,
J J

over X \ Z. This implies (2.11) which combined with the monotone conver-
gence theorem and with the second integral estimate of Lemma 2.3 gives

/Q-hm/Q<hm/ UQ_/—W%QSCG—MK,
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where A :=supy Wh. If Ax > 1set ¢ := AW, Then
0 < v+iddVy < Agy,,

and so ¢ € P,[0,1]. By corollary 2.11 we deduce

(A = A / (7 4 1005 < / A< {3} Cap, (K.
K K

thus
—0Ag < —af CapV(K)l/”,

by the bigness assumption on the current . If Ax < 1 then U3 € P,[0,1]
and so

1= {7}”/(7 + 00T )" < Cap, (K ) < Cap,(X) =1.

In both cases we reach the required conclusion. 0

Proof of Theorem 2.2, part A.
We can assume supy ¢ = 0. Let U := {¢ < s}, s <0,t€[0,1], s+t <0,
¢ € P,[—1,0] and set

Vi={Y—s—t<ty}.

Then we have inclusions U; C V' C U,y By using the Comparison Principle

(2.7) we infer
t"/vZé/v&ﬁ/%ﬁ/vZé/%’Z,
v v

Us Us Ustt
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thus combining this with Holder inequality in Orlicz spaces (2.3), formula
(2.2) and Lemma 2.9 we obtain

rCap, () < 3 [ ap =) [ fo

Us+t Us+t

< {7}_nc€0’|f||Llog"+sL(X) - |[1]] 1

Expite L(Usst)

" Co 1 f I rogn Lix)
log""™® (1 + 1/ Volg(Usy))

" Co 1 fl rogn+ Lix)
log"** (1 + e—aC—1e/ Can(UsH)”")

IA

< Cuy (/)™ ) Lo 1) G, (U 907

(Here the constant C' > 0 depends on the same quantities as the constant C
in Statement A and k£ > 0 is a constant such that

kla/z <log(l4 e C~ e,
for all z € (0,1]). So if we set § := &/n and
B = C"(k/a) " Lo (f)Y",

we deduce that the function a(s) := CapW(US)I/", s < 0, satisfies the hypoth-
esis of Lemma 2.8. (We use here the inequality (2.1).) Consider now the
function x(t) := KsB°, with constant Ks := e(3+2/§). Remember also the
uniform capacity estimate

a(s) < C(=s)71",
of Lemma 2.6. Let now n > 1 be arbitrary. We claim that a(S,) = 0 for
—S, = C"(KsBn)"° +1.

The fact that the function a is left continuous (by formula (2.4)) will imply
that a(S;) = 0 also. Remark that S, is a solution of the equation

C(=S, = 1) =k "),

where 71 is the inverse of the function x. So if we assume by contradiction
that a(S,) > 0 we deduce by Lemmas 2.8 and 2.6

1 <k(a(S,+1)) <k(C(-S5, — DY) =pt<1,
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which is a contradiction. Thus if we set —/ := max{s < 0 | a(s) = 0} we
obtain
<S8 <C(K;B)"° +1,

which by arranging the coefficients yields the right hand side of the estimate
in Statement A of Theorem 2.2. Moreover by definition Cap. (U_;) = 0, thus
Volg(U-;) = 0 by Lemma 2.9. The fact that the current v has continuous
local potentials in the complement of a closed pluripolar set Z C X implies
that the function ¢ is upper semicontinuous outside Z, so the set U_; \ Z is
open, thus empty. This implies the required conclusion by elementary prop-
erties of plurisubharmonic functions. Il

Proof of part B.
Set a := max{||¢||rex), |¥]ze(x)}, consider 8 € P,[0,1], s > 0, t € [0,1]

and set . .
= e 1—— — 5 — .
B )

Then the obvious inequality 0 < —31-¢) < ;%% implies the inclusions
{p—tv<—=s—t} CV C{p—1 < —s}. Thus by applying the Comparison

Principle (2.7) as in [Kol2] we obtain

tn t t "
- noo< 11— ——
L+ a) / oS /[mﬂ”( 1+a>”4

p—p<—s—t 1%
n n
< /’Y@ < / Yo -
\% p—Pp<—s

By inverting the roles of ¢ and v in the previous inequality and by summing

up we get
tn
m / v < / (f+g9)Q.

lo—t|>s+t lo—1p|>s
By taking the supremum over 6 we obtain the capacity estimate

e Cap (o - vl > s+ <U+ar ) [ (g0 212)
lo—9]|>s

for all s >0, ¢t € [0,1]. Set Us := {|]¢ — 9| > s} C X. By combining Lemma
2.9 with a computation similar to the one in the proof of part A we obtain

1" Cap, (Ussr) < (14 ) {9} "CL IS + glln1ogneo 1x) Cap, (Us) 0"

< B"Cap, (U,) "o/,
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where the constant B > 0 depends on the same quantities as the constant
(5 in Statement (B) of Theorem 2.2. We deduce that the function a(s) :=
CapW(U_s)l/”, s < 0, satisfies the hypothesis of Lemma 2.8 with 0 = g¢/n.
On the other hand, the capacity estimate (2.12) combined with Hoélder’s
inequality in Orlicz spaces implies for all ¢ € [0, 1] the inequalities

e Capy(lo—vl>2) < (+arahn [ (g0

lo—|>t

< LR oyl +9)0

21+ )" {7}
t

< o = Yllexp ) [1f + 9l L10g L)

4K (14 a)"
t

Claim 2.12 If |[¢ —9||n1x) < 1/2, then there exists a constant C, > 0 such
that

< o — ¥llExp Lix) - (2.13)

lo — Yllexp Loy < Ca/log llo = Yl -
Proof. We assume ||¢ —1)||11(x) > 0, otherwise there is nothing to prove. Set
Cha i= k(2% —1)/(2a),

k > 0. Then for all £ > 0 and all x € [0, 2a/k] the inequality e* —1 < Cy, x
holds. Thus the inequality |¢ — ¥|/k < 2a/k implies

/(ew—w/k_l)ggck,a/|90;1/)|Q
X

X

We get from there the implication

le = Yllpixy =k/Cra = llo—Yleprx) <k, (2.14)

since by definition
lo = Yllexprx) :=inf ¢ £ >0 | / (eleVE _1)Q <1
X

So if we set p(k) := k/Cyo > 0 we deduce by the implication (2.14)
le = llewren <7 (e = Yllne) - (2.15)
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where =1 : Ryg — Ry is the inverse function of . Explicitly

pt(y) = 2a/log(1 + 2a/y) ,

for all y > 0. Now there exists a constant C, > 0 such that

p(y) < Coflog(1/y),

for all y € (0,1/2]. This combined with (2.15) implies the conclusion. O

Combining Claim 2.12 with the estimate (2.13) we infer the capacity es-
timate

C 1 —1/n
a(—t) < preEym (log lle — wHLl(X)> , (2.16)

where the constant C' > 0 depends on the same quantities as the constant
C5 in Statement B. Set now C5 := C"(QK(;B)”/‘S > 0 (with K5 > 0 as in the
proof of Statement (A)) and define

=5 (log e = ¥l )

The hypothesis ¢ € (0, 1] combined with the hypothesis of Claim 2.12 forces
the condition ||¢ — ¥ z1(x) < min{1/2,e~“*}. Moreover ¢ is solution of the

equation
C 1 —1/n 1
A+1/n <log I — ¢||L1(X)> =k (5) ,

where x7! is the inverse of the function x introduced in the proof of part A.
We claim that a(—2t) = 0. Otherwise, by Lemma 2.8 and inequality (2.16),
we infer

0 <t<r(a(—t) <k Ht/2) =t/2,
which is absurd. We deduce

Vola(lo — 9| > 2t) =0
by Lemma 2.9. We prove now that the set
Uy ={lp — 9| > 2t} C X,

is empty, which will imply the desired L°°-stability estimate. The fact that
| — 1| < 2t a.e. over X, implies

f - ‘ <o,
B(z,r)
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for all coordinate open balls B(z,r) C X. (The symbol f, represents the
mean value operator.) By elementary properties of plurisubharmonic func-
tions follows

p(x) —¢(z) = lim (=) dA
r—0+ B(z,r)
for all z € X. We infer | — 1| < 2t over X. O

Corollary 2.13 Let (X,w) be a polarized compact connected n-dimensional
Kihler manifold, let « € HY'(X,R) be a (1,1)-cohomology class with [, o™ >
0, which admits a closed positive (1,1)-current with bounded local potentials
and let T := (7e)eso C a be a family of smooth (1,1)-forms with uniformly
bounded potentials such that 7. + ew > 0. Moreover let 2 > 0 be a smooth
volume form, let f € Llog"*? L(X), 6 > 0, such that fX S fX fQ and let
(f-)es0 € C(X) be a family converging to f in the Llog™™ L(X)-norm as
e — 0T, satisfying the integral condition

/%+w /ﬁ (2.17)

X

Then, for any real number A > 0, the unique solution of the non-degenerate
complexr Monge-Ampére equation

(Ve + ew 4+ i00Y.)" = f.erVeQ), (2.18)

given by Yau’s and Aubin-Yau’s solution of Calabi’s conjecture (which in the
case A = 0 is normalized by maxx 1. = 0) satisfies the uniform L -estimate

Ve oo (xy) < C(0,T,Q) Lo s(f)% + 1. (2.19)

Proof. The existence of a regularizing family f. of f in Llog"" L(X) follows
from [Ra-Re| page 364 or [Iw-Ma|, Theorem 4.12.2, page 79. We can always
assume the integral condition (2.17) otherwise we multiply f. by a constant
¢ > 0 which converges to 1 by the normalizing condition [, o™ = [ fQ.
We distinguish two cases.

Case A = 0. The hypothesis of Statement (C) with assumption (C1) of
Theorem 2.2 are obviously satisfied for the family (7. +ew).c(0,1). We deduce
that the constant C; = C1(d, 7. + ew, Q) > 0 in the Statement of Theorem
2.2, A does not blow up as ¢ — 0F. Moreover the uniform estimate

||fa||Llog"+5L(X) < C,||f||Llog”+5L(X) =K (2-20)
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holds for all ¢ € (0,1). Thus by Theorem 2.2, A we obtain the required
uniform estimate (2.19).

Case A > 0. We start by proving the following lemma, which is a parti-
cular case of a more general result due to Yau (see [Yau|, sect. 6, page 376).

Lemma 2.14 Let (X,w) be a polarized compact Kihler manifold of complex
dimension n, let h be a smooth function such that fX w" = fX elw™ and let
© € P, be the unique solution of the compler Monge-Ampére equation

(w +100p)™ = e (2.21)

A > 0. Consider also two solutions ¢', ¢" € P, of the compler Monge-
Ampeére equation (w + i00Y)" = ehw™ such that miny ¢’ = 0 = maxy ¢".
Then " < ¢ < .

