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Abstract: This article proposes an original method for simulation code generation in discrete
event systems. This method uses the product location information in the running system. The
information flux (product id, location, time) is the starting point for the algorithm to generate
a queuing network simulation model.
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1. INTRODUCTION

Few years ago, a new perspective for product design and
manufacturing incorporated into the product, communica-
tion and sensitive capabilities within the framework of the
intelligent product paradigm, (Karkkainen et al., 2003).

The informational part of each product is feeded by the
direct material environment of the physical product or by
its own instrumentation (MEMS,GPS, . . . ) The exchanges
of information between the product and its environment
can be made:

• At certain synchronization points using RFID tech-
nologies, bar code. . .

• In a quasi-continuous way (wireless networks like
Wifi, Zigbee, Bluetooth)

These communication technologies can also contribute to
the product location activity in addition to the embedded
instrumentation. There are many applications of these
technologies in the field of production and logistics, some
examples are products traceability, stock inventory and
the positioning of a transport fleet. By now the spatial
location of physical objects, is limited to voluminous
objects (lorries, boats, containers) or to people.

The aim of our research consists in showing the new
inputs and benefits, in the use of a product location
information flux, during the manufacturing process. This
article presents an application: the automatic generation of
flux simulation code on the basis of product location data
during its passage through the production system. This
data compose an information flux that can be assimilated
as product traces.

If since some years, the simulation of product flux has
been the main tool for the evaluation of the dynamic of
manufacturing systems, (Cassandras and Lafortune, 1999;
Park and Lee, 2005), it has often been shown that the
modeling phase and the maintenance phase are consti-
tuted by delicate and time- demanding human operations
(De Vin et al., 2004; Mittal et al., 2005; De Vin et al.,
2006). These reasons explain in itself the choice of this

problem. The main idea is to replace the biggest amount
of human expert interventions in the construction of the
simulation model, but at the same time in the maintenance
and reconfiguration phases, for an automatic generator.

The figure 1 shows schematically the principle. The gen-
erator is feeded by a data flux that comes from the real
system.
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Fig. 1. The generator and its environment

2. HYPOTHESES & PROBLEM STATEMENT

2.1 Initial Hypothesis

The main hypothesis of this work is to consider that
all of the elementary objects of a manufacturing system
can be located. Suppose also that exist a technology
capable of providing a location flux of all of this moving
objects in the system. We talk in this case of location
rather than geolocation, because of the nature and the
scale of the study system. The scale is limited by the
workshop size. Another hypotheses can be naturally added
to complete the main hypothesis. In effect, the observed
data is considered in this work as reliable and without
error, our idea is to show the principles of the proposed
method in the most simple manner (the consideration
of noisy data will be the object of other works and
presentations). Moreover, the location data acquisition can
be made naturally through sensors either embbeded in the
product or not, that through a communication system can
feed an information management system (Figure 2).

The location data are, as others physical quantities, a
result from the environment of product circulation, the
manufacturing system. The access to location data can be
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Fig. 2. To get the location flow...

possible in all the positions in the system in each instant,
for this, the system must be a pervasive one.

In our case we can imagine that the data is collected in
each event, or with a discrete sampling time (depending
on the technology used). In this last case, with a high
frequency of data acquisition, the location information flux
can be regarded as quasi-continuous. To finish, we consider
that a single, globally unique id is assigned a priori for
each elementary product-object handled in the production
system.

2.2 Problem Formalization

The accessible location information is defined by the 3-
tuple (I,R, T ) where I is the set of Ids for objects. Only
one unique id is assigned for each object. The set R ⊂ R2

is the set of positions (r = (x, y), r ∈ R), and T represents
the time. Each (i, r, t) is an element in the flux f . This is
all the information that will be used for the generation
of simulation code. Our problem consist in conceiving
a generator of simulation models on-line Φ, capable to
develop a model m from the real data flux F .

F

Location Data
Flux

Φ

Model
Generator

m

Simulation
Model

Fig. 3. On-line generator

The generator, Φ, must be capable of adapting m in
function of the evolution of flux F in time (2). In a more
formal manner we can write:

F = {f1, f2, f3, . . .}, (1)

where fk represent the flux at a given time, the it is a
component of the flux F . We considered that the model
was empty at the beginning. The arrival of a new flux
to the generator allows the update of the model m. The
problem consist on defining Φ in order to obtain the model
m for each change in the flux. This procedure allows to
adapt the model between modifications of the real system:
the generation can react to reflect the changes.

