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COMONOTONIC MEASURES OF MULTIVARIATE RISKS

IVAR EKELAND† ALFRED GALICHON§ MARC HENRY‡

Abstract. We propose a multivariate extension of a well-known characterization by

S. Kusuoka of regular and coherent risk measures as maximal correlation functionals.

This involves an extension of the notion of comonotonicity to random vectors through

generalized quantile functions. Moreover, we propose to replace the current law invari-

ance, subadditivity and comonotonicity axioms by an equivalent property we call strong

coherence and that we argue has more natural economic interpretation. Finally, we refor-

mulate the computation of regular and coherent risk measures as an optimal transportation

problem, for which we provide an algorithm and implementation.
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Introduction

The notion of coherent risk measure was proposed by Artzner, Delbaen, Eber and Heath

in [1] as a set of axioms to be verified by a real-valued measure of the riskiness of an exposure.

In addition to monotonicity, positive homogeneity and translation invariance, the proposed

coherency axioms include subadditivity, which is loosely associated with hedging. Given

this interpretation, it is natural to require the risk measure to be additive on the subsets

of risky exposures that are comonotonic, as this situation corresponds to the worse-case

scenario for the correlation of the risks. In [14], Kusuoka showed the remarkable result that

law invariant coherent risk measures that are also comonotonic additive are characterized

by the integral of the quantile function with respect to a positive measure, a family that

includes Expected shortfall (also known as Conditional value at risk, or Expected tail loss).

The main drawback of this formulation is that it does not properly handle the case when

the numéraires in which the risky payoffs are labeled are not perfect substitutes. This

situation is commonly met in Finance. In a two-country economy with floating exchange

rates, the fact that claims on payoffs in different currencies are not perfectly substitutable

is known as the Siegel paradox ; in the study of the term structure of interest rates, the

fact that various maturities are (not) perfect substitutes is called the (failure of the) pure

expectation hypothesis. The technical difficulty impeding a generalization to the case of a

multivariate risk measure is that the traditional definition of comonotonicity relies on the

order in R, and does not lend itself to a desirable generalization to portfolios of risk that

are non perfectly substituable, as was achieved by Jouini, Meddeb and Touzi in [12] for

coherent risk measures, and Rüschendorf in [16] for law invariant convex risk measures.

The present work circumvents these drawbacks to generalize Kusuoka’s result to mul-

tivariate risk portfolios, and proposes a simplifying reformulation of the axioms with firm

decision theoretic foundations. First, we propose an alternative axiom called strong coher-

ence, which, under the additional assumption of convexity, is equivalent to the axioms in

[14] and which, unlike the latter, extends to the multivariate setting. We then make use of

a variational characterization of Kusuoka’s axioms and representation in order to generalize

his results to the multivariate case. We show that multivariate risk measures that satisfy
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convexity and strong coherence have the same representation as in [14], which we discuss

further below.

The work is organized as follows. The first section motivates a new notion called strong

coherence which is shown to be intimately related to existing risk measures axioms, yet

appears to be a more natural axiom. The second section shows how the concept of comono-

tonic regular risk measures can be extended to the case of multivariate risks, by introducing

a proper generalization of the notion of comonotonicity and giving a representation theo-

rem. The third section discusses in depth the relation with Optimal Transportation Theory,

and shows important examples of actual computations.

Notations and conventions. Let (Ω,F ,P) be a probability space, which is standard in

the terminology of [13], that is the space is nonatomic and L2(Ω,F ,P) is separable. Let

X : Ω → Rd be a random vector; we denote the distribution law of X by LX , hence

LX = X#P, where X#P := PX−1 denotes the push-forward of probability measure P by

X. The equidistribution class of X is the set of random vectors with distribution with

respect to P equal to LX (reference to P will be implicit unless stated otherwise). As

explained in the appendix, essentially one element in the equidistribution class of X has

the property of being the gradient of a convex function; this random element is called the

(generalized) quantile function associated with the distribution LX and denoted by QX (in

dimension 1, this is the quantile function of distribution LX in the usual sense). We denote

by M(L,L′) the set of probability measures on Rd × Rd with marginals L and L′. We call

L2
d(P) (abbreviated in L2

d) the equivalence class of F-measurable functions Ω → Rd with

a finite second moment modulo P negligible events. We call P2(Rd) the set of probability

measures of elements of L2
d. Finally, for two elements X,Y of L2

d, we write X ∼ Y to

indicate equality in distribution, that is LX = LY . We also write X ∼ LX . Defining

c.l.s.c.(Rd) as the class of convex lower semi-continuous functions on Rd, and the Legendre-

Fenchel conjugate of V ∈ c.l.s.c.(Rd) as V ∗(x) = supy∈Rd [x · y − V (y)]. In all that follows,

“·” will denote the standard scalar product in Rd. Md(R) denotes the set of d×d matrices,

and Od(R) the orthogonal group in dimension d. For M ∈Md(R), MT denotes the matrix

transpose of M .
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1. Strong coherence: a natural axiomatic characterization

In this section we advocate a very simple axiomatic setting, called strong coherence

which will be shown to be equivalent to the more classical axiomatic framework described

in the next section. We argue that this axiom has more intuitive appeal than the classical

(equivalent) axioms.

1.1. Motivation: Structure Neutrality. The regulating instances of the banking indus-

try are confronted with the problem of imposing rules to the banks to determine the amount

of regulatory capital they should budget to cover their risky exposure. A notable example

of such a rule is the Value-at-Risk, imposed by the Basel II committee, but a number of

competing rules have been proposed. We call X ∈ L2
d the vector of random losses1 of a

given bank. Note that contrary to a convention often adopted in the literature, we chose to

account positively for net losses: X is a vector of effective losses. Also note that we have

supposed that the risk is multivariate, which means that there are multiple numéraires,

which, depending on the nature of the problem, can be several assets, several currencies,

several term maturities, or several non-monetary risks. An important desirable feature of

the rule proposed by the regulator is to avoid regulatory arbitrage. Here, a regulatory arbi-

trage would be possible if the firms could split their risk into several different subsidiaries

Si, i = 1, ..., N with independent legal existence, so that the the shareholder’s economic

risk remained the same X = X1 + ... + XN , but such that the amount of the shareholder’s

capital which is required to be budgeted to cover their risk were strictly inferior after the

split, namely such that %(X) > %(X1) + ... + %(XN ). To avoid this, we shall impose the

requirement of subadditivity, that is

%(X1 + ... + XN ) ≤ %(X1) + ... + %(XN )

for all possible dependent risk exposures (X1, ..., XN ) ∈ (L2
d)

N . We now argue that the

regulator is only interested in the amount and the intensity of the risk, not in its operational

nature: the capital budgeted should be the same for a contingent loss of 1% of the total

1In this paper we have chosen to restrict ourselves to the case where risks are in L2(Rd) for notational

convenience, but all results in the paper carry without difficulty over to the case where the risks are in in

Lp(Rd) for p ∈ (1, +∞).
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capital at risk no matter how the loss occurred (whether on the foreign exchange market, the

stock market, the credit market, etc.) This translates mathematically into the requirement

that the regulatory capital to budget should only depend on the distribution of the risk X,

that is, the rule should satisfy the law invariance property:

Definition 1. A functional % : L2 → R is called law-invariant if %(X) = %(Y ) when X ∼ Y ,

where ∼ denotes equality in distribution.

