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HYPERGEOMETRIC FUNCTIONS AND SINGULAR

SOLUTIONS OF WAVE EQUATIONS WITH

LORENTZ-INVARIANT POTENTIAL

ALI BENTRAD AND SATYANAD KICHENASSAMY

Abstract. New solutions of equation utt−∆u+Au/(r2−t2) = 0,
in series of hypergeometric functions (HGF), are constructed. A
sharpened estimate on hypergeometric functions is derived to prove
the convergence of the series.
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1. Introduction

1.1. Main results and motivation. Hypergeometric solutions of lin-
ear PDEs have been studied almost since the beginning of the analytic
study of PDEs, because they have built-in singularities and therefore
permit a global representation of solutions near regular and singular
points, unlike the representation in power series. Among the first ex-
amples are the Euler-Poisson-Darboux and Tricomi equations, see [10,
book iv, chap. iii] and [11]. These special equations have been studied
from different perspectives in [4, 12].
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However, recent results show that many other PDEs also possess
hypergeometric solutions. In particular, degenerate equations which
fall beyond the scope of general existence results have been found to
have solutions expressible in terms of HGF or series of HGF, see e.g. [21,
22, 23, 7, 5, 6]. The resulting information on singularities of solutions
does not seem to be accessible via other methods.

These results open up the possibility that hypergeometric solutions
are representative of the singular behavior of solutions of PDEs of
rather general form; in a special case, this has been demonstrated in
[7].

The present work gives another example of this phenomenon, for the
equation:

(1) Lu := utt −∆u+
Au

r2 − t2
= 0, for 0 < t < r < R,

where u = u(x, t), r = |x|, R is a positive constant, x ∈ R
N , and

N ≥ 1. Note that the expression r2 − t2 is Lorentz-invariant. The
constant A is assumed to be real and less than 1

4
(N − 1)2, to make

the various parameters defined below real; the expressions we obtain
admit of complex extension. The solutions are considered outside the
light-cone only for the same reason. The constant 1

4
(N − 1)2 is the

Hardy constant in dimension N + 1.
The technical difficulties are twofold: (a) recognizing that the prob-

lem can be reduced to a hypergeometric equation (HGE) and (b) esti-
mating the resulting solution.

Theorems 5 and 6 perform the reduction, and give solutions of the
form:

(2) u(x, t) = rlφ(
x

r
)f(

t2

r2
),

where l is an integer and φ is a spherical harmonic: −∆SN−1φ = λφ,
where ∆SN−1 is the Laplace–Beltrami operator on the (N − 1)-sphere.
When N is odd and φ is constant, f may be expressed in terms of
elementary functions.

The estimate is proved in Lemmas 2 and 3, and gives the convergence
of a series of HGFs representing the solution of the Cauchy problem
with general analytic data proportional to φ(x/r) (Theorem 8). The
solutions are valid for 0 < t < r < R− t, which is the domain of depen-
dence predicted by finite speed of propagation. The usual estimates on
the HGF, see Lemma 4, are not sufficient to obtain this result: they
would only give convergence for r ≤ R/2 (Theorem 9).

Remark 1. Solutions of inhomogeneous HGE with right-hand side zm−1

are also known [3]; they would enable one to obtain exact solutions to
equation (1) with suitable right-hand sides. Recall that hypergeometric
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solutions of the inhomogeneous wave equation with a constant right-
hand side arise as a step in the construction of interacting waves for
nonlinear equations with piecewise linear nonlinearities [15].

Many of the HGF in this paper may be expressed in terms of Le-
gendre functions P µ

ν [2, formula 15.4.25]. However, general results on
Legendre functions do not seem to give the estimates required for the
convergence proof.

Replacing t by it in our solutions gives solutions of a Schrödinger
equation with inverse-square, or Hardy potential, away from the origin
in R

N+1:

(3) −utt −∆u+
Au

r2 + t2
= 0,

This equation arises by linearization about the “very singular solution”
of −∆u = gup [8, 25]. Eigenfunctions of the Schrödinger equation with
inverse-square potential on a bounded domain require Bessel functions
[9], as in the case of zero potential. We do not consider the wave
equation with potential A/r2, which is not Lorentz-invariant.

Similarly, the potential A/(r2− t2) arises naturally by linearizing the
homogeneous or “self-similar” solution [13, 1]

(4) U = (r2 − t2)−1/(p−1) for r > t,

of the nonlinear wave equation

(5) utt −∆u = gup,

p 6= 1, in N space dimensions, where p 6= (N + 1)/(N − 1), and

g =
2

p− 1
(N − 1−

2

p− 1
).

