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ABSTRACT

In this paper, we propose a fast image deconvolution al-

gorithm that combines adaptive block thresholding and

Vaguelet-Wavelet Decomposition. The approach consists

in first denoising the observed image using a wavelet-domain

Stein block thresholding, and then inverting the convolution

operator in the Fourier domain. Our main theoretical result

investigates the minimax rates over Besov smoothness spaces,

and shows that our block estimator can achieve the optimal

minimax rate, or is at least nearly-minimax in the least favor-

able situation. The resulting algorithm is simple to implement

and fast. Its computational complexity is dominated by that

of the FFT in the Fourier-domain inversion step. We report

a simulation study to support our theoretical findings. The

practical performance of our block vaguelet-wavelet decon-

volution compares very favorably to existing competitors on

a large set of test images.

Index Terms— Image deconvolution, Block threshold-

ing, Wavelets, Minimax.

1. INTRODUCTION

In this paper, we consider the two-dimensional convolution

model with Gaussian white noise ∼ N (0, σ2). We observe

the stochastic process Y (.) where

Y (dx) = T (f)(x)dx + σW (dx), (1)

x ∈ [0, 1]2, W (.) is a (non-observed) white Gaussian

noise, T (f)(x) = (f ⋆ g) (x) is the two-dimensional con-

volution operator on [0, 1]2, g is a known kernel (called

also point spread function PSF), both f and g are one-

periodic functions belonging to L2([0, 1]2). In the se-

quel, the Fourier transform of a function f will be denoted

F(f)(l) =
∫
[0,1]2

f(x)e−i2π<l,x>dx. The observation model

(1) illustrates the action of a linear time-invariant system on

an input image f when the data are corrupted with additional

noise. The deconvolution is to estimate f from Y which is a

longstanding inverse problem in image processing.

There is an extensive statistical literature on wavelet-

based deconvolution problems. For obvious space limita-

tions, we only focus on some of them. In 1D, Donoho in

[1] gave the first discussion of wavelet thresholding in lin-

ear inverse problems and introduced the Wavelet-Vaguelet

Decomposition (WVD). The WaveD algorithm of [2] is an

adaptation of WVD to the one dimensional deconvolution

problem. Abramovich and Silverman in [3] proposed another

procedure; the Vaguelet-Wavelet Decomposition (VWD).

The original estimator based on VWD is defined with stan-

dard term-by-term thresholding rules. It has been improved

by [4] using a Stein block thresholding rule. As for VWD,

the original WaveD procedure based on term-by-term thresh-

olding has been recently improved by [5] using again block

thresholding.

In 2D, the WVD approach was refined in [6] who pro-

posed a mirror wavelet basis adapted to capture the singular-

ity of the spectrum of the inverse of h. The authors in [7]

advocated a hybrid approach known as ForWarD. In [8], the

authors proposed an adaptive wavelet estimator based on two-

dimensional version of the WaveD algorithm of [2] which en-

joys good numerical performance. Deconvolution methods

based on variational or bayesian formulations with sparsity

promoting regularization over wavelet coefficients have been

recently proposed; see e.g. [9, 10, 11, 12]. These algorithms

are based on iterative thresholding.

However, so far, these wavelet deconvolution algorithms

were based on term-by-term thresholding which under-

performs for many images. The drawback of individual can-

not be circumvented by fine-tuning the regularization/threshold

parameter. All these reasons motivated us to develop an adap-

tive estimator of f based on combining two-dimensional Stein

block thresholding and VWD. The approach consists in first

denoising the observed image using a wavelet-domain block

thresholding, and then inverting the convolution operator in

the Fourier domain. It can be viewed as a multi-dimensional

version of the procedure developed by [4]. From a theoretical

point of view, taking the minimax approach over the Besov

balls B
s
p,q(M) (to be defined in Section 2) and under the L2

risk, we prove that our estimator achieves near optimal rates

of convergence. These rates are for instance better than those

attained by the two-dimensional WaveD of [8]. From a prac-

tical point of view, our algorithm is very simple to implement

and runs very fast. Its performances compare very favorably

to alternative deconvolution algorithms such as [9, 10, 7, 8]



over a large set of test images.

The paper is organized as follows. Section 2 briefly re-

views wavelets and Besov balls. Section 3 describes the block

thresholding-based deconvolution estimator. The minimax

performances of this estimator are investigated in Section 4.

Section 5 contains experimental results.

2. WAVELETS AND BESOV BALLS

We consider the tensor product wavelet basis on L2([0, 1]2).
Let us briefly recall the construction of such a basis (see, for

instance, [13]).