By combining together subadditivity and law invariance, we get the natural requirement

for the capital budgeting rule, that %(X̃1 + ... + X̃N ) ≤ %(X1) + ... + %(XN ) for all X,X̃ in

(L2
d)

N such that Xi ∼ X̃i for all i = 1, ..., N . However, in order to prevent giving a premium

to conglomerates, and to avoid imposing an overconservative rule to the banks, one is led

to impose the inequality to be sharp and pose the structure neutrality axiom

%(X1) + ... + %(XN ) = sup
X̃i∼Xi

%(X̃1 + ... + X̃N )

This requirement is notably failed by the Value-at-Risk, which leads to the fact that the

Value-at-Risk as a capital budgeting rule is not neutral to the structure of the firm. This

point is explained in detail in [11], where an explicit construction is provided. We introduce

the axiom of strong coherence to be satisfied by a measure of the riskiness of a portfolio of

risk exposures (potential losses) X ∈ L2
d.

Definition 2 (Strong coherence). A functional % : L2
d → R is called a strongly coherent

risk measure if (i) it is convex l.s.c, and (ii) it is structure neutral: for all X, Y ∈ L2
d,

%(X) + %(Y ) = sup
{

%(X̃ + Ỹ ) : X̃ ∼ X; Ỹ ∼ Y
}

.

Note that structure neutrality implies in particular law invariance, which can be seen

by taking Y = 0 in the definition above. Also, structure neutrality implies that the risk

measure is everywhere finite, hence strong coherence implies continuity.

The convexity axiom can be justified by a risk aversion principle: in general, one should

prefer to diversify risk. The structure neutrality axiom, being defined as a supremum over

all correlation structures, can be interpreted as a provision against worst-case scenarios,
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and may be seen as unduly conservative. However, this axiom is no more conservative than

the set of axioms defining a regular coherent risk measure as we shall see.

We show that strongly coherent risk measures are represented by maximal correlation

functionals with respect to a given random vector or scenario.

1.2. Characterization of strongly coherent risk measures. We are now going to show

that the strong coherence property essentially characterizes a class of risk measures known

as maximal correlation risk measures, which we shall first recall the definition of.

1.2.1. Maximal correlation measures. We first introduce maximum correlation risk measures

(in the terminology of [16]), to generalize the variational formulation for coherent regular

risk measures given in (2.1) below.

Definition 3 (Maximal correlation measures). A functional %µ : L2
d → R is called a maxi-

mal correlation risk measure with respect to a baseline distribution µ if for all X ∈ L2
d,

%µ(X) := sup
{
E[X · Ũ ] : Ũ ∼ µ

}
.

Remark 1 (Geometric interpretation). The maximum correlation measure with respect to

measure µ is the support function of the equidistribution class of µ.

Example 1 (Multivariate Expected Shortfall). An interesting example of risk measure

within the class of maximal correlation risk measures is expected shortfall, also known as

conditional value at risk. This risk measure can be generalized to the multivariate setting by

calling α-expected shortfall of a risk exposure X the maximal correlation measure with base-

line risk U a Bernoulli random vector, with distribution LU determined by U = (1, . . . , 1)T

with probability α and 0 with probability 1 − α. In such case, one can easily check that

if LX is absolutely continuous, then defining W (x) = max(
∑d

i=1 xi − c, 0), with c given

by requirement Pr(
∑d

i=1 xi ≥ c) = α, it follows that W is convex and ∇W exists LX

almost everywhere and pushes LX to LU as in proposition 7; therefore the maximal corre-

lation measure is given in this case by E
[(∑d

i=1 Xi

)
1{∑d

i=1 Xi ≥ c}
]
. In other words, the
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maximum correlation measure in this example is the (univariate) α-expected shortfall for

Y =
∑d

i=1 Xi.

Example 2. With a more complex baseline risk, other important examples where explicit

or numerical computation is possible include the cases when 1) the baseline risk and the risk

to be measured are both Gaussian, or 2) the baseline risk is uniform on [0, 1]d and the risk to

be measured has a discrete distribution. Both these cases are treated in detail in Section 4.

Let us first recall the following lemma, which emphasizes the symmetry between the roles

played by the equivalence class of X and U in the definition above.

Lemma 1. For any choice of U ∼ µ, one has

%µ(X) = sup
{
E[X̃ · U ] : X̃ ∼ X

}
,

and U is called the baseline risk associated with %µ. It follows that %µ is law invariant.

Proof. See (2.12) in [16]. ¤

1.2.2. Characterization. We now turn to our first main result, which is a characterization

of strongly coherent risk measures. Let us begin by another characterization of strongly

coherent risk measures. We shall use Lemma A.4 from [13], which we quote here for the

reader’s convenience. Denote by A the set of bimeasurable bijections σ from (Ω,A,P) into

itself which preserve the probability, so that σ#P = P. Recall that (Ω,F ,P) was assumed to

be a probability space which does not have atoms, and such that L2 (Ω,F ,P) is separable.

Lemma 2. Let C be a norm closed subset of L2 (Ω,F ,P). Then the following are equivalent:

(1) C is law invariant, that is X ∈ C and X ∼ Y implies that Y ∈ C

(2) C is transformation invariant, that is for any X ∈ C and any σ ∈ A, we have

X ◦ σ ∈ C

As an immediate consequence, we have another characterization of coherent risk mea-

sures:
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Proposition 1. A convex continuous functional % : L2
d → R is a strongly coherent risk

measure if and only if we have:

%(X) + %(Y ) = sup {%(X ◦ σ + Y ◦ τ) : σ, τ ∈ A} . (1.1)

Proof. Clearly X ◦ σ ∼ X and Y ◦ τ ∼ Y . Hence:

sup {%(X ◦ σ + Y ◦ τ) : σ, τ ∈ A} ≤ sup
{

%(X̃ + Ỹ ) : X̃ ∼ X, Ỹ ∼ Y
}

(1.2)

To prove the converse, take any ε > 0 and some X ′ ∼ X and Y ′ ∼ Y such that:

%(X ′ + Y ′) ≥ sup
{

%(X̃ + Ỹ ) : X̃ ∼ X, Ỹ ∼ Y
}
− ε

Consider the set {X ◦ σ : σ ∈ A} and denote by C its closure in L2. It is obviously trans-

formation invariant. By the preceding Lemma, it is also law invariant. Since X ∈ C

and X ′ ∼ X, we must have X ′ ∈ C, meaning that there exists a sequence σn ∈ A with

‖X ◦ σn −X ′‖ −→ 0. Similarly, there must exist a sequence τn ∈ A with ‖Y ◦ τn − Y ′‖ −→
0. Since % is continuous, it follows that, for n large enough, we have:

sup {%(X ◦ σ + Y ◦ τ) : σ, τ ∈ A} ≥ % (X ◦ σn + Y ◦ τn) ≥ %(X ′ + Y ′)− ε

≥ sup
{

%(X̃ + Ỹ ) : X̃ ∼ X, Ỹ ∼ Y
}
− 2ε

and since this holds for any ε > 0, the converse of (1.2) holds ¤

We can now state our main result:

Theorem 1. Let (Ω,F ,P) be a probability space which does not have atoms, and such

that L2 (Ω,F ,P) is separable. Let % be a functional defined on L2
d. Then the following

propositions are equivalent:

(i): % is a strongly coherent risk measure;

(ii): % is a maximal correlation risk measure

Proof. We first show (i)⇒(ii). As the proof is quite long, we will punctuate it with several

lemmas.
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By the preceding proposition and law invariance, it is enough to prove that:

% (X) + % (Y ) = sup
σ∈A

% (X + Y ◦ σ) (1.3)

Call %∗ the Legendre transform of % in L2
d.