This solution is real for r > t. Linearization leads to (1) with

A = −gp =
2p

p− 1
(

2

p− 1
−N + 1).

The constant A is positive if and only if 0 < p < (N +1)/(N − 1). For
p < 1, the self-similar solution U remains bounded on the light-cone;
it is a polynomial if p = 1− 1/k, with k = 2, 3,. . .

Homogeneous solutions such as U have weak singularities for all time;
they differ from solutions with blowup, for which Cauchy data in the
remote past are not themselves singular—such solutions may be con-
structed systematically by Fuchsian Reduction [17, 16, 18]. The present
paper shows that certain problems with characteristic singularities are
also amenable to a reduction to the HGE, which is the prototype of a
Fuchsian equation.
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1.2. Organization of the paper. Background information on the
hypergeometric equation is collected in Section 2, to make the paper
self-contained. For further details, see e. g. [2, 14, 19, 20]. The com-
parison Lemmas 2 and 3 are perhaps new. Lemma 4 is a very simple
form of estimates in [19, p. 283]. For details on the recent results
on estimates for the HGF motivated by results found in Ramanujan’s
notebooks, see [19].

Section 3 constructs exact solutions for the Cauchy problem with ini-
tial data of special form (Theorem 6). In Section 4, these solutions are
superposed to obtain more general solutions with controlled behavior
(Theorems 8 and 9).

2. Estimates of hypergeometric functions

2.1. Definitions. The hypergeometric function (HGF) F (a, b ; c ; z)
is defined for c 6∈ −N by analytic continuation of the sum of the hyper-
geometric series

∞
∑

n=0

(a)n(b)n
(c)n(1)n

zn,

where (a)n = a(a + 1) · · · (a + n − 1) for n ≥ 1, and (a)0 = 1. It is
symmetric in a and b. It solves the hypergeometric equation (HGE)
with parameters (a, b, c):

z(1 − z)w′′ + [c− (a+ b+ 1)z]w′ − abw = 0.

After multiplication by z, and letting D = z d/dz, the HGE may be
written

D(D + c− 1)w − z(D + a)(D + b)w = 0.

A second solution of the HGE is

(6) z1−cF (a− c+ 1, b− c+ 1 ; 2− c ; z).

The only singularities of the HGE are 0, 1 and infinity, and they are
regular.

2.2. A simple reduction. Any linear Fuchsian equation with three
regular singularities is reducible to the HGE by a change of unknown
of the form w̃(z) = zα(1 − z)βw(z). We record a special case of this
result, for later use.

Lemma 1. Consider a solution f(z) of

D(D + c− 1)f − z(D + a)(D + b)f +
Bzf

1− z
= 0,

where B is a constant. If

(7) β(β + a+ b− c) +B = 0,

and f(z) = (1− z)βg(z), then

D(D + c− 1)f − z(D + a + β)(D + b+ β)f = 0.
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Proof. The result may be proved either by appealing to general prop-
erties on the hypergeometric equation or in a self-contained manner.
We give both arguments.

First, let β be one of the roots of equation (7). The equation solved
by f has three regular singular points, at 0, 1, and infinity. The indices
at 0, 1 and infinity are respectively (0, 1− c), (β, β ′), and (a, b), where
β and β ′ are the two roots of equation (7). It follows that g solves
an equation with the same singular points, which are regular, and for
which the indices at 0, 1 and infinity are respectively (0, 1− c), (0, β ′−
β), and (a + β, b + β). Since zero is an index both at 0 and at 1, this
equation must be equivalent to the hypergeometric equation for the
function F (a+ β, b+ β; c; z). This proves the result.

The self-contained proof runs as follows. Let y = z/(1 − z), so that
Dy = y + y2. We find

Df = (1− z)β(D − βy)g;

D2f = (1− z)β(D2 − βy(2D + 1) + β(β − 1)y2)g.

Substituting into the equation for f , and dividing through by (1− z)β ,
we find, after some algebra,

D(D + c− 1)g − z[(D + a)(D + b) + β(2D + 1)]g +Qg = 0,

where

Q = β(β − 1)y2(1− z)− β(c− 1)y + βyz(a+ b) + By

= yzβ(β + a+ b− 1) + [B − β(c− 1)]y

= β(β + a+ b− 1)y(z − 1) + [B + β(β + a + b− c)]y.