Proof. The argument is a simplification, in our particular case, of Yau's
original argument for the proof of Theorem 4, sect. 6 in [Yau]. Set ¢ :=
¢, ¢y = ¢" and consider the solutions ¢}, ¢7 of the complex Monge-Ampére
equations given by the iteration

(w+i00p;)" = MTOTE (2.22)
(w4 00" = et O =0 (2.23)

Notice that we can solve these equations even if the terms €' %i-1, "~ ¥i-1
are not normalized, see Lemma 2 page 378 in [Yau]|. Set L := A + 1 and
consider

(w+ 00" = M tLe1=0) +Ae 1 > o L(Ph—¢0) ghyyn — eL(‘Pll_%)(w + 100} )" .
At a maximum point of ¢ — ¢f, we have the inequality
(w +i00p))™ > (w + i00p,)™ .

By plugging this into the previous one, we deduce ¢} < ¢f. We now prove by
induction the inequality ¢ < ¢’_;. In fact by dividing (2.22); with (2.22);,
we get
-9, 1\n
(W +10095)" o)~ 1—a) > )
(w4004 ;)" -

At a maximum point of ¢} — ¢’ | we find again the inequality

(w4 100" < (w + 100 ;)"
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Combining this with the previous one we deduce ¢} < ¢’ ;. By applying a
quite similar argument to (2.23) we obtain also ¢} ; < 7. We also prove
by induction the inequality 7 < ¢}, which is true by definition in the case
j = 0. By dividing (2.22); with (2.23); we get

(w + 100"
(w+ i@égp}’ m

— L@=¢)=(2)1=¢] 1) < eL(cp;v—so;’)’

by the induction hypothesis ¢} ; < ¢’ ;. At a minimum point of ¢} — ¢
we get
c0a, I\n EAYAYN/A VL)
(w+i00¢})" > (w +i00p5)"

hence 30;’ < . As a conclusion, we have proved the sequence of inequalities

0o < @i <9 <9< < g (2.24)

We now prove a uniform estimate for the Laplacian of the potentials ¢’;. The
inequalities 2.24 imply 0 < 2n + Ay¢} < C B;, where B; > 0 satisfies the
uniform estimate

_1
0>Cy B — <2n + max Aw¢;_1> B — Gy, (2.25)

Cy, C7 > 0, which is obtained by applying the maximum principle in a
similar way as in Yau’s proof of the second order estimate for the solution of
the Calabi conjecture [Yau|. (It can also be obtained by settingd =1 =h =0
and @, = w in step (B) in the proof of Theorem 6.1, (see Appendix B). In the
case n = 1 the uniform estimate 0 < 2n + A ¢} < C” follows immediately
from the inequalities (2.24).) Fix now a constant Cy > 0 such that the
inequality
Cy 27T > (Cy + 2C)z — Cs,

holds for all z > 0. This implies by (2.25) the estimate
220 + Aug)) < 20 B; < (20 + max g, ) + o,

thus '
2n + max Ay <277 <2n + max Aw%) + Oy,

by iteration. By taking the derivative in the Green Formula (see [Aub], Th.
4.13 page 108) we get the identity

dpip; = — /dew(x, ) Applw”,
X
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which implies the estimate

/ /
V@il < Co max A < K.

By applying the complex version of the Evans-Krylov theory [Ti2| we de-
duce the uniform estimate [|¢}|/c2a(x) < K’. This combined with (2.22)
implies that the monotone sequence (¢); converges in the C**-topology to
the unique solution ¢ of the complex Monge-Ampére equation (2.21). Then
the conclusion follows from the inequalities (2.24). O
Consider now the solutions ¥, ¥ miny ¢, = 0 = maxx ¢! of the com-
plex Monge-Ampére equation (2.18) for A = 0. By applying Lemma 2.14 we
deduce ¢! <. < L for all € > 0. By the argument in the case A = 0, we
infer |42y, 192120 < C thus [[9e]l =) < C. =

3 Basic properties of currents in the class BT

In the situation we have to consider, the relevant class of currents which can
be used as the input of Monge-Ampére operators is defined as follows.

Definition 3.1 On a complex manifold, we consider the class BT of closed
positive (1,1)-currents © whose exterior products ©F, 0 < k < n, can be
defined inductively in the sense of Bedford-Taylor, namely, if © = 00y
on any open set, then YO is locally of finite mass and O = 90 (OF)
for k <n.

Notice that the local finiteness of the mass of ¥/©* is independent of the
choice of the psh potential ¥, and that this assumption allows indeed to com-
pute inductively i99(x)OF) in the sense of currents. The case where the local
potentials ¢ are bounded has been considered in [Be-Ta]. The unbounded
case considered here appears first in [Sib| and also in the subsequent papers
|[Fo-Si|, |Di-Si|. Now, if a € H"'(X,R) is a pseudoeffective class, we set
BT, = BTN a. Let v > 0 be a closed positive (1, 1)-current with bounded
local potentials. We define corresponding classes of potentials

PBT, := {p&P,|y+i0dp € BT,}
PBT) = {¢ePBT, | sg{pcp =0}.
Let ¢ € P BT, with zero Lelong numbers. It is well known from the work of

the first author |[Dem4| (which becomes drastically simple in this particular
case), that there exists a family (pc)cs0, Y= € Pyiew N CP(X), such that
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0. | ¢ as e | 0. In the case the Lelong numbers of ¢ are not zero we can
chose R > 0 sufficiently big such that 0 < v+ Rw + i00¢. for all € € (0,1)
and ¢. | ¢ as ¢ — 07. We have the following crucial result.

Theorem 3.2 (Degenerate monotone convergence result).

Let (X,w) be a polarized compact Kdhler manifold of complex dimension n
and let v, T be closed positive (1,1)-currents with bounded local potentials.
Then the following statements hold true.

(A) Forallp e PBT,, o <0and k,1 >0, k+1<n, k<n-—1

I = /—gp'yf, AT' AW < oo,  and ’yﬁ“ AT =T'A %’ZH .

X

(B) Let ¢ € PBT,, ¢ < 0 with zero Lelong numbers and ¢. € Pyicw N
C>(X), such that . | ¢ as e — 0". Then for all k;1 > 0, k+1 < n,
E<n-1

e (Voo +eW)F AT — goyfz/\Tl, (3.1)

(Vg + W) AT — A5 AT, (3.2)

weakly as e — 0F.
(C) Let ¢ € PBT,, ¢ <0 and ¢, € Pyipo N C®(X) such that . | ¢ as
e — 0. Then for allk,1 >0, k+1<n,k<n-—1

@= (Vp. + Rw)" AT — ¢ (v, + Rw)F AT (3.3)

(Yoo + BO) AT — (4, + Rw)* AT, (3.4)

weakly as e — 0.

As follows immediately from the proof, the statement of this theorem still
holds if we replace 7" with a product T A.... AT}, where the currents T} have
the same properties as T. As a matter of fact, we wrote the statement in
the previous special case only for the sake of notation simplicity. However,
in the course of the proof, it is useful to notice that statements concerning
terms involving 7" are still valid if we replace T" with " A T'~".

Proof. Statement (3.2) follows from (3.1) by using the weak continuity of
the i00 operator. The argument for Statement (B) is the same as for (C).
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Proof of (A). We denote by Ay the special case of Statement (A) in the the-
orem for the relative indices (k,1). We prove Statements Ay, [ =0,....,n—k
by using an induction on £ = 0,...,n — 1. We remark that corollary 2.5
asserts Statement (A) in full generality for £ = 0. So we assume Statement
Aj_1.. and we prove Ay, | = 0,...,n — k by using an induction on [. We
remark that Ay holds by the hypothesis ¢ € PBT,. So we assume Ay
and we prove Ag;q1. In fact let ¢, := max{yp,c} € P,, ¢ € Ry and write
T = 6 + i00u, with 0 smooth, # < Cw and u bounded with infxu = 0.
By using the monotone convergence theorem, the symmetry of the wedge
product provided by the inductive hypothesis in k& and the integration by
parts formula (2.6) (which applies thanks to the inductive hypothesis in [),
we expand the integral

Iijvi = — /go (0 +i00u) AT A v(l; A R
X

< Cly — /uiaégo AYENTE AW

X

= Cly + /u(y—mp)/\%’j/\Tl/\w”_k_l_l
X

< Cly; + supu/’y/\fys"Z/\Tl/\cu’”‘kl1 < 400,
X

X

by the inductive hypothesis in [. We now prove the symmetry relation

VeTAT =T AT (3.5)

The decreasing monotone convergence theorem implies

lim [ (pe— @)V AT A" 1 =0,

X

which means the convergence of the mass ||(¢. — )75 A T',(X) — 0 as
¢ — —oo. In particular

PYEANT — @b AT,
weakly as ¢ — —o00. So by the weak continuity of the {90 operator we deduce

V@CAV(IZ/\TI—>7(IZ+1/\TI, (3.6)
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weakly as ¢ — —oo. The symmetry of the wedge product provided by the
inductive hypothesis in £ implies

”y%/\”yi/\Tl = ’y%/\Tl/\’y:Z = Tl/\”y%/\'yz

By the other hand (3.6),, combined with the weak continuity of the i00
operator implies, by an induction on [

Tl/\”y%/\'yZ—>Tl/\’yZ+l,

weakly as ¢ — —oo. This combined with (3.6) implies the required symmetry
(3.5).

Proof of (B). For all Kk = 0,....n — 1 and | = 0,...,n — k we consider
the following statement By ;: for all p =0, ...,k

P VoA (Yo + EW) PAT — B AT, (3.7)
i00p. N YEN (Voo + cw)" P AT — i00p A 732 AT, (3.8)
VN (Y, +ew) AT — A AT (3.9)
PN (Vg + W) PAT — oy AT, (3.10)

weakly as e — 07. We remark that (3.8) follows from (3.7) by the weak
continuity of the i00 operator. By combining (3.8) with the weak continuity
of the 100 operator we obtain

(Yo + W) AL A (Yo, +ew) PAT! — AT

weakly as ¢ — 07. On the other hand the symmetry of the wedge product
proved in part (A) of the theorem implies

(Voo W) AL A (Y, + eW)FPAT = (v, +ew)  PHATIA o

= A + cw)FPHE AT

In this way we deduce (3.9). The statements By, are true by the proof of
corollary 2.5. We now prove by induction on £ =0, ...,n — 1 that Statements
By, 1 =0,...,n — k hold true. In fact we prove the following claim.

Claim 3.3 If B;, holds true for all j = 0,...,k — 1, then By, holds also true
foralll =0,...n—k.
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As pointed out before in order to prove By it is sufficient to show (3.7) and
(3.10). The proof of (3.10) is quite similar to the proof of (3.7) that we now
explain. We first prove by induction on s =0, ..., kK — p the inequality

—Pe ¥ A (Voo + ew)" P AT AW R

_90,.)/5—5—5 A (’7505 + Ew)k—p—s A Tl A wn—k—l

Mo M —

»
|
—

\3
I
o

+
M—

»
|
—

eQVETT A (Yp, +ew) TP ATE AR (3.11)

|
—

r=

—

Inequality (3.11) is obviously true for s = 0. (Here we adopt the usual
convention of neglecting a sum when it runs over an empty set of indices.)
Before proceding to the proof of the inequality (3.11), we need to point out
two useful facts.