Lemma 3. %∗ is law-invariant.

Proof. For σ ∈ A, one has %∗ (X∗ ◦ σ) = supX∈L2
d
{〈 X∗ ◦ σ,X〉 − % (X)}, so %∗ (X∗ ◦ σ) =

supX∈L2
d

{〈 X∗, X ◦ σ−1 〉 − % (X)
}

= supX∈L2
d

{〈 X∗, X ◦ σ−1 〉 − %
(
X ◦ σ−1

)}
= %∗ (X∗) .

¤

Lemma 4. If the functions fi, i ∈ I, are l.s.c. convex functions, then
(

sup
i

fi

)∗
=

(
inf
i

f∗i

)∗∗

Proof. For a given l.s.c. convex function f , f ≤ (supi fi)
∗ is equivalent to f∗ ≥ supi fi,

hence to f ≥ fi for all i, hence to f∗ ≤ f∗i for all i, hence f ≤ infi f∗i , hence, as f is l.s.c.

convex, to f ≤ (infi f∗i )∗∗, QED. ¤

Applying lemma 4 to the structure neutrality equation, one has

%∗ (X∗) + %∗ (Y ∗) =

(
inf
σ∈A

sup
X,Y

{〈 X,X∗ 〉+ 〈 Y, Y ∗ 〉 − % (X + Y ◦ σ)}
)∗∗

=
(

inf
σ∈A

sup
Y
{〈 Y, Y ∗ 〉+ %∗ (X∗)− 〈 Y ◦ σ,X∗ 〉}

)∗∗

=
(

%∗ (X∗) + inf
σ∈A

sup
Y
〈 Y, Y ∗ −X∗ ◦ σ−1 〉

)∗∗
.

The term in supY (...) on the right handside is 0 if Y ∗ = X∗◦σ−1 and +∞ otherwise. Hence

the previous formula becomes

%∗ (X∗) + %∗ (Y ∗) = ϕ∗∗ (X∗, Y ∗) (1.4)

where we have defined

ϕ (X∗, Y ∗) =
%∗ (X∗) if X∗ ∼ Y ∗

+∞ otherwise.
(1.5)
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Now suppose ϕ (X∗, Y ∗) < ∞, hence that %∗ (X∗) = %∗ (Y ∗) < ∞ and X∗ ∼ Y ∗. As

ϕ ≥ ϕ∗∗, it follows that %∗ (X∗) ≥ %∗ (X∗) + %∗ (Y ∗) hence %∗ (Y ∗) = %∗ (X∗) ≤ 0, and

ϕ (X∗, Y ∗) ≤ 0.

Suppose ϕ (X∗, Y ∗) < ∞ and ϕ (X∗, Y ∗) − ϕ∗∗ (X∗, Y ∗) < ε. Replacing in (1.4), one

finds that

0 ≤ −%∗ (X∗) = −%∗ (Y ∗) ≤ ε

Lemma 5. ϕ∗∗ is valued into {0,+∞}.

Proof. As ϕ∗ = ϕ∗∗∗, one has

ϕ∗ (X, Y ) = sup
(X∗,Y ∗)

{〈 X, X∗ 〉+ 〈 Y, Y ∗ 〉 − ϕ∗∗ (X∗, Y ∗)}

= sup
(X∗,Y ∗)

{〈 X, X∗ 〉+ 〈 Y, Y ∗ 〉 − ϕ (X∗, Y ∗)} .

Taking a maximizing sequence (X∗
n, Y ∗

n ) in the latter expression, one has necessarily ϕ (X∗
n, Y ∗

n )−
ϕ∗∗ (X∗

n, Y ∗
n ) −→ 0. From the previous remark, %∗ (X∗

n) = %∗ (Y ∗
n ) −→ 0, hence ϕ (X∗

n, Y ∗
n ) −→

0. Therefore

ϕ∗ (X, Y ) = sup
(X∗,Y ∗): ϕ(X∗,Y ∗)=0

{〈 X, X∗ 〉+ 〈 Y, Y ∗ 〉}

which is clearly positively homogeneous of degree 1. Its Legendre transform ϕ∗∗ can there-

fore only take values 0 and +∞, QED. ¤

Therefore, there is a closed convex set K such that ϕ∗∗ is the indicator function of K,

that is

ϕ∗∗ (X∗, Y ∗) =
0 if (X∗, Y ∗) ∈ K

+∞ otherwise
(1.6)

and condition (1.4) implies that

%∗ (X∗) + %∗ (Y ∗) =
0 if (X∗, Y ∗) ∈ K

+∞ otherwise
(1.7)

Note that if %∗ (X∗) < ∞, then ϕ (X∗, Y ∗) = %∗ (X∗) for all Y ∗ ∼ X∗, and then

ϕ∗∗ (X∗, Y ∗) ≤ ϕ (X∗, Y ∗) < ∞. This implies that ϕ∗∗ (X∗, Y ∗) = 0, hence that %∗ (X∗) =
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0. Therefore %∗ is also an indicator function: there exists a closed convex set C such that

%∗ (X∗) =
0 if X∗ ∈ C

+∞ otherwise
(1.8)

By comparison of (1.7) and (1.8), one finds that

K = C × C

By duality, (1.8) becomes

% (X) = sup
X∗∈C

〈 X∗, X 〉 (1.9)

C = {X∗ | %∗ (X∗) = 0}

Condition (1.5) then implies that ϕ is an indicator function: there exists a set K0 (in

general, neither a closed nor a convex set) such that

ϕ (X∗, Y ∗) =
0 if (X∗, Y ∗) ∈ K0

+∞ otherwise

By comparison with formulas (1.5) and (1.6), one finds that

(X∗, Y ∗) ∈ K0 ⇐⇒ X∗ ∈ C, Y ∗ ∈ C and X∗ ∼ Y ∗

K = co K0

Lemma 6. Denote E (C) the set of strongly exposed points of C, and K0 the closure of K0

for the norm topology in L2 × L2. Then

E (C)× E (C) ⊂ K0

Proof. Recall (cf. [8]) that X is called strongly exposed in C if there is a continuous linear

form X∗ such that any maximizing sequence for X∗ in C converges strongly to X :

Xn ∈ C

〈 X∗, Xn 〉 −→ supC〈 X∗, X 〉



 =⇒ ‖Xn −X‖ −→ 0
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For ε > 0, denoting TC (X∗, ε) the set of Y ∈ C such that supC〈X∗, Y 〉−〈X∗, Y 〉 ≤ ε; then

X is strongly exposed by X∗ if and only if supY ∈K〈 X∗, Y 〉 = 〈 X∗, X 〉 and δ [TC (X∗, ε)]

tends to 0 when ε −→ 0, where δ denotes the diameter,

δ [TC (X∗, ε)] := sup {‖X1 −X2‖ | X1 ∈ TC (X∗, ε) , X2 ∈ TC (X∗, ε)} .