The recursive map of the procedure to obtain the model
m is presented (with m0 the initial empty model):

m0 = ∅
mk = Φ(fk,mk−1)

(2)

3. MODELING

3.1 Objects and products

In this work we consider the product as an object (or
objects) under development, since its birth in the entry of
the system, until his disappearance to his release. Objects,
composited or not, can be assembled: the outcome of the
assembly is a conglomerate of objects named product. A
product can be disassembled: this process generate the
most basic objects. These are the most basic objects that
are linked to a unique identifier.
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Fig. 4. Workshop, three machines, one product

This notion of objects and products will be introduced on
the basis of a simple example of a workshop with three
machines M1, M2 et M3 and one type of product P (4)
this notion of objects and product. In this example, the
product is composed of three objects a, b, c. The product
P is the gradual agglomeration of initial objects (a, b, c)
in intermediate objects (p1, p2) (6). It may represent these
processes formally:

a 7→ M1(a) = p1

(p1, b) 7→ M2(p1, b) = p2

(p2, c) 7→ M3(p2, c) = P,
(3)

or more synthetically for a composition of functions:

P = M3 (M2 (M1(a), b) , c) (4)

We can represent the equations (3) and (4), as a graph
G = (V,E) (4), with vertices:

V = {a, b, c,M1,M2,M3, P} (5)

and the adjacency matrix is:

Adj(V ) =

















0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

















(6)



This last formalization, in numeric form, will be useful
during the implementation of our algorithm to determine
the composition of final products.

3.2 Trajectory and history of products

This part of the research takes the example introduced in
the previous paragraph. On Figure (4) are represented two
different things:

• Composition (or nomenclature) of a type of product.
• Location in the workshop (cartesian coordinates x

and y) resources needed to develop P and the path
of objects, whether elementary or composite.

On this type of scheme the diamonds represent the birth or
the disappearance of objects and/or products (a diamond
with an arrow outgoing is a point of birth, a diamond with
an arrow entering is a point of disappearance) considered
for the study.

The monitoring of the trajectory of an object in the plane
(x, y) in time allows us to determine the speed v: either
it is zero, or it is positive (5) The product is moving
or is stopped: the latter property is a sign of a waiting
time. . . hence the choice to build a simulation model based
on a queueing network. The information v = 0 located
a particular point at the base of the construction of our
model. Because of each of these points it is possible to
obtain an histogram that represent the service time for
each product type. However, before the disappearance of
a product, no information on its composition is available.
The objects (initials and intermediaries) provide no in-
formation about their final destination. It is in the dis-
appearance of the final product where the composition is
discovered (by the joint movement of its components 6). It
is then possible to trace all the pathways of its constituents
to the moment of their birth, and update the histograms
of sevice time of a part for a final product on a point v = 0.
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Fig. 5. Velocity component a

3.3 Waiting Queues

At each point where v = 0, we associate a waiting queue
behavior (7).

In these points two types of events may occur: the arrival
or the departure of object(s). As the composition of a
product can be only known in the output of this waiting
queue, the objects constituents of the product then follow
the same trajectory. Then we define (8):
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Fig. 6. Workshop, indicators and objects flow
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Fig. 7. Service point, v = 0

• e1 the instant of arrival of the first object that
constitutes the product.

• e2 the instant of arrival of the last object that
constitutes the product.

• s is the common instant of departure all objects that
are constituents of the product.

On this basis we can get:

• O, the time between the arrival of the first object and
the arrival of the last object needed for the product
constitution.

• A, waiting time for service : defined as the period
between the time when all the pieces needed have
arrived, and the instant when the service start.

• T , service time at point v = 0.
• TTot, total waiting time at point v = 0.

We can link these different variables in the equation:

TTot = O + A + T (7)

To compute A is necessary to know the departure instant
of the previous product sk−1 where k − 1 the order of
departure of the products. The rule for calculating A is:
if ek

2
< sk−1 then the waiting time is sk−1 − ek

2
, else the

waiting time is 0.