1) Let a be a smooth closed real (g, q)-form, R be a closed positive (r,7)-
current, v > 0 be a measurable function such that fX VRAWTT < +00. This
implies that the currents i0OvAR := i00(v R) and i00vAaAR := i00(vaAR)
are well defined. Then the Leibniz formula implies

aNidOvAR=i00vAaAR. (3.12)
2) Thanks to part (A) of the theorem we have
+r h l n—p—r—h—l
/—gpvg AY'ANT AP < 400
b

forall h =0,...,k —p —r — 1. By (3.12) this implies

/—go 7@” A (Y. + au)";_p_’”_1 AT A QPR < +00,
X

so the current
S =@ A (Y. +ew) PTTTEATY

is well defined and we can define the current

i00p N YA (Y. + cw)F P AT = 0008 .
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Then the integration by parts formula
/2’8&05 AS AW = /gos 1008 A wn k!
b's b's

can be written explicitly as

/263905 ANOVET A (Y, +ew)*PTTTEAT AW

X
— / e 1000 AYETT A (g, + ew) PTTEAT AW (3.13)
X

We suppose now the inequality (3.11) true for s and we prove it for s + 1.
We start by expanding, thanks to formula (3.12), the integral

J = / —p ’7};—’_5 VAN (’}ng + 5w)k_p_5 A Tl A wn—k—l

—@ T A (7 +ew) A (g, +ew) TP AT AW TR

—p T Ni0Dp. A (Vp, + ew)E TP ATEA W TR

+

I
M— NS NS NS N X

—&p 724’3 A (Yo + ew)FPm5TE ATE A R IE

gp’yf;” A (Yp. + o) P EA G ATEA W

1000 N pEY* A (Y, + ew) P AT AR

32



By applying the integration by parts formula (3.13) to the last integral we
deduce

— . ,y£+s+1 A (P)/SDS + gw)k—p—s—l A Tl A wn—k—l

©eY ANVET A (g, + cw)FTPTSTE AT A R

By combining the symmetry of the wedge product proved in part (A) with
formula (3.12) we get

YAAETEN (Y. + ew)FTPTTLATE = g A (. Few)FTPTEIATEA oA

= (Yo +ew)  PTEAY AT AAEFS

= PN (Y, +ew) TP A AT

By plugging this into the previous expression of J we obtain

J frnd /_SOE ,.)/Z+8+1 /\ (P)/(pg + €w)k7p7571 /\ Tl /\wnikil
(0 = @) VA (g, + ew) PP A AT AwnE!

eV A (Y. + cw)FTPSTE AT A R

M— H— ¥
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which implies inequality (3.11) for s+ 1. For s = k — p the inequality (3.11)
rewrites as

/ e PN (Y, +ew) P AT AW < / —pAE AT A WP

X X
k-1
+ Z / (e — ) VG A (Yoo +ew) Ay AT A
T=p %
k-1
— /590 Yo A (Voo + cw)F AT A R
r=p %
By using the inductive convergence hypothesis (3.7),,, (3.10),, in Bj. for
J < k—1we deduce
lim sup / — V0 A (Y. + W) P AT A W R
e—0*+ hé
< kop ol a m—k—l
_/—govw/\T Aw < 400, (3.14)

X

by Statement A. (We can always arrange . < 0 for all € € (0, 1) by changing
¢ into ¢ —C.) Thus by weak compactness of the mass there exists a sequence
(¢j)j, € | 07 and a current of order zero © € D}, ;. ,(X) such that

0o oA (o, +E30) P AT — O,

weakly as 7 — +o00. So for any smooth and strongly positive form o of
bidegree (n — k —l,n — k — ), we have

Pe; VoA (Yoo, W) PAT Ne — O Aa,
weakly as j — +o0o. The fact that p.; | ¢ and
WA Yoo, +E0)TPAT N — 5 AT N ar,
weakly as j — 400, by the convergence inductive hypothesis (3.9),_,;, im-

plies
G)/\ozﬁgo*yﬁ/\Tl/\a,
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thanks to Lemma (3.9), page 189 in [Dem2|. Thus © < ¢ySAT". Combining
this with the inequality (3.14) we obtain

/@ /\wnfkfl S /907:2 /\Tl /\wnfkfl
X X

. k— l n—k—l
< hgrg(l)glf/gogﬂyg/\(’y%—l—sw) PAT ANw
X

< lim [ @, A (Ye., €5 WP AT A Wk
j—too g
X

= /@ AW R

X

We deduce Tr,(¢vi ATH — ©) = 0, which implies @75 A T" = O since
0< govf, AT"— ©. This proves Statement By. O

We introduce also the subsets

~

PBT, = {@EPBTg | /X—gpwg<+oo}+RCPBT7,
75BT3 = {pePBT, | supp = 0}.
X

Without changes in the proof of Theorem 3.2 we get the following corollary.

Corollary 3.4 For all ¢ € ﬁBTv, ¢ <0, the assertions A), B) and C) of
Theorem 3.2 hold for all k =0, ...,n.

Let now © be a closed positive (n—1,n—1)-current and consider the L?-space

L*(X,0):= ac(X,AYT%) | /ia ANaA®O < +oo :
X /@—a.e

equipped with the hermitian product (o, 8)g = [y ia A B A ©, which is well
defined by the polarization identity. The ©-almost everywhere equivalence
relation is defined by: a ~ 3 iff

/z’(a—ﬁ)/\(a—ﬁ)/\@zO.

X
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The subscript "©-a.e.” in the definition of L?(X,©) above is ”"©-almost
everywhere. Let ay, a € L*(X,0). We say that the sequence oy converges
L*(X, ©)-weakly to « if

/ia/\B/\@: lim i, ANBAO,

X k—too Jx

for all § € L*(X,0). Let ¢ € P) such that [, —p© A w < +oo. Then
one can define dp A © = J(pO). We write dp € L*(X,0) if there exists
a € L*(X,0) such that 9(p0) = a A © in the sense of currents. In this case
we write

/i&p/\agp/\@ :—/ia/\o_z/\@.
b's X
With these notations we have the following corollary.

Corollary 3.5 Let (X,w) be a polarized compact Kdhler manifold of complex
dimension n and let v, T be closed positive (1,1)-currents with bounded local

potentials, let © be a closed positive (n — 1,n — 1)-current and consider ¢ €
PBT,, ¢ <0,¢ € P,NL®(X), ¢ <0. Then for allk,l >0, k+1<n-—1,

/i&p A Dp A 'y(]; AT AW < oo, (3.15)
b
/¢8¢A5¢A@<+oo. (3.16)
X

Moreover let (¢c)e>0, (Ve)es0 C C(X), e € Pythws Ve € Pyiew such that
w: Ly, ¥ LY ase — 0. Then

lir(r)l+ i0(pe — ) NO(pe — ) A 75 AT A" =0, (3.17)
X

lim, 10 — P) NP — ) ANO = 0. (3.18)
X

Proof. By integrating by parts we obtain

/i@gpa A Ope N 732 ATEA @kl
X

= — / 0. 100p- N 7(’; ATHA Wkt
X
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e (v + Rw) Ay AT A wn kil

©e (Vp. + Rw) A 757 AT A @R

Mo M —

By the proof of Theorem 3.2, B we can take the limit, so

0 < lim [ i0p. A Op. A ’yZ ATEA QR
e—0t
X

= /gp (Y =) AMEAT A" 71 < 400, (3.19)
X

On the other hand the weak convergence of the sequence
Ve 7:2 AT A @k 9075, ATEA k==L
combined with the weak continuity of the 0 operator implies
dp- N\ 732 AT AW 5 9 A 732 ATEA R

weakly as e — 07. Then the L?*(X, 7!2 ATY A wh=k=1=D)_weak compactness
provided by (3.19) implies (3.15) and the L*(X, 7% A T' A w" *771)-weak
convergence dp. — Jp as € — 07, This implies

/i@gp A Op A ’yﬁ ATEA W Fd

X

= lim [ i0p. A Op A 'yZZ A AN

e—0t
X
= lim — . 1000 A ”yZZ ATEA @Rt
e—0t
X
_ : k l n—k—Il—1
= lim [ = (v =) Ap AT Aw
X
= / — (v = V) Ay AT A
X

= lim [ i0p. A Ope A 732 AT ARt
e—0t
X
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by identity (3.19). This implies (3.17) by elementary facts about Hilbert
spaces. The proof of (3.16) and (3.18) is quite similar. O

The conclusion of the corollary 3.5 still holds true if we replace the current
75, ATEA w k=1 with a sum of currents

= . E : k l n—k—Il—1
&= Ck:lﬁyso/\T A w s
k+Hl<n—1

where C}; € R such that Z > 0. We infer the linearity formula

/i@gp/\&p/\E: Z Ckvl/i@gp/\@gp/\’yi/\Tl/\w”_k_l_l.

b k+I<n—1 X

4 Uniqueness of the solutions

We start with a renormalization result for the density volume form of a big
and nef (1, 1)-cohomology class. This uses [De-Pa] in a crucial way.

Lemma 4.1 Let (X,w) be a compact Kdhler manifold of complex dimen-
sion n, let T be a big closed positive (1,1)-current with bounded local poten-
tials. Then there exist a big closed positive (1,1)-current v with bounded local
potentials, cohomologous to T, a continuous function X > 0 and a complex
analytic subset Z C X such that v > Aw over X and A > 0 over X \ Z.

Proof. Let 6 be a smooth closed (1,1)-form representing the cohomology
class of T. The assumption on 7 means that we can write T = 0 +i00¢ > 0
where 1) is a bounded quasi-plurisubharmonic function. By the approxima-
tion theorem of [Demd4|, there exists a decreasing sequence 1; of smooth
quasi-plurisubharmonic functions converging to 1 such that

0 +i00y; > —j ' w,

in particular the class {T'} = {0} is nef (i.e. numerically effective in the sense
of [Dem4]) and big. By Theorem 0.5 of [De-Pal, there also exists a Kéhler
current © = 0 +i0dp € {0}, with © > ew (in the sense of currents) and
e > 0, such that ¢ has logarithmic poles on some analytic subset Z C X and
¢ is smooth on X ~\ Z. The function

@; = max(p, Y —j),

is a bounded quasi-subharmonic function which coincides with ¢ on the open
set
Wi = {z€ XN Z;4(z) —p(2) < j}.
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Clearly we have  + i09p; > 0 on X and
0 +i00p; =0 +i00p =0 >ew on W;.