Going back to the problem, it is clear that if X and Y are strongly exposed in C, then

(X, Y ) is strongly exposed in C × C:

E (C)× E (C) ⊂ E (C × C) = E (K)

We claim that every strongly exposed point of K necessarily belongs to K0 (the closure is

still the norm closure). Indeed, suppose there exists (X1, X2) ∈ E (K) such that (X1, X2) /∈
K0. Then there exists ε > 0 such that K0 ∩ B (X1, X2, ε) = ∅, where B (X1, X2, ε) is the

ball of center (X1, X2) and radius ε > 0. As (X1, X2) is strongly exposed, there exists

a linear form (X∗
1 , X∗

2 ) strongly exposing it, and one can choose η > 0 small enough to

ensure δ [TK (X∗
1 , X∗

2 , η)] < ε. Since TK (X∗
1 , X∗

2 , η) contains (X1, X2), one concludes that

K0 ∩ TK (X∗
1 , X∗

2 , η) = ∅, thus

K0 ⊂ {(Y1, Y2) ∈ K | 〈 X∗
1 , Y1 〉+ 〈 X∗

2 , Y2 〉 ≥ 〈 X∗
1 , X1 〉+ 〈 X∗

2 , X2 〉+ η}

But the right-hand side is a closed convex set, so by taking the closed convex hull of the

left-hand side, one gets

co (K0) ⊂ {(Y1, Y2) ∈ K | 〈 X∗
1 , Y1 〉+ 〈 X∗

2 , Y2 〉 ≥ 〈 X∗
1 , X1 〉+ 〈 X∗

2 , X2 〉+ η}

and taking (Y1, Y2) = (X1, X2) ∈ K leads to a contradiction.

Therefore E (K) ⊂ K0, and one has E (C)× E (C) ⊂ E (K) ⊂ K0, QED. ¤

By a celebrated theorem of Bishop and Phelps (see again [8]), there is a dense subset

Ω of L2 (in fact, a dense Gδ) such that, for every X∗ ∈ Ω, the maximum of 〈 X∗, X 〉 for

X ∈ C is attained at a strongly exposed point. Going back to (1.9), take some X ∈ Ω, and

let X∗ ∈ C be such that

% (X) = 〈 X∗, X 〉
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By the Bishop-Phelps theorem, X∗ ∈ E (C). Now take another Y ∈ Ω, and another

point Y ∗ ∈ E (C) such that % (Y ) = 〈Y ∗, Y 〉. One has (X∗, Y ∗) ∈ E (C) × E (C), and

it results from the previous lemma that (X∗, Y ∗) ∈ K0. This implies the existence of

a sequence (X∗
n, Y ∗

n ) ∈ K0 such that (X∗
n, Y ∗

n ) converges to (X∗, Y ∗) in norm. By the

definition of K0, one should have X∗
n ∼ Y ∗

n , that is Y ∗
n = X∗

n ◦ σn for σn ∈ A. Hence,

% (Y ) = 〈 Y ∗, Y 〉 = limn〈 Y ∗
n , Y 〉 = limn〈 X∗

n ◦ σn, Y 〉 = limn〈X∗
n, Y ◦ σ−1

n 〉. But by the

Cauchy-Schwartz inequality,

∣∣〈 X∗
n, Y ◦ σ−1

n 〉 − 〈 X∗, Y ◦ σ−1
n 〉∣∣ ≤ ∥∥Y ◦ σ−1

n

∥∥
2
‖X∗

n −X∗‖2 ,

which tends to 0 as
∥∥Y ◦ σ−1

n

∥∥
2

= ‖Y ‖2. Therefore % (Y ) = limn〈 X∗
n, Y ◦ σ−1

n 〉 =

limn〈 X∗, Y ◦ σ−1
n 〉 ≤ supỸ∼Y 〈 X∗, Ỹ 〉. But one has also % (Y ) = supY ∗∈C〈 Y ∗, Y 〉 ≥

supσ∈A〈 X∗ ◦ σ, Y 〉 = supσ∈A〈 X∗, Y ◦ σ 〉 ≥ supỸ∼Y 〈 X∗, Ỹ 〉, therefore

% (Y ) = sup
Ỹ∼Y

〈 X∗, Ỹ 〉 ∀Y ∈ Ω

The functions ρ (Y ) and:

sup
Ỹ∼Y

〈 X∗, Ỹ 〉 = sup
X̃∼Y

〈 X̃∗, Y 〉

are both convex, finite and lsc on L2, and hence continuous. Since they coincide on a dense

subset, they coincide everywhere. This proves the direct implication (i)⇒(ii) of the theorem.

We now turn to the converse. Let %µ be a maximal correlation risk measure with respect

to baseline measure µ. Then %µ is clearly convex. Take X and Y in L2
d. By proposition 7

in the Appendix, there exists two convex functions φ1 and φ2 such that for U ∼ µ, one has

∇φ1(U) ∼ X and ∇φ2(U) ∼ Y , and %µ(X) = E[U ·∇φ1(U)], %µ(Y ) = E[U ·∇φ2(U)]. Thus

%µ(X)+%µ(Y ) = E[U ·(∇φ1(U)+∇φ2(U))], but for all Ũ ∼ U , E[U ·(∇φ1(U)+∇φ2(U))] ≥
E[Ũ ·(∇φ1(U)+∇φ2(U))], hence %µ(X)+%µ(Y ) = sup

{
%(X̃ + Ỹ ) : X̃ ∼ X, Ỹ ∼ Y

}
. Thus

%µ is strongly coherent, which completes the proof of Theorem 1. ¤

2. A multivariate generalization of Kusuoka’s theorem

In this section we recall the existing axiomatization leading to the representation result of

Kusuoka in [14], where risk measures for univariate risks that are subadditive, law invariant
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and comonotonic additive are represented by maximal correlation functionals. We then pro-

pose a way to generalize these axioms to the case where risk measures deal with multivariate

risks, by showing how to generalize the only problematic axiom, namely comonotonic ad-

ditivity. We then give a representation result which extends Kusuoka’s to the multivariate

case.

2.1. Coherent and regular risk measures. To describe the existing axiomatic frame-

work, we first recall the following definitions, from [1], and existing results.

Definition 4 (Coherent; Convex risk measures). A functional % : L2 → R is called a

coherent risk measure if it satisfies the following four properties (MON), (TI), (CO) and

(PH) as follows:

• Monotonicity (MON): X ≤ Y ⇒ %(X) ≤ %(Y )

• Translation invariance (TI): %(X + m) = %(X) + m%(1)

• Convexity (CO): %(λX + (1− λ)Y ) ≤ λ%(X) + (1− λ)%(Y ) for all λ ∈ [0, 1].

• Positive homogeneity (PH): %(λX) = λ%(X) for all λ ≥ 0.

A functional which only satisfies (MON), (TI) and (CO) is called a convex risk measure.

Even though these definitions are mostly standard, note that since we have considered

risk measures associated with random vectors of potential losses, the definition of mono-

tonicity takes an non decreasing form, unlike the definition in most of the literature on

coherent risk measures. Also note (as we have a multivariate generalization in mind) that,

let alone monotonicity (which we shall discuss separately below), all these axioms admit a

straightforward generalization to the case of risks X ∈ L2
d, with the exact same expressions.

A representation of coherent risk measures was given in the original work of [1], whereas

representation of convex risk measures was proposed in [9]. These were extended to the

multivariate setting by Jouini, Meddeb and Touzi in [12] who characterize coherent accep-

tance sets, i.e. sets in Rn that cancel the risk associated with an Rd valued random vector,

and consider aggregation issues, and Burgert and Rüschendorf in [4] who characterize con-

vex real valued measures for multivariate risks, and Rüschendorf in [16], who characterizes

those of the latter that are law invariant, and proposes maximal correlation risk measures
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as an example. The idea of introducing a variational characterization of comonotonic ad-

ditivity as well as the generalization of Kusuoka’s axiomatic approach it allows constitute

the essential novelties of this section.