Consider compactly supported scaling and wavelet func-

tions, φ and ψ. Let us define the tensor-product wavelets Φ,

Ψ1, Ψ2 and Ψ3 as Φ(x) = φ(x)φ(y), Ψ1(x) = ψ(x)φ(y),
Ψ2(x) = φ(x)ψ(y) and Ψ3(x) = ψ(x)ψ(y), ∀x = (x, y) ∈
[0, 1]2. For any orientation i ∈ {1, 2, 3}, scale j ≥ 0 and spa-

tial location k = (k1, k2) ∈ Dj = {0, . . . , 2j − 1}2, we de-

fine the translated and scaled versions Φj,k(x) = 2jΦ(2jx−
k1, 2

jy − k2) and Ψj,i,k(x) = 2jΨi(2jx− k1, 2
jy − k2).

Any function f ∈ L2([0, 1]2) can be expanded into a wavelet

series

f(x) =
∑

k∈Dj0

αj0,kΦj0,k(x)+

3∑

i=1

∑

j≥j0

∑

k∈Dj

βj,i,kΨj,i,k(x),

x ∈ [0, 1]2, where αj,k =
∫
[0,1]2

f(x)Φj,k(x)dx and βj,i,k =∫
[0,1]2

f(x)Ψj,i,k(x)dx are the wavelet coefficients of f .

We say that a function f in L2([0, 1]2) belongs to the bi-

dimensional (isotropic) Besov ball B
s
p,q(M) if, and only if,∫

[0,1]2
f2(x)dx ≤M and there exists a constantM∗, depend-

ing on M , such that the wavelet coefficients of f satisfy




3∑

i=1

∑

j≥0



2j(s+1−2/p)




∑

k∈Dj

|βj,i,k|
p




1/p




q



1/q

≤M∗,

with a smoothness parameter s > 0, and the norm parameters:

0 < p ≤ ∞ and 0 < q ≤ ∞. Such Besov spaces contain both

smooth images and those with sharp edges.

3. THE DECONVOLUTION BLOCK ESTIMATOR

3.1. Smoothness of the kernel g

For the theoretical study, the following assumption on g will

be essential. It is similar to the one employed in [1, 8, 7, 4].

We suppose that there exist four constants, c > 0, C > 0,

δ1 > 1/2 and δ2 > 1/2, such that, for any l = (l1, l2) ∈

((−∞,−1] ∪ [1,∞))
2
, the Fourier transform of g satisfies

c|l1|
−δ1 |l2|

−δ2 ≤ |F(g)(l)| ≤ C|l1|
−δ1 |l2|

−δ2 . (2)

In words, this means that the Fourier transform of the blurring

PSF decays in a polynomial fashion within its bandwidth. For

example, it is easy to check that the square integrable one-

periodic function g defined by g(x, y) = h(x)h(y) where

h(x) =
∑

m∈Z
e−|x+m|, x ∈ [0, 1], satisfies (2). Indeed, for

any l ∈ Z, we have F(h)(l) = 2
(
1 + 4π2l2

)−1
. Hence,

for any l = (l1, l2) ∈ ((−∞,−1] ∪ [1,∞))
2
, F(g)(l) =

F(h)(l1)F(h)(l2) satisfies (2) with c = 4(1 + 4π2)−2, C =
(2π2)−2 and δ1 = δ2 = 2. This assumption goes by the name

of ordinary smooth case.

3.2. Vaguelet-Wavelet decomposition

Although the VWD is valid for more general operators T , we

here restrict our description to the case of convolution where

the VWD takes a simple form. Thus, under assumption (2),

any function f ∈ L2([0, 1]2) can be expanded into a vaguelet-

wavelet series

f(x) =
∑

k∈Dj0

ϑj0,kωj0,k(x) +

3∑

i=1

∑

j≥j0

∑

k∈Dj

θj,i,kwj,i,k(x),

x ∈ [0, 1]2, where ϑj0,k =
∫
[0,1]2

T (f)(x)Φj0,k(x)dx,

θj,i,k =
∫
[0,1]2

T (f)(x)Ψj,i,k(x)dx, ωj0,k(x) = T−1(Φj0,k)(x)

and wj,i,k(x) = T−1(Ψj,i,k)(x). Note that, for any h ∈
L2([0, 1]2), T−1(h)(x) =

∫
[0,1]2

(F(h)(l)/F(g)(l)) ei2π<l,x>dl.

3.3. Gaussian sequence model

The first step to estimate f consists in estimating the unknown

wavelet coefficients of T (f): (ϑj0,k)k and (θj,i,k)j,i,k from

the observation Y in (1). It follows from (1) that

yj,i,k = θj,i,k + σej,i,k, (3)

where yj,i,k =
∫
[0,1]2

Ψj,i,k(x)Y (dx) and ej,i,k is the noise:

ej,i,k =
∫
[0,1]2

Ψj,i,k(x)W (dx). Thanks to the orthonormal-

ity of the wavelet basis, the random variables (ej,i,k)j,i,k are

i.i.d. ∼ N (0, 1). Therefore, yj,i,k is a natural estimator for

θj,i,k.