Therefore the function ® = i>1 277, is a bounded quasi-plurisubharmonic
potential on X (notice that there is uniform convergence since
—j—C < ¢; <C on X) such that 8 +i00® > 0 over X. Moreover

0 + 00D > cw Z 277 on W,
j>l+1

foralll > 1. We infe_r the existence of a continuous function A > 0 on X
such that 7 := 604 100® > Aw over X and A\(z) >0on W, =X\ Z. O

Theorem 4.2 Let X be a compact connected Kdihler manifold of complex
dimension n and let v be a big closed positive (1,1)-current with bounded
local potentials.

(A) Let ¢ € PN L®(X) and ¢ € PBTY such that
(v + i00Y)"™ = (7 + i0dp)"™ .

Then 1) = .
(B) Let ¢, € P, N L®(X) such that

e M (v +i00Y)" = e (y +i00p)" .
with A > 0. Then ¥ = ¢.

Proof of A. By the 00-lemma and by the previous statement 4.1 we can
assume that the current v satisfies the estimate v > Aw, with A as in lemma
4.1. The identity v, = 7, implies ¢ € P BT: by corollary 2.5. Let ¢, 1. be
as in the statement of corollary 3.5 and set v := Y — ¢, u. = VY. — .. Let
us also recall the formula

k—1
ak—ﬁk:(a—ﬁ)/\Zal/\ﬁk_l_l.
=0
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From this we deduce

—u(yy —vp) = Hm [ —u(vy —77)

I
H—

e—0t
X
n—1
_ : . AT l n—I[-1
= 82%;/ Ue 100U Ny N,
= X

n—1

o . . ) ! n—I{—1

= lim ZZ; /zaus/\(?u/\’yw/\’y@
X

n—1

= /i@u/\@u/\’yfp /\fy;f_l_l =1, (4.1)

=0 %
since Qu. — Ou in L*(X,~y), Ay27'"") by corollary 3.5. Inspired by an idea
of S. Blocki [Blol|, we will prove by induction on k& =0, ...,n — 1 that

/i(?u/\éu/\ﬁ/\ﬁ/\vkz() (4.2)
X

for all 7,s > 0, r+s=mn—k — 1. For k = 0 this follows from (4.1). So we
assume (4.2) for k — 1 and we prove it for k. In fact consider the identity

k—1 b1
'Yk = %{Z — Zaélp A Z»}/fp A ,yk—l—l and set = := %Z A 7:; A Z%lp A ’yk_l_l '
=0 —o

By applying several times corollary 3.5 and by integrating by parts we derive

. ) r s k : . 3 r s k
/z@u/\@u/\'yw/\fy‘p/\v —EILI[% i0ue A Ou Ny Nyg Ay
X X

e—0t

= lim /z’@uE AN O(uytt AAS) — /z’@uE A O(uwiddp A Z)
X X
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= lim /z’@ug ANOu AR NS + /ue i00u A 100 N =
e—0t
X X

(1]

= /z’@u A Ou A fyq?fk AYS — lim [ uiddP A (y, — ) A
e—0t
X X

IN

(1]

I+ lim [ iu. AO [ (v, — ) A

e—0t+
X

]

= lim /i@us/\éw/\%/\E—/z’@us/\éw/\%/\E

e—0+
X X
= /iau/\aw/\%/\E—/z’@u/\aw/\%/\i (4.3)
X X

Set x = ¢ or x = 1. Then the Cauchy-Schwarz inequality implies

/i@u/\é@b/\’yx/\E
X
1/2 1/2
< /z'au/\éu/wXAE /iaw/\a}m%{/\E =0,
X X

by the inductive hypothesis. This combined with (4.3) implies (4.2) for k.
So at the end of the induction we get

O:/ i0u A Qu Ay > / iOuAou N (Dw)" 1 >0.
X b's
This implies ¢ = 1 by elementary properties of plurisubharmonic functions.

Proof of B. By applying the comparison principle (2.7) as in [E-G-Z1] we

get
/ 7 < / Vo = / MV

<t <t <y

which implies f%w Yy = 0 since e*¥=¥) < 1. This implies that the inequality
¢ > ¢ holds 7, -almost everywhere, thus the inequality
e =0 >,
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holds v;-almost everywhere. By symmetry we also deduce that ~v; > ~;
holds 7;;-almost everywhere. The fact that the potentials ¢ and ¢ satisty

1o =Xy (4.4)

implies that a property holds ~;-almost everywhere if and only if it holds
va-almost everywhere. We infer ;i = v, hence 1) — ¢ = Const by part (A),
and equality (4.4) now implies ¢ = ¢. O

We now show a uniqueness result in the non-nef case. We denote by UB, C X
the unbounded locus of a quasi-plurisubharmonic function . Let us first re-
call the following well known lemma [Dem1|, [Be-Bo].

Lemma 4.3 Let (X,w) be a compact Kdhler manifold of complex dimen-
sion n, T a closed positive (q, q)-current on X, 6 a smooth closed real (1,1)-

form and ¢ a quasi-plurisubharmonic function such that 0+i00p > 0 over X.
Then the following holds
(A) Forallk=1,...,n—q

/ (0 +i00p)F NT AW < 400

X~UB,,

(B) If in addition ¢ has zero Lelong numbers, then
/ (0 +i00p)F NT ANw"F71 < /0’“ AT AW,
X~UB, X
forallk=1,...n—q.

Proof. Set © := 0 +i00p > 0. Let (¢.).-0 C C°(X,R) such that . | ¢
as ¢ — 0 and let C' > 0 be a sufficiently big constant such that ©. :=
0 +i00p. > —Cw for all € € (0,1). By the monotone decreasing theorem in
pluripotential theory we infer that

(0. +CwW)* AT — (6 4+ Cw)" AT,
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weakly over the open set U := X \ UB, as ¢ — 0. We infer

/@’“ AT AW F 1 < /(@ + Cw)F AT AW+
U U

< liminf /(@E + Cw)F AT A1

e—0

U

< /(0+Cw)k/\T/\w”kq < +o0,

X

which concludes the proof of statement (A). Statement (B) follows from the
fact that, thanks to the work in [Dem4|, we can replace the loss of positivity
constant C' with constants C. > 0 such that C. | 0 as € — 0. O

The following lemma can be found in [Be-Bo| and is based on a simple but
efficient increasing singularity approach introduced by the first named au-
thor.

Lemma 4.4 Let X be a compact Kdihler manifold of complex dimension n,
let T be a closed positive (n—q,n—q)-current, ¢ > 1, let 0 be a smooth closed
real (1,1)-form and consider ¢, ¥ € Py such that ¢ > 1» over X. Then

/(9+i85<p)qATZ /(6+z’851/1)‘1/\T.

X~UBy X~UBy,

Proof. Consider the closed positive current © := (0 + i99y)?"' A T over
X N UBy. In order to conclude, it is sufficient to prove the inequality

/ (0 +i00p) NO > / (0 +i00) A O, (4.5)

X~UBy X~UBy

thanks to the symmetry of the wedge product and to an obvious induction.
(Notice that the integral on the left hand side of the inequality (4.5) is also
finite by the same type of argument as in the proof of Lemma 4.3.) Let
C > 0 be a sufficiently big constant such that {90y > —Cw and set . :=
(1+¢)y € Py, with 0. := 0 + eCw. Then the inequality (4.5) will follow by
letting € — 0 in the inequality

/ (0. +i00p) NO > / (0. +1i00v.) N O, (4.6)

X~UBy, X~UBy
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that we prove now. Let & > 0 be an arbitrary constant. The fact that
@ — k > 1. over the open set {¢) < —k/e} implies

/ (0. +i005) N O — / (0. + 00 max{p — kv }) AO = I,

X~UBy, X~UBy

by Stokes’ formula. Let L C X \ UBy be an arbitrary compact set and let
U C U C X ~\UBy be an open set such that L C U C {¢p. > —R} for a
sufficiently big constant R > 0. We infer

I > /(05+i85max{g0—k;,@/15})/\@ > /(He—l—iaéwa)/\@,

U L

for k such that ¢ —k < —R over X. Then the inequality (4.6) follows by
taking the supremum over L. 0

We now define the potential with minimal singularities

po() = sup {¢(z) | ¥ € Py},

and we observe that py € Pj. Let 6 € {6} be another smooth element in
the cohomology class of 6. We write § = ¢’ + i00u. By definition, we infer
wo+u—C < pg and pg —u — C" < @y for some constants C,C" > 0. By
Lemmas 4.3 and 4.4 we infer the equality

/ (0 +i00pg) ' NT = max / (0 +i00V)I AT < +00.
S
X~UBy GX\UB¢

Notice that the closed set UBy depends only on the cohomology class {6}.
We observe that the regularising result in [Demd4| implies that if a class
a € HY(X,R) is big then UB, is contained in a complex analytic set. We
prove now the following lemma (see also [Be-Bo)).

Lemma 4.5 Let o € HM'(X,R) be a nef and big class over a compact Kihler
manifold (X,w) of complex dimension n and let 0 € o a smooth (1,1)-form.
Then the potential with minimal singularities pg associated to 0 is with zero
Lelong numbers over X. Moreover for any q = 1, ...,n and any closed positive
(n — q,n — q)-current T" over X such that its mass does not charge proper
complex analytic subsets of X, hold the identity

(0 +i00pg)! NT = a-{T}.

X~\UB,
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Proof. The nef assumption implies the existence of a family (u.).c,1) C
C*(X,R), u. <0 such that

0+ cw +i00u. > 0,

for alle € (0,1). Moreover the big assumption combined with the regularising
result in [Dem4| implies the existence of a quasi-plurisubharmonic function
Y < 0 with analytic singularities such that 6 4+i00 > ow, for some g > 0.
We infer

1 _ _
0 < —— [9 +ew + i08u. + e55 (6 — eow + iaaw)}
+ egg
= [ et 98 4 o2y )]
1+ 5551
= 0+ i00y,,
with
Uz + 55_11/1
Veis gt <0
0

Therefore 1. < @y and so A\;(¢.) > \.(¢p) for all € € (0,1) and = € X. The
fact that the Lelong numbers of ¢). become arbitrary small as ¢ — 0 implies
Az(pg) = 0. We prove now the last statement of the lemma. We observe first
the inclusion UB,, C Z := ¢~!(—00). The previous computation implies also
the inequality

1 _ _
. P
T (9 Fewdt 188u5> < 0+ i0dy.

which combined with lemma 4.4 provides

/ (0 4+i000g) ' NT > /(9+i85¢5)q/\T
X~UBq, X~Z
1 _
—_ 0 100u )T AT
Atee ) /( + ew +100u.)? A
X
1
- —)/wm)qm.

(14 eg5t)e
X

If we let € — 0 we infer the inequality

/ (0 4i000g) ' NT > a-{T}.