Regularity. In the case of univariate risks, comonotonic additivity is used in addition

to law invariance to define regular risk measures (see [9], sect. 4.7):

Definition 5 (Comonotonicity; Regularity). Two random variables X and Y are comono-

tonic if there exits a random variable U and two increasing functions φ and ψ such that

X = φ(U) and Y = ψ(U) hold almost surely.

A functional % : L2 → R is called a regular risk measure if it satisfies:

• Law invariance (LI), and

• Comonotonic additivity (CA): %(X+Y ) = %(X)+%(Y ) when X, Y are comonotonic.

Informally speaking, law invariance suggests that the risk measure is a functional of the

quantile function F−1
X (t) = inf{x : FX(x) ≥ t} associated with the distribution. Positive

homogeneity and comonotonic additivity together suggest that this representation is linear

%(X) :=
∫ 1
0 φ(t)F−1

X (t)dt. Finally, subadditivity suggests that the weights φ(t) are increasing

with respect to t. Precisely Kusuoka has shown the following in [14], Theorem 7:

Proposition 2 (Kusuoka). A coherent risk measure % is regular if and only if for some

increasing and nonnegative function φ on [0, 1], we have

%(X) :=
∫ 1

0
φ(t)F−1

X (t)dt,

where FX denotes the cumulative distribution functions of the random variable X, and its

generalized inverse F−1
X (t) = inf{x : FX(x) ≥ t} is the associated quantile function.

Variational characterization. By the Hardy-Littlewood-Pólya inequality shown in

lemma 11 of [14], we can write a variational expression for coherent regular risk measures:

∫ 1

0
φ(t)F−1

X (t)dt = max
{
E[XŨ ] : Ũ ∼ µ

}
. (2.1)
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where µ if the probability distribution of φ, and the maximum is taken over the equidis-

tribution class of µ. As we shall see, this variational characterization will be key when

generalizing to the multivariate setting.

2.2. A multivariate notion of comonotonicity. We now turn to an extension of the

concept of comonotonicity. Note first that a valid definition of comonotonicity in dimension

one is the following: two random variables X and Y are comonotonic if and only if one

can construct almost surely Y = TY (U) and X = TX(U) for some third random variable

U , and TX , TY non decreasing functions. In other words, X and Y are comonotonic

whenever there is a random variable U such that E[UX] = max
{
E[XŨ ] : Ũ ∼ U

}
and

E[UY ] = max
{
E[Y Ũ ] : Ũ ∼ U

}
. This variational characterization will be the basis for our

generalized notion of comonotonicity.

To simplify our exposition in the remainder of the paper, we shall make the following

assumption:

Assumption. In the remainder of the paper, we shall assume that the baseline distribu-

tion of risk µ is absolutely continuous with respect to Lebesgue measure.

Definition 6 (µ-comonotonicity). Let µ be a probability measure on Rd that is absolutely

continuous. Two random vectors X and Y in L2
d are called µ-comonotonic if for some

random vector U ∼ µ, we have

U ∈ argmaxŨ

{
E[X · Ũ ], Ũ ∼ µ

}
, and

U ∈ argmaxŨ

{
E[Y · Ũ ], Ũ ∼ µ

}
.

Note that the geometric interpretation of this definition is that X and Y are µ-comonotonic

if and only if they have the same L2 projection on the equidistribution class of µ. We next

give a few useful lemmas. We start with a result securing the existence of a µ-comonotonic

pair with given marginals.
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Lemma 7. Let µ be a probability measure on Rd that is absolutely continuous. Then given

two probability distributions P and Q in P2(Rd), there exists a pair (X,Y ) in (L2
d)

2 such

that X ∼ P , Y ∼ Q, and X and Y are µ-comonotonic.

Proof. By Brenier’s theorem (Proposition 7 in the Appendix), there exists U ∼ µ and two

convex functions φ1 and φ2 such that X = ∇φ1(U) ∼ P and Y = ∇φ2(U) ∼ Q. Then X

and Y are µ-comonotonic. ¤

We then provide a useful characterization of µ-comonotonicity.

Lemma 8. Let µ be probability measure on Rd that is absolutely continuous. Then two

random vectors X and Y in L2
d are µ-comonotonic if

%µ(X + Y ) = %µ(X) + %µ(Y )

where %µ(X) := sup
{
E[X · Ũ ] : Ũ ∼ µ

}
is the maximal correlation risk measure, defined

in Definition 3 above.

Proof. There exists U ∼ µ such that %µ(X +Y ) = E[(X +Y ) ·U ]. We have E[(X +Y ) ·U ] =

E[X · U ] + E[Y · U ], and both inequalities E[X · U ] ≤ %µ(X) and E[Y · U ] ≤ %µ(Y ) hold,

thus E[X ·U ] +E[Y ·U ] ≤ %µ(X) + %µ(Y ) with equality if and only both inequalities above

are actually equalities, which is the equivalence needed. ¤

We next show that in dimension 1, the notion of µ-comonotonicity is equivalent to the

classical notion of comonotonicity, regardless of the choice of µ (provided it is absolutely

continuous).

Lemma 9. In dimension d = 1, let µ be probability measure on Rd that is absolutely

continuous. Then X and Y are µ-comonotonic if and only if they are comonotonic in

the classical sense, that is, if and only if there exists a random variable Z and two non

decreasing functions f and g such that X = f(Z) and Y = g(Z) holds almost surely.

Proof. Suppose that X and Y are µ-comonotonic. Then there is a U ∼ µ such that U ∈
argmaxŨ

{
E[XŨ ], Ũ ∼ µ

}
and U ∈ argmaxŨ

{
E[Y Ũ ], Ũ ∼ µ

}
. This implies in particular

the existence of two increasing functions f and g such that X = f(U) and Y = g(U) holds
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almost surely. Hence X and Y are comonotonic in the classical sense. Conversely, suppose

that X and Y are comonotonic in the classical sense. There exists a random variable Z

and two increasing functions f and g such that X = f(Z) and Y = g(Z) holds almost

surely. Let FZ be the cumulative distribution function of Z, and Fµ the one associated

with µ. Defining U = F−1
µ (FZ(Z)), one has U ∼ µ, and denoting ϕ = f ◦ F−1

µ ◦ FZ and

φ = g ◦F−1
µ ◦FZ , one has X = ϕ(U) and Y = φ(U). Thus X and Y are µ-comonotonic. ¤

In dimension one, one recovers the classical notion of comonotonicity regardless of the

choice of µ as shown in the previous lemma. However, in dimension greater than one, the

comonotonicity relation crucially depends on the baseline distribution µ, unlike in dimension

one. The following lemma makes this precise.

Lemma 10. Let µ and ν be probability measures on Rd that is absolutely continuous. Then:

- In dimension d = 1, µ-comonotonicity always implies ν-comonotonicity.

- In dimension d ≥ 2, µ-comonotonicity implies ν-comonotonicity if and only if ν = T#µ

for some location-scale transform T (u) = λu+u0 where λ > 0 and u0 ∈ Rd. In other words,

comonotonicity is an invariant of the location-scale family transformation classes.