Since y(z − 1) = −z, we find

D(D+c−1)g−z(D+a+β)(D+b+β)g+[B+β(β+a+b−c)]yg = 0,

from which the desired result follows. �

2.3. Majorants for hypergeometric functions. If the parameters
a, b and c are real and positive, the coefficients of F (a, b ; c ; z) increase
as a and b are increased, and c is decreased. This makes it possible to
compare different hypergeometric functions. Three results of this type
are given next. Term-by-term domination of power series is expressed
by the symbol ≪; thus,

∑

n≥0

anz
n ≪

∑

n≥0

bnz
n

if |an| ≤ bn for every n ≥ 0.

Lemma 2. If c ≥ 1
2
and 0 ≤ a ≤ b− 1

2
, then

(8) F (a, b ; c ; z2) ≪
1

2

[

(1 + z)1−2b + (1− z)1−2b
]

.
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If c ≥ 1
2
and 0 ≤ a ≤ b+ 1

2
,

(9) F (a, b ; c ; z2) ≪
1

2

[

(1 + z)−2b + (1− z)−2b
]

.

Proof. Consider first the case a ≤ b − 1
2
. The assumptions on the

parameters ensure that F (a, b ; c ; z2) ≪ F (b− 1
2
, b ; 1

2
; z2). Now

F (b−
1

2
, b ;

1

2
; z2) =

∑

n≥0

(b− 1
2
)b · · · (b+ n− 1)

1
2
· 1 · · · (n− 1

2
)n

z2n

=
∑

n≥0

(2b− 1)2n
(1)2n

z2n.

This expression is equal to the right-hand side of (8), thanks to the
identity

(10) (1− z)−d =
∑

n≥0

(d)n
(1)n

zn.

If a ≤ b + 1
2
, we observe that F (a, b ; c ; z2) ≪ F (b, b + 1

2
; 1
2
; z2), to

which the previous considerations apply, with b replaced by b+ 1
2
. �

Lemma 3. If c ≥ 3
2
and 0 ≤ a ≤ b− 1

2
, then

(11) F (a, b ; c ; z2) ≪
1

4z(1− b)

[

(1 + z)2−2b − (1− z)2−2b
]

.

If b > 0, c ≥ 3
2
, and 0 ≤ a ≤ b+ 1

2
,

(12) F (a, b ; c ; z2) ≪
1

2z(1 − 2b)

[

(1 + z)1−2b − (1− z)1−2b
]

.

Proof. Assume first 0 ≤ a ≤ b − 1
2
. We now have F (a, b ; c ; z2) ≪

F (b− 1
2
, b ; 3

2
; z2). Since (3

2
)n = 2(1

2
)n(

3
2
+ n− 1) = (1

2
)n(2n+ 1),

zF (b−
1

2
, b ;

3

2
; z2) =

∑

n≥0

(b− 1
2
)n(b)n

(1
2
)n(1)n

z2n+1

2n + 1
.

This series represents the anti-derivative of F (b − 1
2
, b ; 1

2
; z2) that

vanishes for z = 0. The first statement follows; the second is reduced
to the first as before. �

We conclude with an estimate in terms of powers of (1− z).

Lemma 4. If a ≥ b > c > 0, and d = a+ b− c,

(13) F (a, b ; c ; z) ≪
Γ(c)Γ(d)

Γ(a)Γ(b)
(1− z)−d.

Proof. Since a+ b = c+ d, we have, for n ≥ 1,

(a+ n)(b+ n)

(c+ n)(d+ n)
= 1 +

ab− cd

(c+ n)(d+ n)
.
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Also, ab− cd = (c− a)(c− b) > 0. Therefore,

(a)n(b)n
(c)n(d)n

increases with n.

Let Γ0 =
Γ(c)Γ(d)
Γ(a)Γ(b)

. Since, for any x > 0,

Γ(x) = lim
n→∞

nx−1 (1)n
(x)n

,

(a)n(b)n
(c)n(d)n

tends to Γ0 as n → ∞. Therefore,

(a)n(b)n
(c)n(1)n

≤ Γ0
(d)n
(1)n

.

The result follows, thanks to (10). �

3. Hypergeometric solutions

We now seek solutions of equation (1) of the form (2). We first
obtain solutions of Lu = 0, and then select those with Cauchy data
(rlφλ(x/r), 0), or (0, rlφλ(x/r)), where φλ is an eigenfunction of the
Laplace-Beltrami operator on the sphere: −∆SN−1φλ = λφλ, with λ
constant and nonnegative.