X~\UB,
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The reverse inequality follows from the statement (B) of lemma 4.3. O

In the case UBy is contained in a complete pluripolar set £ C X, the trivial
extension of the current -
]IX\E ((9 + Zaawg)q s

over X is closed and positive by the Skoda-El Mir extension theorem, which
applies thanks to Lemma 4.3. Moreover this extension is independent of F
by the definition of UBy. In fact the current (6+i00p)?, does not carry any
mass on pluripolar sets contained in the open set X \ UBy, since ¢y is locally
bounded over this set. In this case we will still denote by (6 + i90¢,)? the
extension over X. In this setting, for any smooth and closed (n—q, n—q)-form
T over X, ¢ > 1, we can define the cohomology invariant

{6} . {T} .= /(9—1—2'88909)‘1 AT = max / (0 +i00Y)I AT < +c0.
X X~\UB,,

In general the number a!9 - {w}"~7 associated to a pseudoeffective class a €
H“'(X,R) over a compact Kéhler manifold (X,w) of complex dimension n
is not a cohomology invariant, so we will denote it by ol? - w™9. However
the numerical dimension of «, namely the number

v(a) ;== max{q € {0,...,n} | o/ - w"7>0}.

is well defined. In fact it is independent of the choice of the Kéhler met-
ric w since the trace operator controls the mass of a positive (g, ¢)-current.
We prove now the following degenerate version of the Comparison Principle
which is also based on the increasing singularity approach previously used.
(Compare with the statement and the proof of corollary 1.4 in [Be-Bo]).

Lemma 4.6 (Degenerate Comparison Principle). Let X be a compact
Kahler manifold of complex dimension n, let 6 be a smooth closed real (1,1)-
form and consider ¢, 1 € Py such that ¢ > 1 — K for some constant K > 0.
Then

/ (0 +i00p)" < / (0 + i0dp)™ .
{e<¥}\UBy {e<y}\UBy

Proof. For any set 2 C X we put Ey := E ~\ UBy and define the closed
positive current © := (9 + 100 max{gp,w})n over X,. We start by proving
the inequality

/ (0 +i0dp)" > / 0. (4.7)



Let R > 0 be a sufficiently big constant such that 100y > —Rw and set
e == (1+¢€)y € Py, with 0. := 0 + eRw. The fact that ¢ > 1. on the open
set {¢ < —K/e} implies

.+ iv00r = [ (0.4 ioomaxte. )"
Xy Xy
by Stokes’ formula. We infer
/ (6 +i00p)™ = lim inf / (0 + i00 max{p, ¢.})" > / 0.
Xy Xy Xy
by the weak convergence
0, = (Qa + 100 max{p, @Z)a})n — 0, (4.8)

as € — 0 over the open set Xy. In order to prove the convergence (4.8) we
restrict our considerations to an arbitrary open set U C U C X. Let C >0
be a constant such that ¢» > —C over U. Then the function

O, := max{p +eC,¢. +eC} € Py_,
decreases to max{p, ¥} over U as ¢ — 0 and satisfies ©, = ((9E + 2'8(9(1)5)”.
Then the convergence (4.8) over U follows from the monotone decreasing the-

orem in pluripotential theory. On the other hand the inequality of measures
@ Z szw QZ + ]Itp<¢ QZZ’

over the open set X, (see [Deml|), implies

/@z/@", /@z/eg.

{p<t}y {p<t}y {p>v}y {p>v}y

This combined with the inequality (4.7) implies

/egg/@— / @g/eg— / or = / or.

{p<t}y X {p>}y X {p>9}y {p<t}y
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Corollary 4.7 Let X be a compact Kdahler manifold of complexr dimension
n, Q > 0 a smooth volume form and 0 a smooth closed real (1,1)-form.
Assume that p; € Py, j = 1,2 1s such that UB,, is a zero measure set and

(0 +i00p;)" = ¥ Q)

over X N\ UBy.. If o1 = w2 — K over X, for some constant K > 0
then o1 > @9 over X. Moreover if there exists a Kdhler-Finstein current
w, € 2mcy1(Kx), then it is unique in the class of currents in 2mey(Kx) with
singularities equivalent to w,. In particular if w, has minimal singulari-

ties, then it is unique in the class of currents with minimal singularities in
2’/T01 (Kx) .

Proof. We set E := {1 < @2} N\ UB,, and we apply the degenerate compar-
ison principle 4.6 as before. We obtain

/(9+z‘aas02)” < /(9+i68901)" = /em%(@ﬂ”@@@z)”-

E E E

We infer 0 = [ €724, and so ¢ > ¢, almost everywhere over X, thus
everywhere by elementary properties of quasi-plurisubharmonic functions. ]

5 Generalized Kodaira lemma

We first recall a few standard definitions of algebraic and analytic geometry
which will be useful in our situation.

Definition 5.1 Let (X,w) be a compact Kihler manifold.

(A) A modification of X is a bimeromorphic morphism 1 : X - X of
compact complex manifolds with connected fibers. Then there is a smallest
analytic set Z C X such that the restriction p: X ~ pwHZ) =X\ Zisa
biholomorphism; we say that Exc(u) = p=*(Z) is the exceptional locus of .
(B) A class « € H'(X,R) is called big if there exist a current T € o such
that T' > cw, for some € > 0.

By a result of [De-Pal, a nef class a on a compact Kéhler manifold is big if
and only if [, o™ > 0. By the proof of Theorem 3.4 in [De-Pa] we obtain the
following generalization of Kodaira’s lemma.

Lemma 5.2 Let X be a compact Kdhler manifold and o € HY' (X, R) be
a big class. Then there exist a modification pu : X — X of X, an effective

integral divisor D on X with support |D| D Exc(i) and a number 6 € Qs,
such that the class p*a — 0{D} is Kdihler.
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We associate to « the set I, of triples (u, D, ) satisfying the generalized Ko-
daira lemma 5.2, and a complex analytic set >, which we call the augmented
singular locus of «, defined as

Sai= () w(D). (5.1)

(1,D,8)€ln

A trivial approximation argument shows that the set 3, depends only on the
half line Roga. In the case the class v is Kahler, (idx, 0,1) € I, thus X, = 0.
Conversely, if X, = 0, it is clear that the class a must be Kéahler: in fact,
if ©,.ps is a Kéhler metric in p*a — 6{D}, then © = p, (@, ps+6[D]) is a
Kéhler current contained in the class «, which is smooth on X ~\ (] D|) and
possesses logarithmic poles on (| D|); by taking the regularized upper enve-
lope of a finite family of potentials of such currents ©; with () u(|D;|) =0,
we obtain a (smooth) Kahler metric on X. In the case the class « is integral
or rational, the set >, can be characterized as follows.

Lemma 5.3 Let L be a big line bundle over a compact Kdahler manifold.
Then the class « := c1(L) satisfies

SB(L) C &, = N 1B, (5.2)

EeDivt(X), 6€Qs,
a—6{E} ample

where SB(L) is the stable base locus of L, i.e. the intersection of the base loci
of all line bundles kL, and E runs over all effective integral divisors of X.

Proof. First notice that the existence of a big line bundle implies that X is
Moishezon. This combined with the assumption that X is Kahler shows that
X must in fact be projective (see [Moi|, and also [Petl], [Pet2] for a simple
proof). The inclusion SB(L) C ¥, in (5.2) is quite easy: Let (u, D, p) € I,.
Then Kodaira’s theorem implies that {A} := p*a — p{D} is a Q-ample class
on X and so the integer multiples kA are base point free for k large enough.
Therefore the base locus of ku*L is contained in |D|. This shows that SB(L)
is contained in the intersection of the sets (| D|), which is precisely equal to
Yo by definition. Now, if H is an ample divisor on X, we have

prla—e{H}) = p{D} +{A} —e{p"H}

and, again, A — eu*H is ample for ¢ € Q¢ small. We infer that the base
locus of k(L —eH) is contained in X, for k large and sufficiently divisible. If
we pick any divisor E in the linear system of k(L —cH), then L — +E = e¢H
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is an ample class, and the intersection of all these divisors £ is contained

in X,. Therefore
N |E| C Za.

EeDivt(X), §€Qxg,
a—G&6{E} ample

The opposite inclusion is obvious. 0]

The following lemma gives us an important class of densities which will
be allowable as the right hand side of degenerate complex Monge-Ampére
equations.

Lemma 5.4 Let X be a compact complex manifold, let €2 > 0 be a smooth
volume form and let o; € H(X,E;), 7. € H*(X,F,), j = 1,..,N, r =
1,..., M be, non identically zero, holomorphic sections of some holomorphic
vector bundles over X such that the integral condition

N M
/ [Tlosl Tl @ < +o0
v i=l r=1

holds for some real numbers l; > 0, h, > 0. Then the integrand function
belongs to some LP space, p > 1, and for A > Ay > 0 large enough, the
family of functions

N M
G. = [[o;> +eM - [[Unl+2) .  eeclo.1)
]:1 r=1

converges in LP-norm to the function Gy when ¢ — 0. In fact, for N # 0
and l; > 0, one can take Ag := (>_, h,)/(min; [;).

Proof. By blowing-up the coherent ideals generated by the components of
any of the sections o, 7., we obtain a modification p : X — X such that
the pull-back of these ideals by p is a divisorial ideal. Using Hironaka’s
desingularization theorem, we can even assume that all divisors obtained in
this way form a family of normal crossing divisors in X. Then each square
loj o p|? (resp. |7 o u|?) can be written as the square [2%|? (resp. |2°[%) of
a monomial in suitable local coordinates U on a neighborhood of any point
of X , up to invertible factors. The Jacobian of y can also be assumed to be
equal to a monomial 27, up to an invertible factor. In restriction to such a
neighborhood U, the convergence of the integral is equivalent to that of

N M
[T P T a
U j=1 r=1

20



Notice also that X can be covered by finitely many such neighborhoods, by
compactness. Now it is clear that if the integral is convergent, then the
integrand must be in some LP, p > 1, because the integrability condition
is precisely that each coordinate z; appears with an exponent > —1 in the

n-tuple
Y4 o= heb,,

(so that we can still replace [, h, with pl;, ph, with p close to 1). In order
to prove the convergence of the functions G, in the LP” norm we distinguish
two cases. In the case where [; = 0 for all j, the claim follows immediately
from the monotone convergence theorem. The other possible case is [; > 0
for all j. In this case the convergence statement will follow if we can prove
that for A large enough the functions

N M
|zy|2H |Za1|2+€ l]H |Zﬂr|2+€ —hy
j=1 r=1

converge in LP-norm as € — 0. This is trivial my monotonicity when N = 0.
When N > 0 and [; > 0, we have

N

N M
H(|2a]“2 +€ ] < C(H |Zaj|2lj +€Aminlj)7 H(|25r|2 +€)—hr S 6—Ehr7

j=1 j=1 r=1

so it is sufficient to take A > (> h,)/(minl;) to obtain the desired uniform
LP-integrability in ¢. 0J

6 Existence and higher order regularity of so-
lutions

We are ready to prove the following fundamental existence theorem.