Proof. In dimension one, all the notions of µ-comonotonicity coincide with the classical

notion of comonotonicity, as remarked above. Let d ≥ 2, and suppose that µ-comonotonicity

implies ν-comonotonicity. Consider U ∼ µ, and let φ be the convex function (defined up to

an additive constant) such that ∇φ#ν = µ. Then there exists a random vector V ∼ ν such

that U = ∇φ(V ) almost surely. Consider some arbitrary symmetric positive endomorphism

Σ acting on Rd. Then the map u → Σ(u) is the gradient of a convex function (namely the

associated quadratic form u → 1
2 〈u,Σ(u)〉), therefore the random vectors U and Σ(U) are

µ-comonotonic. By hypothesis, it follows that U and Σ(U) are also ν-comonotonic, hence

there exists a convex function ζ such that Σ(U) = ∇ζ(V ) holds almost surely. Therefore,

the equality Σ◦∇φ(v) = ∇ζ(v) holds for almost every v. By differentiating twice (which can

be done almost everywhere, by Alexandrov’s theorem), we get that Σ ◦D2φ(v) = D2ζ(v)

hence Σ◦D2φ is almost everywhere a symmetric endomorphism. This being true regardless

of the choice of Σ, it follows that the matrix of D2φ in any orthonormal basis of Rd is

almost everywhere a diagonal matrix, hence there exists a real valued map λ(u) such that
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D2φ(u) = λ(u)u, with λ(u) > 0. But this implies ∂ui∂ujφ(u) = 0 for i 6= j and ∂2
ui

φ(u) =

λ(u) for all i. Therefore, ∂ujλ(u) = ∂uj∂
2
ui

φ(u) = 0. Hence λ(u) = λ a strictly positive

constant. It follows that ∇φ(u) = λu + u0, QED. The converse holds trivially. ¤

Remark 2. A close inspection of the proof of this lemma reveals that the essential reason of

the discrepancy between dimension one and higher is the simple fact that the general linear

matrix group Gld(R) is Abelian if and only if d = 1.

We can now define a concept which generalizes comonotonic additivity to the multidi-

mensional setting.

Definition 7 ( µ-comonotonic additivity; µ-regularity). A functional % : L2
d → R is called

a µ-regular risk measure if it satisfies:

• Law invariance (LI), and

• µ-comonotonic additivity (µ-CA): %(X + Y ) = %(X) + %(Y ) when X, Y are µ-

comonotonic.

2.3. A multivariate extension of Kusuoka’s theorem. We now show that maximal

correlation is equivalent to the combination of subadditivity, law invariance, µ-comonotonic

additivity and positive homogeneity. Further, the probability measure µ involved in the

definition of comonotonic additivity shall be precisely related to the one which is taken as

a baseline scenario of the maximal correlation measure.

We have seen above (lemma 8) that maximal correlation risk measures defined with

respect to a distribution µ are µ-comonotonic additive. When the measure is also law

invariant and coherent, we shall see that the converse holds true, and this constitutes our

second main result, which is a multivariate extension of Kusuoka’s theorem. Note that while

Kusuoka’s theorem was stated using the axioms of subadditivity and positive homogeneity

in addition to others, we only need the weaker axiom of convexity in addition to the same

others.

Theorem 2. Let % be a l.s.c. risk measure on L2
d with the convexity (CO), law invariance

(LI), and µ-comonotonic additivity (µ-CA). Then % is a maximal correlation risk mea-

sure, namely there exists ν ∈ P2(Rd) such that % = %ν , where %ν is a maximal correlation
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measure with respect to baseline scenario ν, and µ and ν are related by a location-scale

transformation, that is T (u) = λu + u0 where λ > 0 and u0 ∈ Rd.

Proof. Combining the convexity and law invariance axioms imply %(X̃ + Ỹ ) ≤ %(X)+ %(Y )

for all X,Y, X̃, Ỹ in L2
d, thus %(X) + %(Y ) ≥ sup

{
%(X̃ + Ỹ ) : X̃ ∼ X; Ỹ ∼ Y

}
. But by

Lemma 7, there exists a µ-comonotonic pair (X, Y ). By µ-comonotonic additivity, one has

%(X) + %(Y ) = %(X + Y ), therefore the previous inequality is actually an equality, and

%(X) + %(Y ) = sup
{

%(X̃ + Ỹ ) : X̃ ∼ X; Ỹ ∼ Y
}

therefore % is strongly coherent. By Theorem 1, it results that there exists ν ∈ P2(Rd) such

that % = %ν . But by the comonotonic additivity of % and lemma 8, any two vectors X and

Y which are µ-comonotonic are also ν-comonotonic. By lemma 10, this implies that there

is a location-scale map T such that ν = T#µ, so that the result follows. ¤

Because it allows a natural generalization of well-known univariate results, this theorem

makes a strong point in arguing that our notion of comonotonic additivity is the right one

when considering multivariate risks.

2.4. Extending monotonicity. We extend the concept of monotonicity with reference to

a partial order ¹ in the following way:

Definition 8 (¹-monotonicity). A functional % : L2 → R is said to be ¹-monotone if it

satisfies:

(¹-MON): X ¹ Y ⇒ %(X) ≤ %(Y ).

We have the following result:

Proposition 3. Let %µ be the maximal correlation risk measure with respect to baseline

distribution µ. Let (Supp µ)0 be the polar cone of the support of µ. For a cone C ⊂ Rd,

denote ¹C the partial order in Rd induced by C, namely x ¹C y if and only if y − x ∈ C.

Then %µ is monotone with respect to ¹C if and only if C ⊂ −(Supp µ)0.

Proof. If X and U are µ-comonotonic, then D%X(Z) = E[U · Z], but the property that

E[U · Z] ≥ 0 for all Z almost surely included in C is equivalent to C ⊂ −(Supp µ)0. ¤
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Note that in dimension d = 1, with C = R+, one recovers the usual notion of mono-

tonicity. In higher dimension, we get in particular that if µ is supported in Rd
+, then %µ

is monotone with respect to the strong order of Rd. Finally, note also that the concept

of monotonicity proposed here is a somewhat weak one, as it deals only with almost sure

domination between X and Y . A stronger concept of monotonicity would involve stochastic

ordering of X and Y ; we do not pursue this approach here.

3. Numerical computation

In this section, we show explicit examples of computation of the maximal correlation

risk measure. We start by the Gaussian case, where closed-form formulas are available. To

handle more general cases we shall show that the problem may be thought of as an auc-

tion mechanism, an intuition we shall develop and use to derive an efficient computational

algorithm.

3.1. Gaussian risks. We now consider the case where the baseline risk U is Gaussian with

distribution µ = N(0,ΣU ), and we study the restriction of %µ to the class of Gaussian risks.

Note (cf. [15] I, Ex. 3.2.12) that the optimal transportation plan from distribution

N(0, ΣU ) to distribution N(0, ΣX) is the linear map u → AXu where

AX = Σ−1/2
U (Σ1/2

U ΣXΣ1/2
U )1/2Σ−1/2

U .

Hence we have the following straightforward matrix formulation of comonotonicity.

Lemma 11. Consider two Gaussian vectors X ∼ N(0, ΣX) and Y ∼ N(0,ΣY ) with ΣX

and ΣY invertible. Then X and Y are µ-comonotonic if and only if

E[XY T ] = Σ−1/2
U (Σ1/2

U ΣXΣ1/2
U )1/2(Σ1/2

U ΣY Σ1/2
U )1/2Σ−1/2

U . (3.1)

In particular, in the case µ = N(0, Id), X and Y are µ-comonotonic if and only if E[XY T ] =

Σ1/2
X Σ1/2

Y .