3.4. Two-dimensional block thresholding estimator

Let the observed image be defined on a n× n discrete grid of

equally-spaced pixels
{
Y (i/n, j/n); (i, j) ∈ {1, . . . , n}2

}
.

Let L = ⌊(2 log(n))1/2⌋ be the block length, j0 = ⌊log2 L⌋
is the coarsest decomposition scale, and J∗ = ⌊(1/(δ1 +
δ2)) log2(n)⌋. Consider the sequence model (3). For any

k ∈ Dj0 , we set ϑ̂j0,k =
∫
[0,1]2

Φj0,k(x)dY (x). For any

j ∈ {j0, . . . , J∗}, let Aj =
{
1, . . . , ⌊2jL−1⌋

}2
be the set

indexing the blocks at scale j, and for each block index

K = (K1,K2) ∈ Aj , Uj,K = {k ∈ Dj ; (K1 − 1)L ≤ k1 ≤
K1L − 1, (K2 − 1)L ≤ k2 ≤ K2L− 1} is the set indexing

the positions of coefficients within the Kth block Uj,K.

For any k ∈ Uj,K, K ∈ Aj and i ∈ {1, 2, 3}, we estimate

the wavelet coefficients θj,i,k of T (f) from yj,i,k in (3) as



• θ̂j,i,k = yj,i,k if j ∈ {0, . . . , j0 − 1};

• θ̂j,i,k = yj,i,k

(
1 −

λ∗σ
2

1
L2

∑
k∈Uj,K

y2
j,i,k

)

+

if j ∈

{j0, . . . , J∗};

• θ̂j,i,k = 0 if j > J∗.

where (a)+ = max(a, 0), and λ∗ is the root of x− log x = 3,

i.e. λ∗ = 4.50524 . . .. To estimate f , we reconstruct it from

these block-thresholded coefficients as

f̂(x) =
∑

k∈Dj0

ϑ̂j0,kωj0,k(x)

+
3∑

i=1

J∗∑

j=j0

∑

K∈Aj

∑

k∈Uj,K

θ̂j,i,kwj,i,k(x), (4)

x ∈ [0, 1]2. It is easy to see that the latter vaguelet recon-

struction formula is also equivalent to first applying an inverse

wavelet transform to (ϑ̂j0,k, θ̂j,i,k) to get the estimate T̂ (f),
and then inverting the convolution operator in the Fourier do-

main.

3.5. Deconvolution algorithm

The deconvolution algorithm can be summarized as follows:

Parameters: The observed blurred and noisy image Y , the

PSF g.

Initialization:

• Block size L = ⌊(2 log(n))1/2⌋, coarsest decomposi-

tion scale j0 = ⌊log2 L⌋, threshold λ∗ = 4.50524.

Block Stein thresholding:

• Wavelet transform: compute ϑ̂j0,k =
∫
[0,1]2

Φj0,k(x)dY (x)

and yj,i,k =
∫
[0,1]2

Ψj,i,k(x)dY (x),∀j ≥ j0.

• Keep ϑ̂j0,k intact, and threshold yj,i,k by blocks Uj,K

to get θ̂j,i,k = yj,i,k

(
1 −

λ∗σ
2

1
L2

∑
k∈Uj,K

y2
j,i,k

)

+

.

• Inverse wavelet transform of (ϑ̂j0,k, θ̂j,i,k) to get T̂ (f).

Output: Get deconvolved image f̂ from T̂ (f) by inverting

the convolution operator in the Fourier domain.

It is worth noting that in practice, the last step of this al-

gorithm can be modified to handle ill-conditioned convolution

kernels (beyond the ordinary smooth case (2) required for the-

oretical reasons) by regularizing the inverse of the kernel in

the Fourier domain, e.g. using Wiener deconvolution.

4. OPTIMALITY RESULT

Theorem 1 below investigates the minimax rates of conver-

gence attained by f̂ over B
s
p,q(M) under the L2 risk.

Theorem 1 Consider the model (1). Let f̂ be the estimator

defined by (4). Then there exists a constant C > 0 such that

sup
f∈Bs

p,q(M)

E

(∫

[0,1]2

(
f̂(x) − f(x)

)2

dx

)
≤ Cvσ,

where

vσ =

{
σ2s/(s+δ1+δ2+1), for 2 ≤ p,

(σ log(n))2s/(s+δ1+δ2+1), for p < 2, sp > c,
(5)

c = 2 ∨ (2 − p)(δ1 + δ2 + 1).

Using lower bound techniques, one can prove that vσ is

optimal except in the cases p < 2 where there is an extra log-

arithmic term. It can also be shown that vσ is better than the

one achieved by the conventional term-by-term thresholding

estimators (WaveD [8], etc). The main difference is for the

case p ≥ 2 where there is no extra logarithmic term.