In a more formal manner and using of the Heaviside
function:

θ(y) =

{

1 if y ≥ 0

0 if y < 0,
(8)

now we can define at each k product departure, the
variables introduced so far:
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Fig. 8. Waiting periods at congestion point v = 0

yk = ek

2
− sk−1

αk = θ(yk)
βk = 1− αk

T k = αk(sk − ek

2
) + βk(sk − sk−1)

Ak = βk(sk−1 − ek

2
)

Ok = ek

2
− ek

1

(9)

with s0 = 0.

The 3-tuple (T,A,O) has all the necessary information in
order to characterize the point v = 0 as a service point.

We must note that the analysis presented here is valid only
under the theoretical condition that the queue is reduced
to one point (all objects waiting at the same point).

4. ALGORITHM

The algorithm proposed here is naturally the generator
of the simulation code. It comprises three main parts.
The first part generates the machine positions and the
paths followed by products, on the basis of the real-time
of data flow. The second part deals with the issue of
products departures of the system. The product departure
is the instant when is possible to know whether it type
existed before or not. If the type existed, it updates the
product data, otherwise a new product type is created.
The third part is used to modeling the laws of behavior
for the simulation model. Statistical laws are proposed to
represent the inter-arrival time and service time for each
product type at each machine.

Table 1. Data structure m

var description defaut

m.r position (x, y) none
m.t current time none
m.s binary for stop condition 0
m.T service time 0.0
m.l departure instant 0.0
m.a stop time 0.0

The algorithm associated with this first part is triggered
with every change in the flow. At each new data (i, r, t) a
new product is created if the data id is not know. At each
stop of this product it is created a stop point (location
point of a queue and/or service point), and a link between
product and the stop point. This stop point is validated
if the position of the product i is in the same position
between the instants t and ts, t < ts, then the point
corresponds to a real waiting point. In this case the time
of arrival and departure of the product i on the waiting

point located in r are retained. They are used for modeling
the dynamic behavior of this type of product at this point.

The algorithm associated with this second part is triggered
at each product departure of the system. Whether a
product outcomes of the system may be a difficult problem
to solve. We have chosen to define a product as out of
the system if the identifier i no longer appears in the
data flow during a considerable period (chosen arbitrarily
but large enough). As we have already explained in the
equation (3) or in figure (4) it must be only possible to
know the type of product at the exit. In this level we use
the adjacency matrix linked to each elementary product.
The sum of these matrices to each elementary product
that departs out of the system at the same space-time
instant can return the composition of the final product.
The algorithm compares this sum of matrices with those
obtained previously. If this matrix does not exist, it means
that a new product came out of the system. Then it
connects the information on its service (or stop) points
obtained during the movements of its various components
in the workshop.

The third part is made to characterize the stochastic
behavior of different stop points. This third and final
phase is the phase of post-treatment of all the information
collected in phase 1 and 2. An estimation of the probability
density function for the inter arrival time and service
time is driven using kernel density estimators. It is then
validated by a Wilcoxon test (Wilcoxon and Co, 1997).

We present (1) a fragment of the algorithm developed in its
simplified version. This fragment can collect the positions
of stop points for each product, and their inter-arrival time
and service time at each stop point.

In the presented algorithm a point of data (i, r, t) is defined
by the structure d, where d.i is the id, d.r the (x, y)
position, and d.t the time.

Other data structures used are m and p. The structure m
is defined in the table (1), and the function to create a new
structure is m̆(r, t).

The structure p is defined in the table (2), and the function
to create a new structure is p̆(i,m).

Table 2. Data structure p

var description defaut

p.i id none
p.m structure of type m none
p.M ordered set of m structures ∅

In addition to the structures d,m, p , there are two global
sets M and P , empties by default.

5. APPLICATION

This section is intended to validate the principle of feasi-
bility of the automatic simulation code generation on the
basis of location information.