Proof. If X and Y are µ-comonotonic, then there exists U ∼ N(0, ΣU ) such that X = AXU

and Y = AY U , and the result follows. Conversely, if equality (3.1) holds, then denoting

U = A−1
X X and V = A−1

Y Y , we get that 1) U ∼ N(0,ΣU ) and V ∼ N(0,ΣU ), and 2)
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E[UV T ] = A−1
X E[XY T ]A−1

Y = ΣU , therefore by the Cauchy-Schwartz inequality, U = V

almost surely. Thus X and Y are µ-comonotonic. ¤

We now derive the value of correlation risk measures at Gaussian risks. Still by [15] I,

Ex. 3.2.12, we have immediately:

Proposition 4. When the baseline risk U is Gaussian with distribution µ = N(0, ΣU ), we

have for a Gaussian vector X ∼ N(0, ΣX):

%µ(X) = tr

[(
Σ1/2

U ΣXΣ1/2
U

)1/2
]

.

In particular, in the case µ = N(0, Id), %µ is the trace norm: %µ(X) = tr
[
Σ1/2

X

]
.

Proof. One has %µ(X) = max{E[X̃ · U ]; X̃ ∼ X} = E
[
AXUUT

]
, thus because of the

previous results, %µ(X) = E
[
UT Σ−1/2

U (Σ1/2
U ΣXΣ1/2

U )1/2Σ−1/2
U U

]
= tr

(
(Σ1/2

U ΣXΣ1/2
U )1/2

)
.

¤

In dimension 2, we have the formula tr
(√

S
)

=
√

tr (S) + 2
√

det S, so we get a closed

form expression:

Example 3. When d = 2, and µ = N(0, I2), we have for ΣX =


 σ2

1 %σ1σ2

%σ1σ2 σ2
2


 the

following expression %µ(X) =
√

σ2
1 + σ2

2 + 2σ1σ2

√
1− %2.

3.2. Kantorovich duality and Walras auction. We now see how optimal transportation

duality permits the computation of maximal correlation risk measures. More precisely,

we shall see that the algorithm we shall propose to compute numerically the maximal

correlation risk measures is to be thought of intuitively as a Walrasian auction, as we

shall explain. We refer to [15] and [21] for overviews of the theory and applications of

optimal transportation, including recent results. Consider a baseline distribution µ, and

recall the expression for the maximal correlation risk measure %µ(X) of a random vector

X ∈ Rd: %(X) = sup
{
E[X · Ũ ] : Ũ ∼ µ

}
. This problem is the problem of computing the

maximal transportation cost of mass distribution µ to mass distribution LX with cost of

transportation c(u, x) = u · x.
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The problem has a dual expression according to Monge-Kantorovich duality (or duality

of optimal transportation). We have (theorem 2.9 page 60 of [21]):

%µ(X) = min
V ∈c.l.s.c.(Rd)

(∫
V dµ +

∫
V ∗dLX

)
. (3.2)

The function V that achieves the minimum in (3.2) exists by theorem 1(iii) and when LX

is absolutely continuous, one has ∇V ∗(X) ∼ µ and %µ(X) = E[X · ∇V ∗(X)]. In the sequel

we shall make the law invariance of %µ and the symmetry between the roles played by the

distributions of X and U explicit in the notation by writing

%µ(LX) := %(µ,LX) := %µ(X).

3.2.1. Law-invariant, convex risk measures. Following [16], theorem 2.3, the maximum cor-

relation risk measures are the building blocks of more general convex risk measures. One

has the following result, which was proven by Rüschendorf in the cited paper.

Proposition 5. Let % be a convex measure. Then % is law invariant if and only if there

exists a penalty function α such that

%(X) = sup
µ∈P2(Rd)

%µ(X)− α(µ).

Furthermore, α(µ) can be chosen as α(µ) = sup{%µ(X) : X ∈ L2
d, %(X) ≥ 0}.

3.2.2. Dual representations of the risk measure. The following lemma provides an expression

of the conjugate of the maximal correlation risk measure.

Lemma 12. For W : R→ Rd convex and lower semicontinuous, one has

sup
P∈P2(Rd)

{
%µ(P ) +

∫
WdP

}
=

∫
(−W )∗dµ.

Proof. One has
∫

(−W )∗dµ =
∫

supy {u · y + W (y)} dµ(u), thus
∫

(−W )∗dµ = supτ(·)
∫

u ·
τ(u)+W (τ(u))dµ(u) where the supremum is over all measurable maps τ : R→ R. Grouping
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by equidistribution class, one has

∫
(−W )∗dµ = sup

P

[
sup

τ#µ=P

∫
u · τ(u)dµ(u) +

∫
WdP

]

= sup
P

{
%µ(P ) +

∫
WdP

}
.

¤

3.2.3. General equilibrium interpretation. We now consider then %(µ,LX) for two probabil-

ity distributions on Rd, and we interpret µ as a distribution of consumers (e.g. insurees)

and LX as a distribution of goods (e.g. insurance contracts) in an economy. Consumer

with characteristics u derives utility from the consumption of good with attributes x equal

to the interaction u · x of consumer characteristics and good attributes. Consumer x max-

imizes utility u · x of consuming good x minus the price V ∗(x) of the good. Hence his

indirect utility is supx∈Rd [u · x− V ∗(x)] = V ∗∗(u) = V (u). According to equation (3.2),

the total surplus in the economy E[X · U ] is maximized for the pair (V, V ∗) of convex

lower semi-continuous functions on Rd that minimizes

Φ(V ) :=
∫

V dµ +
∫

V ∗dLX .

The functional Φ is convex and its Fréchet derivative, when it exists, is interpreted as the

excess supply in the economy, with value at h equal to DΦ(h) =
∫

h d(µ − νV ), where

νV := ∇V ∗#LX . Indeed, the convexity of the map V → Φ(V ) follows from the identity

established above in lemma 12

Φ(V ) = sup
ν∈P2(R)d

{
%(LX , ν) +

∫
V d (µ− ν)

}
,

thus this map is the supremum of functionals that are linear in V . The supremum is attained

for ν = νV , hence it follows that DΦV (h) =
∫

h d(µ− νV ).

Hence, excess supply is zero when the indirect utility V and the prices V ∗ are such

that νV = µ. With our economic interpretation above, this can be seen as a Walrasian

welfare theorem, where the total surplus is maximized by the set of prices that equates

excess supply to zero.
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This general equilibrium interpretation of maximal correlation risk measures extends to

the method of computation of the latter through a gradient algorithm to minimize the

convex functional Φ. This algorithm can be interpreted as a Walrasian tâtonnement

that adjusts prices to reduce excess supply DΦV . This algorithm is described in more

detail and implemented fully in the case of discretely distributed risks below.

3.3. Discrete risks. We now consider the restriction %µ to the class of risks whose distri-

bution is discrete. We have in mind in particular the empirical distribution of a sample of

recorded data of the realization of the risk. The procedure we shall now describe consists

in the computation of the generalized quantile of the discrete distribution, which opens the

way for econometric analysis of maximal correlation risk measures.

3.3.1. Representation. Let X ∼ νn, where Pn =
∑n

k=1 πkδYk
is a discrete distribution sup-

ported by {Y1, ..., Yn}, n distinct points in Rd. For instance if Pn is the empirical measure

of the sample {Y1, ..., Yn}, then πk = 1/n. We are looking for ϕ : [0, 1]d → Rd such that:

(i) for (almost) all u ∈ Rd, ϕ (u) ∈ {Y1, ..., Yn}
(ii) for all k ∈ {1, ..., n}, µ

(
ϕ−1 {Yk}

)
= πk ie. ϕ pushes forward µ to Pn

(iii) ϕ = ∇V , where V : Rd → R is a convex function.