Theorem 6.1 Let X be a compact connected Kdihler manifold of complex
dimension n and let « € HY(X,R) be a (1, 1)-cohomology class with fX a >
0, which admits a closed positive (1,1)-current v € « with bounded local
potentials. Let 0 € « be a smooth (1,1)-form and let Q@ > 0 be a smooth
volume form. Consider also o; € H*(X,E;), 7. € H'(X,F,), j =1,...,N,
r=1,..., M be non identically zero holomorphic sections of some holomorphic
vector bundles over X, such that the integral condition

N M
/ Tios - I Inl 0 = / o (6.1)
X j=1 r=1

X
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holds for certain real numbers l; > 0, h, > 0. Then there exists a unique
solution ¢ € P BTy of the degenerate complex Monge-Ampére equation

N M
(0 +i090)" =[] loy1™ - []Im™" e, A>0, (6.2)
j=1 r=1

which in the case A = 0 is normalized by supy ¢ = 0. Moreover let X, be the
augmented singular locus of the (1,1)-cohomology class a as defined in (5.1),
which is empty if the class o is Kdhler, and consider the complex analytic

sets
S=%,U (U{Tr = 0}) , S:=5U (U{aj = O}) :

Then ¢ € PaNL¥(X)NCUX NZ,) NCHH(X N S)NC®(X N S).

Proof. We first assume the existence of an effective divisor D in X and of
a small number 6 > 0 such that o — 6{D} is a Kéhler class on X. (We will
later be able to remove this assumption thanks to Lemma 5.2). By using the
Lelong-Poincaré formula we infer the existence of a smooth hermitian metric
on O(D) such that

0 < ws =0 —276[D] + §i0dlog |s|?,

with div(s) = D. By convention we will put 6 = 0 if « is a Kéhler class (so
that ws = 0 in that case), and in general we will denote by |D| the support
of the divisor D.

(A) Setup.

We decompose the current v = 6 + i90v € a and we remind that the regu-
larisation result in [Dem4| provides a family a family of smooth (1, 1)-forms
Ye = 041i00v., with v. smooth, uniformly bounded and with v. | v ase — 0,
such that 7. 4ew is a Kahler metric for every € > 0. For the sake of simplicity
of notation we will use the function G, € € [0,1) defined in the statement of
lemma 5.4. In the case A > 0 we assume that the potential v is normalised

by the condition
/GO M) = /9". (6.3)
b's X

Let w > 0 be a Kéahler metric, let ¢ € (0,1) and let ¢. be a normalizing
constant for the integral condition

e’ /GE Q) = /(0+5w)” >0, (6.4)

X X

52



with A := h/l. Condition (6.3) combined with Lemma 5.4 and the fact that
the potentials v, are uniformly bounded, implies ¢. — 0, when ¢ — 07.
Consider the standard solutions ®. € C'°(X) of the complex Monge-Ampére
equations

(75 + cw + 'Laé@a)n = Gé‘ 605+>\(Us+<1>5) Q’

given by Yau’s and Aubin-Yau’s solution of the Calabi conjecture [Yaul,
[Aub]. Notice that the integral condition (6.4) implies that a non identically
zero solution ®. changes signs in the case A > 0. If we set . := ®. 4+ v, then
the previous equation rewrites as

(0 + ew +i00¢p.)" = G.e“ Q. (6.5)

As usual, in the case A = 0, we normalize the solution (. with the condition
maxy ¢. = 0. By combining Lemma 5.4 with the estimate of corollary 2.13
we obtain a uniform bound for the oscillations Osc(®.) < C” and thus a
uniform bound for the oscillations Osc(p.) < Osc(®P.) + Osc(v.) < C. We
set now

We '= Ws + W,

and
@Zja = Pe — CHOg |S|2 .

As the notation indicates, we will keep 0 fixed (until step (E)). Then we get
a Kahler metric defined over X

Qe = 0 + ew + i00p. = &, + 100, + 2r5[ D], (6.6)

thus @, = @, +i90¢y. over X . |D|. In this setting, equation (6.5) can be
rewritten as

(@o + 109, )" = A loglsl +Ave gyn (6.7)
on X N\ |D|, with F© := f¢+a° — b°, and with

fo o= e +log(Q/al),
N

a® = Z I -log(|oj|* + &%),
j=1

M
o= Zhr'log(|7'r|2+€).

r=1
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(Here the superscripts in € are indices and not powers.) Let C;_ be the Chern
curvature form of the Kahler metric w. > 0 and let

I.:=min min Cs(®@n@n)|¢57 57

zeX €Ty 0z
(We remark that the minimum is always achieved by an easy compactness
argument, see e.g. |Kat|, Chap II, Sect. 5.1, Theorem 5.1, page 107.) We
observe that the family of metrics (©.). has bounded geometry for ¢ fixed

and € € [0,1] arbitrary. In particular, for all ¢ € [0, 1] hold the uniform
bounds

FEZF, ’fE‘SKO> )\((,05—9)—'—7/86][62—[(0(1)5

Moreover we can assume i0da’ , i00b° > — Ky @. , (see Appendix A.)

(B) The Laplacian estimate.

This estimate is obtained as a combination of ideas of Yau, Btocki and Tsuji,
[Yau|, [Blo2], [Ts|. Consider the continuous function A, : X — (0, +00) given
by the maximal eigenvalue of w. = w. + 1001, with respect to the Kihler
metric @,,

Ac(z) = max (Q. +i00v.)(E, J§)|§|5€2 ,

£€TX,:1: N0z

i.e. we extend A. over |D| by continuity, as is permitted by (6.6). Consider
also the continuous function over X \ |D|,

A =logA. — k-9, + 07,
with 0 < k :=2(1+ Ky/2 — K;) and with
Ky :==min{—-\ — Ky/n, '} < —A.

The reason for this crucial choice will be clear in a moment. The singularity
of the function v, implies the existence of a maximum of the function A, at
a certain point x. € X \ |D|. Let g. be a smooth real valued function in a
neighborhood of z. in X ~\ | D| such that ©. = %3595, and let u. := g. + 2.
Then

_ i
W. + 100y, = éaaug :
For the simplicity of notation, we just put ¢ = ¢g. and u = u. from now on,

2 ~ . .
and we also set g = —828;(9; . Let (z1,...,2,) be @.-geodesic holomorphic
m

coordinates centered at the point z., such that the metric &, = &, + 100
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can be written in diagonal form in x.. Explicitly, we have the local expression
(.:)5 = % Zl m 9im le A d,?m, with

Gm = O1m — 3 Clnzize+ O(|2*),  gipam(ze) = —Cli .
4.k

Colze) = Y Clbdzj @ dzy @ dzy @ dzp,

j7k7l7m

and %8(‘% = %Zz u pdz; AN dzy, with 0 <upi < S Upgp at the point z.. For
every ¢ € C" we set gc¢ =2, . gim G Gn- Then

85u(§1’0,€0’1) . E

A.(z) = max =
() €€Tx N0 00g(§10,601)  [d=1 gc¢

and 50 A-(2:) = p,n(z:), with 22 < A.. We also set

A, = log 25 _ ko 4 bE

n,n

Then A. < A., with 1215(1;5) = A.(z.). This implies that the function A, also
reaches a maximum at the point z., thus A@Eflg(xg) < 0. All the subsequent
computations in this part of the proof will be made at the point .. By the
local expressions for the Ricci tensor we obtain

2 s,t 1
amﬁlogdet(uj,l%) = E :(Unﬁ,l,ﬁ—i Un,isU Uﬁ,t,ﬁ>up

l,p s,t
2
_ Z Unnpp Z |Unpl
- I
o Upp pg UppUaq

and in a similar way J; ; logdet(g;z) = >, gnnpp- Then by differentiating
with respect to the operator 97 , the identity (6.7), which can be rewritten
as

log det(u; ;) = F* + Adlog [s|* + A(u — g)/2 + log det(g;7) ,

we obtain
2
T Uy p.a
S tmnee 5 wdl e Ao — a2 i~
o Upp oq Upp Uad

+ AMunn —1)/2+ Z n,np,p -
P
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Combining this with the inequality At;,aflg(:ve) <0, we get

A

0 > p:ﬁ

> Upp

_ ( Unipp  |Unapl® | K/24 b5 — Gnaps

5— + Ld > —nk/2

upzp un,ﬁ up?ﬁ unyﬁ upvﬁ
_ |un,p,lj|2 . |un7ﬁ7p|2
pq b UqgUnn T Upp U n
fn,ﬁ + /\[(w(s)n,n - gn,n - 1]/2 + a;,ﬁ - bfz,ﬁ
un,ﬁ
+ > (g"’"’p’p ki g””"””ﬁ) ~ (nk — N)/2.
» un,ﬁ up,;ﬁ

We observe at this point that the sum of the two first terms following the
second equality is nonnegative and the trivial inequality

_bi,ﬁ_'_z:% S _ZKO/Z

Un,m o Upp Up,p

p

By plugging these inequalities in the previous computations and by using the
definition of the constants k£ and K7, we get

K, -Cr K +Cp0 1
0 > Z( s A S A )—(nk—/\)/Q

» Un,n Up,p Upp

+

Z (Cz?,gl — K1) (unn — tpp) Z L .

> Up,p Un,n

where Cy > 0 and all the following constants are independents of . Let
denote by (z1,...,z,) the real part of the complex coordinates (z1,...,2y).
Then the inequality Cp5' = Cz, (32 ® 52, ;% © a%p)(:cs) >T'. > T implies

Oxp’ Oxn

1

1 U n—1
n,n
0> ——-Co > |7 — Cy
o U Hpup,ﬁ
—Ape—NS log |s|2—F¢ 1
1
= e n—1 upn — Co.
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Consider now the function B. := edc = A e Fv=tt",
maximum point for B. over X ~\ |D| and the previous inequality can be

written as

(k—M\)pe — A log |s|2—b —F€

0 > e

Then z. is also a

) B.(x.) 7~ Co

(k=X e —8klog |s|2—a®—f

= €

9 B.(z)w 1 — Co.

Then by the inequalities K — A > 0, |s|? < C, a° < C and |f¢] < K, we get

the estimate

(k=)
0> Cl e n—1

minx ¢e B (x.)w1 — .

In conclusion we have found over X ~\ |D| the estimates

0

<

IA

IN

2n + Ap. 0. — 00z, log |s|?

Trg, (@, + i100,)

2nA. < 2n eV B.(x.)