3.1. A family of solutions of Lu = 0. Let u = φλ(x/r)v(r, t). We
obtain

utt −∆u =

(

vtt − vrr −
N − 1

r
vr +

λ

r2
v

)

φλ.

Next, let z = t2/r2 and v(r, t) = rl(1− z)βg(z). We show that one may
choose β so that g solves a hypergeometric equation:

Theorem 5. Assume that

(14) βl :=
1

2

∣

∣

∣

∣

l +
N − 1

2

∣

∣

∣

∣

{

1 +

√

1−
A

(l + N−1
2

)2

}

.

Let

(15) a± = −
1

2
(l − 1 +

N

2
)±

1

2

√

(
N

2
− 1)2 + λ.

Then, equation Lu = 0, with

u = rl(1− z)βg(z)φλ(x/r),

is equivalent to the HGE for g, with parameters

(al, bl, c) := (a+ + βl, a− + βl, 1/2).
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Remark 2. The parameters al and bl depend on l, N , λ, A, but we
single out the dependence in l since we will let it tend to infinity. They
are real if and only if

(l +
N − 1

2
)2 ≥ A.

In that case, al ≥ bl.

Proof. Let v(r, t) = rlf(z). Recall that D = z d
dz
. We shall first express

Lu in terms of f , and then apply Lemma 1.
The derivatives of v with respect to t and x are as follows.

rvt = 2trl−1f ′,

r2vtt =
4

z
rlD(D −

1

2
)f,

rvr = rl(l − 2D)f,

r2vrr = rl(2D − l)(2D − l + 1)f,

r2
n− 1

r
vr = −(N − 1)rl(2D − l)f.

It follows that

r2(utt −∆u) = φλ
4rl

z

{

D(D −
1

2
)− z(D −

l

2
)(D −

l

2
+

1

2
)

+ z
N − 1

2
(D −

l

2
) +

1

4
λz

}

f

=
4rl

z

{

D(D −
1

2
)− z[(D −

l

2
)(D −

l +N

2
+ 1)−

λ

4
]

}

f.

Thanks to the choice of a± in equation (15), we have

(D −
l

2
)(D −

l +N

2
+ 1)−

λ

4

= D2 − (l − 1 +
N

2
)D +

l

2
(
l +N

2
− 1)−

λ

4
= (D + a+)(D + a−).

On the other hand,

r2
Av

r2 − t2
=

rl

z

Azf

1− z
.

Adding this to the above expression for r2(utt −∆u), we obtain

z

4
r2−lLu = φλ

[

D(D −
1

2
)− z(D + a+)(D + a−) +

Az

4(1− z)

]

f.

Using Lemma 1 with (a, b, c) = (a+, a−,
1
2
), we conlude that, if βl is

given by (14), and

f(z) = (1− z)βlg(z),
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then

z

4
r2−lLu = (1− z)βlφλ

[

D(D −
1

2
)− z(D + a+ + βl)(D + a− + βl)

]

g.

This completes the proof. �

3.2. Solutions with special Cauchy data.

Theorem 6. Let

Fl,λ := rl(1−
t2

r2
)βlF

(

al, bl ;
1

2
;
t2

r2

)

and

Gl,λ := trl(1−
t2

r2
)βl+1F

(

al+1 +
1

2
, bl+1 +

1

2
;
3

2
;
t2

r2

)

.

The functions Fl,λφλ(
x
r
) and Gl,λφλ(

x
r
) both solve Lu = 0. For t = 0,

Fl,λ = ∂tGl,λ = rl and ∂tFl,λ = Gl,λ = 0.

Proof. We now know that, if F is a HGF with parameters (al, bl,
1
2
),

then

rlφλ(
x

r
)(1−

t2

r2
)βlF

solves Lu = 0. Taking F = F
(

al, bl ;
1
2
; t2

r2

)

, the solution Fl,λ results.
Taking for F the second solution (6) of the HGE and replacing l by
l + 1 leads, after rearranging, to the solution Gl,λ. The behavior for
t = 0 is checked by inspection. �

Remark 3. If λ = 0 and N is odd, al−bl is a half-integer, and the HGF
may be expressed in terms of elementary functions. When al − bl =

1
2
,

we use (10). For al − bl >
1
2
, we use the identity

(c− a)nz
c−a−1(1− z)a+b−c−nF (a− n, b ; c ; z)

=
dn

dzn

{

zc−a+n−1(1− z)a+b−cF (a, b ; c ; z)

}

.