5. EXPERIMENTAL RESULTS

The proposed block VWD deconvolution method has been

compared to three deconvolution methods from the literature:

ForWarD [7], wavelet-domain iterative thresholding (IT) with

100 iterations [9, 10], and WaveD [8]. For fair comparison,

all methods used the Symmlet 6 wavelet except WaveD that

uses Meyer wavelets, and the regularization parameter of it-

erative thresholding was tweaked manually to reach its best

performance. For reliable comparison, we applied the decon-

volution algorithms to six standard grayscale images of size

512×512 (Barbara, Lenna, Boat) and 256×256 (Cameraman,

House, Peppers). The blurred images were corrupted by a

zero-mean white Gaussian noise such that the blurred signal-

to-noise ratio (BSNR = 10 log10(‖f ⋆g‖∞/σ
2)) ranged from

10 to 40 dB. At each combination of test image and noise

level, ten noisy versions were generated and each deconvo-

lution algorithm was applied to each noisy realization. The

output SNR improvement (ISNR) was averaged over the ten

replications. The results are shown in Table 1 where the PSF

was g(i, j) = e−(|i|0.5+|j|0.5) (similar results were obtained

with other PSFs not shown due to space limitation). Each ta-

ble corresponds to the ISNR as a function of BSNR for each

image. These results clearly show that our approach com-

pares very favorably to ForWarD and iterative thresholding.

It is even able to outperform them particularly at low BSNR,

while having substantially less computational cost as reported

in Table 2. These quantitative results are confirmed by visual

inspection of Fig. 1 which displays the result on Barbara for

BSNR=30dB. Again, owing to block thresholding, our VWD

deconvolution is able to recover many details (e.g. textured

areas) much better that the other methods.



Barbara 512 × 512 Lenna 512 × 512 Boat 512 × 512
BSNR (dB) 10 15 20 25 30 40

Ours 2.93 2.56 2.90 3.66 5.68 11.11

ForWarD [7] 0.00 2.00 2.91 3.58 4.92 10.24

IT [9, 10] 2.87 2.34 2.84 3.26 4.33 7.69

WaveD [8] 2.33 2.32 2.50 2.91 3.41 6.82

10 15 20 25 30 40

5.08 5.13 6.15 7.81 8.63 12.82

0.77 4.25 6.16 7.46 8.76 12.18

4.82 4.67 6.32 7.62 9.00 12.66

3.99 4.64 5.59 6.99 8.47 10.51

10 15 20 25 30 40

3.69 3.87 5.08 6.71 7.66 11.98

1.00 3.70 5.17 6.38 7.75 11.42

3.30 3.31 5.26 6.52 8.32 11.89

2.89 3.16 4.06 5.36 6.67 8.77

Cameraman 256 × 256 House 256 × 256 Peppers 256 × 256
Ours 3.47 3.53 4.79 5.89 7.84 11.40

ForWarD [7] 0.05 2.15 4.32 6.29 8.16 12.40

IT [9, 10] 3.27 3.18 4.77 5.86 7.86 11.75

WaveD [8] 3.08 2.93 3.31 4.40 5.60 7.47

5.28 5.76 7.54 9.13 10.20 14.55

1.27 4.63 7.76 9.75 11.06 13.84

5.21 5.67 7.73 9.25 10.74 14.58

4.50 4.91 5.41 6.31 8.07 9.81

4.73 5.79 7.83 9.04 11.04 14.41

1.97 5.04 7.66 9.67 11.51 15.46

3.69 4.28 7.07 8.81 11.01 15.01

3.33 3.54 4.05 5.07 6.03 10.69

Table 1. Comparison of average ISNR in dB over ten realizations for various images.

6. CONCLUSION

In this paper, a wavelet-based deconvolution algorithm was

presented. It combines the benefits of block-thresholding with

vaguelet-wavelet decomposition. Its theoretical and practi-

cal performances were established. Although we focused on

convolution, the approach can handle other operators T (f).
A possible perspective of the present work that we are cur-

rently investigating is the theoretical properties of the proce-

dure when other transforms than wavelets (curvelets for in-

stance) are used.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Deconvolution of Barbara 512 × 512. (a) original, (b) blurred

and noisy BSNR=30dB, (c) our method ISNR=5.66dB, (d) ForWarD [7]

ISNR=4.9dB, (e) iterative thresholding [9, 10] ISNR=4.33dB, (f) WaveD [8]

ISNR=3.14dB.

Algorithm Ours ForWarD [7] IT [9, 10] WaveD [8]

512× 512 0.62 5.2 119 4.08

256× 256 0.15 1.05 29 0.76

Table 2. Average execution times (seconds) over then replications for

512 × 512 and 256 × 256 images. The algorithms were run under Matlab

with an 2.53GHz Intel Core Duo CPU, 4Gb RAM.
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