CQ €k~<p5—(k—>\) miny ¢

[s[25(|7[* + )"

Cé ek:Osc(gos)
|S|25k |7-|2h ’

(Here Trg, is the trace operator with respect to the Kéhler metric @..) The
last inequality follows from the fact that Aminy ®. < 0, since a non iden-
tically zero solution ®. changes signs in the case A > 0. Thus Aminy ¢. <
Amaxy v. < C. Moreover using the inequality

|5A@6 log|s|2‘ = | Trg. (0 — ws)| < Cs

over X ~\ |D|, we deduce the singular Laplacian estimate

—C3 <2n+ A . <

Cé ek Osc(pe)

(C) Higher order estimates. )
By the previous estimates we infer 0 < 2u;; < Trg, (0 + ew +i00¢p.) < 27,

foralll =1,...,n, with

T.:

Cé ek Osc(pe)

PP e
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|S|26k |7-|2h
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The equation (6.5) can be rewritten as
(0 4 cw + i00p. )" = e A= @

£

We infer
I3 J—
€F +Ape Hul,f < T? 1um,fna
1

for all m = 1,...,n. The fact that a non identically zero solution ®. changes
signs in the case A > 0 implies Aminy ®. > —\ Osc(®P,). Thus

)\H}}n e > —A0sc(p:) + )\m)?xvs,

and therefore
€F6+)\maxX ve—A Osc(pe) Ti—n (Ds S 0 +oew 4+ z@écps ]

Then an elementary computation yields the singular estimate

04—1 |S|25k(n—1) |0|2l |7_|2h(n—2) e—knOSC(L,Dg) o,

04 ek: Osc(pe)

o. . (6.8)

Moreover the fact that ¢, € Pyi., implies
21000: |5, < Ap.0e +2Trp (0 +cw) .

At this step of the proof we consider
s’ ::|D|U<U{n:0}>, S = S’U(U{Uj:()}).
r J

By the Interpolation Inequalities |Gi-Tru| we find that for any coordinate
compact set K C X ~ S’ there are uniform constants C'x > 0 such that

max |Venpe| < Ck <mI?XACngpg + max \@ED )

Therefore, we can apply the complex version of Evans-Krylov theory [Ti2|
on every compact set K C X \ S to get uniform constants C5 g > 0 such
that ||@e||c2nx)y < Cox for some n € (0,1). Now, let U C X .S be an open
set and let & € O(Tx)(U). We rewrite the complex Monge-Ampére equation
(6.5) under the form

(04 ew + 100, )" = et

28



with
H. :=c. +log(/w") +a® — b°.

By taking the derivative with respect to the complex vector field &, we obtain
(see the proof of formula 11 in [Pal])

Ap (€.pe) =20 .. = —Trg, Le(0 + ew) + Tr, Lew + 26 . H.,  (6.9)

By the uniform estimates (6.8) and || |c2nx) < Co i it follows that the
operator A;_ is uniformly elliptic with coefficients uniformly bounded in
C"-norm at least, over any compact set K C U. The right hand side of
equation (6.9) is also uniformly bounded in C"-norm at least, over K. By
the standard regularity theory for linear elliptic equations |Gi-Tru| we de-
duce [|€. ¢cllc2nky < Ck for all ¢ > 0. We infer the uniform estimate
[pellesnry < Cs i

In its turn, this estimate implies that the coefficients of the Laplacian A,
and the right hand side of equation (6.9) are uniformly bounded in C''"-norm
at least. By iteration we get the uniform estimates ||¢.||crnx) < Cp i for
all ¢ > 0 and » € N. We infer that the family (p.)cs0 C C°(X N\ 9) is
precompact in the smooth topology.

(CI) The smooth regularity.
By elementary properties of plurisubharmonic functions (see |[Dem2|, chap-
ter 1), the uniform estimate [|¢.|/z(x) < C implies the existence of a L'-
convergent sequence (©;);, ©; = @e;, €5 | 0 with limit ¢ € Py N L®(X).
We can assume that a.e.-convergence holds also. The precompactness of the
family (pg)es0 C C*°(X \S) in the smooth topology implies the convergence
of the limits

(0 4+ i00p)" = ZEJIPoow +i00p;)" = jEEloo G e*?TQ = Goer?Q (6.10)
over X \ S, with ¢; := ¢, G; := G;. The fact that ¢ is a bounded potential
implies that the global complex Monge-Ampére measure (64i99¢)™ does not
carry any mass on complex analytic sets. We infer that ¢ is a global bounded

solution of the complex Monge-Ampére equation (6.2) which belongs to the
class Py N L=®(X)NC®(X N 9).

(CII) The C"'-regularity.

Let U CC X \ 5’ be a coordinate open set. By a classical result in |Gi-Tru|
(see Theorem 8.32, page 210) for all open sets U’ CC U there exists a con-
stant C'= C(U’,U) > 0 such that for all n € (0,1) the uniform estimate

pellcrnwn < C (l@ellew) + 1A @ellew)) (6.11)
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holds. By applying the Ascoli-Arzela theorem to the sequence (¢;);, we infer
the uniform estimate ||¢||c1any < C' for alln € (0,1), thus ¢ € CHH(X\.S).

(D) Uniqueness of the solution.

We observe first that Theorem 4.2 still hold true if we replace v there with
any 0 € {~} smooth. We prove now the uniqueness of the solution ¢ in the
class P BTy. In the case A = 0 this follows immediately from Theorem 4.2.
In the case A > 0 let v» € P BTy be an other solution. The fact that ¥ € Py
implies that we can solve the degenerate complex Monge-Ampére equation

(0 +i00U)" = Gy Q, (6.12)

with the methods so far explained, so as to obtain a solution U € P§NL>(X).
In fact as in step (A) we consider the solutions U. of the non-degenerate
complex Monge-Ampére equations

(6 + ew +i00U.)" = G. M=t Q1

with 9. | ¥, . € C®(X), 1. < C, i00y. > —Ky @, and ¢, being a normal-
izing constant converging to 0 as ¢ — 0. By combining Lemma 5.4 with the
dominated convergence theorem we infer that the family G. e*¥=* converges
in LP-norm to Goe*”. These conditions are sufficient to provide the singular
Laplacian estimate of step (B). Thus by the C'-compactness argument of
step (CII) we infer the existence of the solution U of the degenerate complex
Monge-Ampére equation (6.12).

By the uniqueness result in the case A = 0 we infer U = 1) — supy ¢, thus
¥ € L*(X). Then the required uniqueness follows immediately from Theo-
rem 4.2 (B).

(E) Eliminating the assumption on the existence of divisors D in X.
By section 5, the divisors D which we have assumed to exist in X up to now,
can only be constructed (at least, in the non-projective case) by applying
a blow-up process to X, i.e. we can find a modification pu : X - X of X,
a divisor D in X with |D| D Exc(y) and a number 6 > 0 such that the
class p*a — 0{D} is Kihler on X. For this reason, we use pull-back the

Monge-Ampére equation by p so as to transform equation (6.2) into
N M
(0 +i00®)" = [ [ loj o ul*s - [ I ol * ez, A >0.
j=1 r=1

Here 1*§2 is no longer a positive volume form on X but we have y*Q = |J,u|QQ
where ( is such a volume form, and |Ju|? is the square of the Jacobian of p
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expressed with respect to the pair (€2, Q) Observe that Ju is just a section
of the relative canonical divisor K,y and that |.Ju|? is its norm with respect
to the metric induced by (£2,9). Thus our equation again takes the form

N M
(10 +i000)" = [Jul* [ [ loj o s - [ [ |7 0 pl 7 1,
Jj=1 r=1

and it is clear that the analogue of condition (6.1)

N M
$ % Jj=1 r=1
X

X

holds. By steps (A)—(D), we obtain a unique solution
(ONS P“*g N LOO(X) N OI’I(X N SL,D,J) N O(X)(X N g“,Dﬁ) ,
with

S0s = DIV (Ut on=0}),

Spps = SpaV ({Uloso = 0}) UBxe(n).
J

Actually, taking the union with Exc(x) will not be needed since |D| D Exc(u).
Moreover j:pi*0 = 0, where j, : p="(q) — X, q € pu(Exc(p)) is the inclusion
map. Thus
® o j, € Psh(u~'(q))

since ® € P+, N L=(X). By hypothesis 4 ~*(q) is compact and connected,
which implies that @ is constant along the fibers p~!(g). Therefore we can
define ¢ := m,® € Py N L>®°(X). The fact that ¢ is bounded implies that the
current (04 i00p)"™ does not carry any mass on complex analytic sets. This,
combined with the fact that

1 X N Exe(p) — X ~ p(Exc(p))

is a biholomorphism, implies (see Theorem 4.2) that ¢ is the unique solution
in PyNL>(X) of the complex Monge-Ampére equation (6.2) with the required
Cll, C>-regularity over the adequate subsets of X ~ u(|D|). We set finally

o = () w(DI),

(pu,D,0)EI

S = zau(U{TFO}), S:S/U(U{aj20}>.

T J
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Then the conclusion about the Py N L>®°(X)NCHH(X N S)NC®(X N\ S) reg-
ularity of the solution ¢ follows by letting (u, D, d) € I, vary. The proof of
the uniqueness of the solution ¢ in the class P BTy is the same as in step D,
modulo the use of modifications.

(F) C° regularity on X \ X,.
The proof will be complete if we show that ¢ € C°(X \ X,). This follows
from the following statement. U

Theorem 6.2 . Let X, «, v, 0, Q as in the statement of Theorem 6.1 Let
also f € Llog"™ L(X), 6 > 0 such that [, 0" = [, fQ and A > 0 be a real
number. Then there exists a unique solution ¢ € PBTy of the degenerate
complexr Monge-Ampére equation

(0 +i00p)" = fer¥Q, (6.13)

which in the case A = 0 is normalized by supy ¢ = 0. Moreover the solution
@ is in the class Py N L>®(X) N CYX N %,).

Proof. We consider a regularizing family (f;); € C>°(X), f; > 0 of f in
the Orlicz space Llog"™ L(X). (The existence of such family follows from
|[Ra-Re| page 364 or [Iw-Mal, Theorem 4.12.2, page 79.) We can assume as
usually the normalisation [, 6" = [ f;Q. By the proof of Theorem 6.1
and the L*°-estimate in corollary 2.13 we deduce the existence of a unique
solution of the degenerate complex Monge-Ampére equation

(0 +i00p;)" = f; e Q), (6.14)
with the properties ; € Py N L>®(X)NC>(X N\ X,) and
lpsll e x) < C o= C(8,7,0,9) Ls(f)? + C(7,0). (6.15)

(With supy ¢; = 0 in the case A = 0.) We deduce in particular the uniform
estimate

||fj i ||Llog“+5 L(X) < KGACHfHLlog”*‘SL(X) ) (6.16)

for all j. (See [Ra-Re| page 364 or [Iw-Mal, Theorem 4.12.2, page 79.) On the
other hand the uniform estimate (6.15) implies (see [Dem2|, chapter 1) the
existence of a L'-convergent subsequence (;); (which by abuse of notation
we denote in the same way).

Any solution of (6.14) provides a current v = 6 + id0p; > 0 satisfying
the hypothesis of Theorem 2.2. Therefore we can apply the L*-stability
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estimate of Theorem 2.2 (B) (replacing there v with any 6 € {7} smooth) to
the complex Monge-Ampére equation (6.14) thanks to the estimates (6.15)
and (6.16).