3.3. Remarks on inhomogeneous problems. Because the hyper-
geometric equation with polynomial right-hand side may also be solved
in closed form [3], the method of §3.1 readily yields solutions with right-
hand sides that are products of (1 − z)βl by polynomials in r and z.
We record next a different method that produces simple solutions of
inhomogeneous problems of special form. As before, all computations
are performed for r > t.

Theorem 7. Assume that A, A′ and γ are given constants. If h(x, t)
is homogeneous of degree γ and satisfies

htt −∆h +
A′h

r2 − t2
= 0,

then H := c(r2 − t2)αh solves

LH = (r2 − t2)α−1h
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provided that

c[A− A′ − 2α(2γ + 2α +N − 1)] = 1.

Proof. Let � denote the wave operator. The assumptions imply that
Lh = (A−A′)h/(r2 − t2). Since �(r2 − t2)α = −2α(2α+N − 1)(r2 −
t2)α−1,

LH = c(r2 − t2)αLh− 4cα(r2 − t2)α−1(tht + rhr)

− 2α(2α+N − 1)(r2 − t2)α−1ch.

Since h is homogeneous of degree γ,

tht + rhr = γh.

Therefore, LH = (r2 − t2)α−1h if and only if

c[A− A′ − 2α(2γ + 2α +N − 1)] = 1.

This completes the proof �

4. Series solution of the Cauchy problem

Let
v0(r) =

∑

l≥0

alr
l; v1(r) =

∑

l≥0

blr
l

be two series with radius of convergence R > 0. Equation (1) has a
unique solution such that uλ = φλv0, ∂tuλ = φλv1 for t = 0; it is equal
to

(16) φλ

∑

l≥0

alFl,λ(r, t) + blGl,λ(r, t).

Summation over λ yields the general solution. We focus here on esti-
mations of uλ. The subscript λ will be suppressed in the following.

Theorem 8. If A < 1
4
(N − 1)2, the series (16) is real and converges

for t < r < R− t.

Remark 4. Since we are dealing with a wave equation with speed one,
the solution of the Cauchy problem with data for 0 < r < R is uniquely
determined on the domain of influence t < r < R − t. The domain of
convergence in the theorem is therefore optimal.

Proof. The assumption on A ensures that β, hence al and bl, are real.
Also, al and bl are positive if l is large. Since λ is an eigenvalue of the
Laplacian on the sphere, is either 0 or ≥ 1; therefore, al− bl ≥

1
2
unless

N = 2 and λ = 0, in which case al = bl. In all cases, we may use
Lemmas 2 and 3 if l is large.

If al − bl ≥
1
2
, we appeal to (8) to estimate Fl,λ by

rl
(

r2 − t2

r2

)βl

×
1

2

[

(

1 +
t

r

)1−2bl

+

(

1−
t

r

)1−2bl
]

.
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Now, βl = l + η1, bl =
1
2
l + η2, where η1 and η2 remain bounded as

l → ∞. Rearranging, and using the inequality (r− t)l(r+ t)−l ≤ 1, we
obtain

2|Fl,λ(r, t)| ≤ rl
(

r2 − t2

r2

)l+η1
[

(

r + t

r

)−l+1−2η2

+

(

r − t

r

)−l+1−2η2
]

≤ (r + t)lr2η2−2η1−1(r2 − t2)η1
[

(r + t)−2η2 + (r − t)−2η2
]

.

Therefore, lim supl→∞ |Fl,λ|
1/l ≤ r + t. It follows that

∑

l≥0 alFl,λ con-
verges for r + t < R. The other series which makes up the solution is
handled similarly. If al ≤ bl +

1
2
, we appeal to (12) instead of (8). �

We conclude with a different estimate, which gives better results near
the light-cone, but is weaker than the previous one for r > R/2.

Theorem 9. As l → +∞, Fl,λ = O(2l(1 − t2/r2)βl+η3), where η3 =
O(1/l).

Proof. We estimate Fl,λ using Lemma 4. Since al+ bl−
1
2
= O(1/l), we

conclude that

|Fl,λ(r, t)| ≤ C ′(1− t2/r2)βl+η3 ,

where C ′ = Γ(1
2
)Γ(al + bl −

1
2
)/Γ(al)Γ(bl). Stirling’s formula gives

C ′ = O(2l). The result follows. �
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[10] G. Darboux, Leçons sur la Théorie Générale des Surfaces, 2nd edn., Gauthier-
Villars, Paris, 1915.

[11] S. Delache and J. Leray, Calcul de la solution élémentaire de l’opérateur
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