It follows from the Monge-Kantorovich duality that there exist weights (w1, ..., wn) ∈ Rn,

such that V (u) = w∗ (u) := maxk {〈u, Yk〉 − wk} is the solution. Introduce the functional

Φµ : Rn → R, Φµ (w) =
∫

w∗ (u) dµ (u). The numerical implementation of the method is

based on the following result:

Proposition 6. There exist unique (up to an additive constant) weights w1, ..., wn such

that for w∗ (u) = maxk {〈u, Yk〉 − wk}, the gradient map ϕ = ∇w∗ satisfies (i), (ii) and

(iii) above. The function w → Φµ (w) +
∑n

k=1 πkwk is convex, and reaches its minimum at

w = (w1, ..., wn) defined above.

Proof. By the Knott-Smith optimality criterion (theorem 2.12(i) page 66 of [21]), there

exists a convex function w on the set {Y1, . . . , Yn} such that the optimal pair in (3.2)

is (w, V ), where V is the Legendre-Fenchel conjugate of w, i.e. the function V (u) =
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supx∈{Y1,...,Yn} (u · x− w(x)) = maxk (u · Yk − wk), where wk = w(Yk) for each k = 1, . . . , n.

Note that the subdifferential ∂V is a singleton except at the boundaries of the sets Uk =

{u : arg maxi {〈u, Yi〉 − wi} = k}, so ∇V is defined LU almost everywhere. Since for all k,

and all u ∈ Uk, Yk ∈ ∂V (u), ∇V satisfies (i). Finally, by Brenier’s Theorem (theorem

2.12(ii) page 66 of [21]), ∇V pushes LU forward to Pn, hence it also satisfies (iii). The

function Φµ : w → ∫
w∗ (u) dµ (u) is convex, which follows from the equality
∫

w∗ (u) dµ (u) = max
σ(.)

∫ 〈
u, Yσ(u)

〉− wσ(u)dµ (u)

where the maximum is taken over all measurable functions σ : Rd → {1, ..., n}. ¤ ¤

3.3.2. The Tâtonnement Algorithm. The problem is therefore to minimize the convex func-

tion w → Φµ,π (w) = Φµ (w) +
∑n

k=1 πkwk, which can be done using a gradient approach.

To the best of our knowledge, the idea of using the Monge-Kantorovich duality to com-

pute the weights using a gradient algorithm should be credited to F. Aurenhammer and his

coauthors. See [2] and also [18]. However, by the economic interpretation seen above, the

algorithm’s dynamics is the time-discretization of a “tâtonnement process,” as first imag-

ined by Léon Walras (1874) and formalized by Paul Samuelson (1947) (see [19]). Hence to

emphasize the economic interpretation, we shall refer to the algorithm as “Tâtonnement

Algorithm”.

The Algorithm. Initialize the prices w0 = 0. At each step m, compute Φµ,π (wm)

and the excess demand ∇Φµ,π (wm). For a well chosen elasticity parameter εm, update the

prices proportionally to excess demand

wm+1 = wm + εm∇Φµ,π (wm)

Go to next step, or terminate the algorithm when the excess demand becomes smaller than

a prescribed level. ¤

This algorithm requires the evaluation of the function and its gradient. For this we

shall need to compute in turns, for each k: 1) Uk = {u : arg maxi {〈u, Yi〉 − wi} = k}; 2)

pk = µ (Uk); and 3) uk the barycenter of (Uk, µ) (that is uk = µ(Uk)−1
∫
Uk

zdµ(z).) Then

we get the value of Φµ,π (w): Φµ,π (w) =
∑

(〈uk, Yk〉 − wk) pk + wkπk and the value of

its gradient ∇Φµ,π (w) = π − p, ie. ∂Φµ,π(w)
∂wk

= πk − pk. We have implemented these
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calculations in Matlab using a modified versions of the publicly available Multi-Parametric

Toolbox (MPT)2. All the programs are available upon request.

Conclusion

In comparison with existing literature on the topic on multidimensional risk exposures,

this work proposes a multivariate extension of the notion of comonotonicity, which involves

simultaneous optimal rearrangements of two vectors of risk. With this extension, we are

able to generalize Kusuoka’s result and characterize subadditive, comonotonic additive and

law invariant risk measures by maximal correlation functionals, which we show can be

conveniently computed using optimal transportation methods. We also show that the prop-

erties of law invariance, subadditivity and comonotonic additivity can be summarized by

an equivalent property, that we call strong coherence, and that we argue has a more nat-

ural economic interpretation. Further, we believe that this paper illustrates the enormous

potential of the theory of optimal transportation in multivariate analysis and higher di-

mensional probabilities. We do not doubt that this theory will be included in the standard

probabilistic toolbox in a near future.
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[15] Rachev, S., and Rüschendorf, L., Mass Transportation Problems. Volume I: Theory, and Volume II:

Applications, New York: Springer, 1998.
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[17] Rüschendorf, L., “Monge – Kantorovich transportation problem and optimal couplings,” Jahresbericht

der DMV 3, pp. 113–137, 2007.
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Appendix A. Illustrations

The tâtonnement algorithm was implemented with the use of the Multi-Parametric Tool-

box, and we derived the general quantile ∇V that achieves the optimal transportation of

the uniform distribution on the unit cube in Rd and the empirical distribution of a sample

of uniformly distributed random vectors in the unit cube in Rd. The following illustrations

show the Monge-Kantorovitch potential V , also interpreted as the buyer’s indirect utility in

our general equilibrium interpretation in the case of samples of size 7 and 27 respectively.

The potential V is piecewise affine, and the algorithm also requires to determine the regions

over which it is affine, and their volume and center of mass. The corresponding partition is

given opposite each potential plot. For illustration purposes, the dimension of the space d is

taken equal to 2, but the generalized quantiles and corresponding partitions can be derived

in higher dimensions.

Appendix B. Results on Optimal Transportation

In this appendix we recall basic results in Optimal Transportation theory. Roughly put,

this theory characterizes the properties of the couplings of two random variables which

achieve maximal correlation. We state the following basic result, due to Brenier (cf. [21],

Th. 2.12, in which a proof is given).

Proposition 7. Let % be a maximal correlation risk measure with respect to baseline risk

U . Then if both LU and LX are absolutely continuous, there exist a convex functions

V : Rd → R and W : Rd → R which are Legendre-Fenchel conjugate of each other ie.

W = V ∗, and

%(X) = E[U · ∇V (U)]

%(X) = E[X · ∇W (X)]

where the map ∇V pushes forward LU to LX , and conversely ∇W pushes forward LX to

LU , and ∇W = (∇V )−1. When only LU is absolutely continuous, then only those among
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Figure 1. Mapping the uniform to a discrete discrete distribution in di-

mension d = 2. Upper row: seven atom points, lower row: twenty-seven

atom points. Left column: the potential V (u) = w∗(u). Right column: the

corresponding partition of the space U .

the statements above involving V alone hold, and similarly, when only LX is absolutely

continuous then only those among the statements above involving W alone hold.
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Figure 2. The value of the risk measure in the Gaussian case, plot against

ρ. Left: σ1 = σ2 = 1. Right: σ1 = 1, σ2 = 2.

As QX = ∇V pushes forward measure µ on the distribution of X, it can be seen in some

sense as a natural extension of a univariate quantile function (where µ = U([0, 1]) - in which

case QX = F−1
X ) to the multivariate setting.