Notice that by (6.15), the L>-stability estimate of Theorem 2.2 (B) applies
even if in the case A > 0, the solutions ¢; are not necessarily normalized by
the supremum condition.

We infer that the sequence (¢;); is a Cauchy sequence in the L°°(X)-norm,
thus convergent to some function ¢ € PyNL>®(X)NCY(X \X,). This yields
weakly convergent limits

(0 +i00p)" = JLim (6 i00p;)" = i f5 I = f 0,

over X \ Y,. Moreover the fact that the global Monge-Ampére measure
(0 4 i00p)™ does not carry any mass on complex analytic sets of X implies
that ¢ is the unique (in the class PBTy) global solution of the degenerate
complex Monge-Ampére equation (6.13) with the required regularity and
with ||¢||r=(x) < C. (We remark that the uniqueness of the solution in the

case A > 0 follows from the same argument in step (D) in the proof of the
Theorem 6.1 .) O

Proof of Theorem 1.2.

Let & € a be a smooth (1,1)-form and let © > 0 be the unique smooth
volume form over X such that Ric(Q) = p— A0 and [, Q = o Ac-
cording to Theorem 6.1 we can find a unique solution ¢ € P BT, of the
degenerate complex Monge-Ampeére equation 60 = M Q. Moreover ¢ €
Py NL>*(X)NC®(X N\ 3,), and so Okp := 0, is the required unique gener-
alised Kéhler-Einstein current in the class BT 0J

Proof of Theorem 1.3.

A result of Kawamata [Kaw| claims that in our case the canonical bun-
dle is base point free, and so, for all m > 0 sufficiently big and divisible,
mK x has no base points. So we can fix m such that the pluricanonical map
fm : X — CP¥ is holomorphic. Consider also the semipositive and big Kiih-
ler form w,, := frwrg/m € 2mci(Kx ), where wpg is the Fubini-Study metric
of CPY. Therefor we can apply theorem 1.2 (C) to the class o := 27¢; (Kx)
with p = 0 and A = 1. We infer the existence and uniqueness of the Einstein

current w,, € BTlgfCl (k) With the required regularity. O

Proof of Theorem 1.4.
The uniqueness statement in the theorem 1.4 follows from the corollary 4.7.
In order to prove the existence of a Kéhler-Einstein current w, € 2mey (Kx)
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let m be a sufficiently large integer such that the base locus of m Ky coincides
with the stable base locus SB and let

fm: X NSB — X,,, := frn(X N\ SB),

be the rational map associated to the linear system H°(X,mKx). Let I\,
be the desingularization of the Zariski closure of the graph I'y, C X x X,
of fi, let m, : I, — X and p, : ['y — Xon be the natural projections. By
definition of the graph there exists a Zariski dense open set U, C I, such
that X \ SB = 7,,(U,,) and p,,, = fi, © ™y, over U,,. Consider also bases

(am])J v C HY(X, mKx),

and the induced curvature currents

1
0 < vy = T—f;leS’m = —Ric(Q,) € 271 (Kx),

m

where wps,, is the Fubini-Study metric of CPY¥»~1 and Q! is the induced
singular hermitian metric over mKx. Explicitly

1/m Nom 1/m
o= (D ]5f) = (S o) @
j=1

for arbitrary k € H°(X, Kx) and € > 0 a smooth volume form. Observe
now that the smooth form

0< 0 :=m "D, Wrsm

is big. Moreover the Zariski dense open set V,,, 1= fm N Y, satisfies X N\ X =
Tm(Vim). By Theorem 6.1 we infer the existence of a solution

D, € (P, N L) ([,,) NC®(V;),
of the degenerate complex Monge-Ampére equation
(O + 100®,,)" = ® 75 QU (6.17)

over fm The fact that 60,, = 7,7y, over U, and the fibers of 7, are connected
allows to m,,-push forward the equation (6.17). We infer a solution ¢, €
L>*(X)NC®(X \ %) of the degenerate complex Monge-Ampére equation

(Ym + 100 )" = €97 Qyy (6.18)
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over X \ SB. We observe that (6.18) can be rewritten in an equivalent way
as

(= Ric(Q) +i00¢,)" = ' Q,

over X \. SB, with

Nm
U 1= O +m ! logz |0m,j|é,1 .
j=1
Thus w,, := — Ric(Q) + 199, is the required Kihler-Einstein current. [

Proof of the conjecture of Tian 1.5
Set K; := {m*wy + twx}™ > 0 for t € (0,1). The hypothesis of Statement
(C) with assumption (C2) in Theorem 2.2 is satisfied since

-1

. (mTrwy F twx)" N WP Awy "
lim = wir . wy ™ — 2 < oo
=0 KWy ) * w

yey zer~1(y)

We deduce Osc(y) < C < +oo for all ¢ € (0,1) by Statements (C) and (A)
of Theorem 2.2. This solves in full generality the conjecture of Tian 1.5. [J

7 Appendix

Appendix A. Computation of a complex Hessian. Let 0 € H(X, F)
be a holomorphic section of a holomorphic hermitian vector bundle (F,h)
and set S, := log(|o|* + ¢€), for some ¢ > 0. We denote by {-,-} the exterior
product of F-valued forms respect to the hermitian metric h. We have

_ i{Oho, 0}

0S5, = ———
Z o2 +e

Y
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since o is a holomorphic section. We compute now the complex hessian

i09s. = — 1007}
lo|2 + ¢
. —i{58ha, O'} +z’{8ha, 8h0} . = 1
— P + i{Opo,0} NO P Te
_ {Owo,0h0} — {iCppo,0}  i{Oho,0} Ao, Oho}
B o>+ & (|o]? +¢€)?
(o +€)i{Ono,0h0} — i{Onho, 0} A{o,0h0}  {iCpno, 0}
B . (lo]? +¢)? ) lo]2 + ¢
iT(S.)

where Crj, € C°(X,AY'T% @ End(F, E)) is the curvature tensor of (E, h).
We show that the (1,1)-form ¢7°(S.) is nonnegative. In fact by using twice
the Lagrange inequality

i{Ono,0} Ao, 0ho} < |o|?i{0no, Opo}

(which is an equality in the case of line bundles), we get

i0S- NOS. > 0.

, ei{Opo,0n0} _ €i{Oho,0} N{o, 0o} £
T(S.) > > -
TS 2 Tofver 2 JoP(oP e~ JoP

Observe that the last form is smooth. Consequently, we find the inequalities

005, > £ i95. nds. _ HCEaT 0}
o] 0|2+ ¢
> i9S. A BS. — ||Canl L
- ’0_‘2 3 3 EJ’L h,w ’0_‘2+€

where w is a positive (1, 1)-form.

Appendix B. Proof of the estimate (2.25) in Lemma 2.14. We will
apply the computations of step (B) in the proof of Theorem 6.1 to the non-
degenerate complex Monge-Ampére equation

A= r
(w +i00g))" = R e AL

In this setting, the notation of setup (A) in the proof of the Theorem 6.1
reduces to 0 =1 =h =0, ©. = w and 100h > —Kyw. By replacing the term
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f with b — ¢’ _; in the expansion of the term }_ A, /5 in step (B) in the
proof of Theorem 6.1, we infer

Lejmhtejr Lo (Soj—l)n,ﬁ

0>e  » T wuy, - 1= —(y,
un,'r‘z
Thus
1 2n+maxxyx A,y
0> Clug, — il b ey (7.1)
’ 4'11/”77*1
by the estimates
Py S YIS0 <9< v < g (7.2)

This estimate implies also that at the maximum point z; we have

Una(5) =AY = B, (x5) > C4B; |
with B; := maxy B; > 0. Then estimate (2.25) in Lemma 2.14 follows from
(7.1) and the fact that

0<2n+ Awgog- < 2pekmaxx @ B; < C B;,

which is itself a consequence of (7.2). O

Appendix C. Relation with other works. As explained in the introduc-
tion the present work has its foundations in the papers |Yau|, [Be-Ta| and
especially in [Koll], [Kol2]. A few months after that the first version of the
present paper appeared on the arXiv server, P. Eyssidieux, V. Guedj, A. Ze-
riahi posted on the same server a related preprint [E-G-Z2|. In this preprint
the authors obtain a weaker version of Statement (C) given in our Theorem
2.2, which is sufficient to imply Tian’s conjecture as stated in |Ti-Ko|. The
statement in [E-G-Z2]| is weaker since it requires the (somehow stronger) as-
sumption Q/w" € Lf(X), where w > 0 is smooth, big and degenerate. For
the same reason a weaker version of Lemma 2.9 is stated in [E-G-Z1|.

At this point one should observe that the essence of the capacity method
introduced in [Koll| does not allow to produce the required L*-estimate
in the case of a big and non nef class. It is possible to see that in this
case the constants blow-up. This blow-up phenomenon has been one of the
motivations of our work, which has led us to the proof of Tian’s conjec-
ture [Ti-Ko]. Moreover fixed point methods do not produce a priori the
L>-estimate needed to construct singular Kéahler-Einstein metrics and to
investigate their regularity.
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We wish to point out that in a quite recent preprint [Di-Zh| the authors
claim (in Theorem 1.1) boundedness and continuity of the solutions of some
particular type of degenerate complex Monge-Ampére equations. No proof
of this claim seems to be provided. The authors also claim a stability result
which is not sufficient to imply the continuity of solutions in the degenerate
case. In fact a sequence of discontinuous functions converging in L*-norm
does not have necessarily a continuous limit! Moreover the same claim (The-
orem 1.1) has been stated in |Zh1|, [Zh2|, but again no proof of continuity
seems to be given (see page 12 in |Zh1| and page 146 in |Zh2|). The argu-
ments for the boundedness of the solutions in [Zh1], [Zh2] are quite informal
in the degenerate case and seem impossible to follow.

Concerning the stability of the solutions, the continuity assumption is
quite natural and often available in the applications. In fact in the applica-
tions one works with smooth solutions provided by the Aubin-Yau solution of
the Calabi conjecture with respect to variable Kéhler forms of type w+¢ca, as
in the proof of theorem 6.1. This perturbation process is one of the reasons
of trouble for the continuity of the solutions. Moreover the stability with re-
spect to the data f considered in [Di-Zh] is not essential in this context since
one has L'-compactness of quasi-plurisubharmonic functions normalized by
the supremum condition. In fact a particular case of the stability result,
namely Theorem 2.2 B, implies the continuity of the solution of the complex
Monge-Ampére equation (w + i09p)" = e* f Q, whenever w > 0 is a Kéhler
metric and f € Llog"" L. This fact has been observed also in [Kol2].

Finally we mention that a nice and simple proof of the regularization of
quasi-plurisubharmonic functions in the case of zero Lelong numbers can be
found in [BI-Ko].
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