In first time we generated a simulation module us-
ing Simpy (Simulation in Python) the object-oriented,
process-based discrete-event simulation language (Muller,
2004; Muller and Vignaux, 2003; Bahouth et al., 2007). In
its module we generated the product location information



Algorithm 1 Simplified algorithm

for d do
if ∃ p ∈ P : p.i = d.i then

if p.m.s = 1 then
if p.m.r = d.r then

p.m.a← p.m.a + d.t− p.m.t
p.m.t← d.t

else
m← m′ ∈M : m′.r = p.m.r
if p.m.t− p.m.a < m.l then

p.m.T ← p.m.t−m.l
else

p.m.T ← p.m.a
end if
m.l← p.m.t
p.M ← p.M ∪ {p.m}
p.m← m̆(d.r, d.t)

end if
else

if p.m.r = d.r then
p.m.s← 1
if ∄ m ∈M : m.r = d.r then

M ←M ∪ {p.m}
end if

else
p.m.r ← d.r

end if
p.m.t← d.t

end if
else

m← m̆(d.r, d.t)
p← p̆(d.i,m)
P ← P ∪ {p}

end if
end for

flux. It acts as an artifact of the real system. We limited
our research here voluntarily to a simple case to limit the
volume of its presentation and analysis of results. The
location flow is then retrieved by the generator module of
simulation model which generates simulation model imple-
menting phases 1 and 2 described before. Finally, a module
for data analysis (phase 3) allows to verify the results. All
the modules are programmed in Python (Rossum, 1995;
Downey et al., 2002; Cai, 2005).

5.1 Presentation of the chosen application

The workshop modeled here is composed of different ma-
chines among which the products are evolving, transported
by AGV’s.

The different types of products are generated for the
formula:

mach(s, l) = (s− l) mod M (10)

• l: product type, l = 0, . . . , L− 1,
• s: operations, s = 0, . . . , S − 1,
• M :quantity of machines,

based on the original formulation proposed by Thiesse and
Fleisch (2008), The proposed formula is used to generate
sequences of processing for each product type.

• The inter arrival time of products in the workshop
are provided by an exponential distribution. Each
product type is generated in the same proportion.

• The service time of each machine is also provided by
an exponential distribution function.

• The machine positions are carried out randomly be-
tween the dimensions of the system at the beginning
of the simulation.

• The tracking system allows to obtain location infor-
mation Product (i, r, t) with a fixed frequency.

5.2 Implementation with SimPy

The parameters used in the simulation are:

Table 3. Experimental conditions

parameter value

product types 3
machines 3
operation for each product 3
products 100
inter arrival time exponential, µ = 1/3
service time exponential, µ = 13
AGV’s 10
AGV’s velocity 0.44
workshop limits (−10,−10), (10, 10)
location sampling period 0.5

5.3 Results

The results provided by the model from the code generator
are quite consistent with those obtained from the artifact
of the real system. Indeed, the Wilcoxon test, shows that
data on inter-arrival time and service time generated by
the two models are distributed under the same statistical
law. (Tables 4 et 5). The products and their types are fully
identified by the code generator. It also sets out in detail
the differents resources implemented for the development
of products. These early results show the feasibility of the
proposed method. They were confirmed by tests on larger

Table 4. Wilcoxon test, inter arrival time

Product Operation

0 0 1 2
t-statistic 168.5 138.0 131.0

two-tailed p-value 0.7 0.0 0.0

1 0 1 2
t-statistic 96.0 5.0 124.0

two-tailed p-value 0.49 0.0 0.0

2 0 1 2
t-statistic 240.5 195.5 192.5

two-tailed p-value 0.73 0.0 0.0

Table 5. Wilcoxon Test, service time

Product Operation

0 0 1 2
t-statistic 220.0 187.0 185.5

two-tailed p-value 0.8 0.35 0.3

1 0 1 2
t-statistic 154.0 175.0 166.0

two-tailed p-value 0.07 0.15 0.17

2 0 1 2
t-statistic 261.0 270.0 309.0

two-tailed p-value 0.07 0.09 0.37



Fig. 9. Inter-arrival time distributions

Fig. 10. Service time distributions

systems (up to 15 machines, 15 operations, 15 product
types).

6. CONCLUSIONS

The results obtained here are encouraging. They validate
the implementation approach as well as the tool that
we have developed. One of the next stages of our work
will take into account imprecise location measures, the
variations in the sample period and their impacts in the
generator. Finally, the generator in a prepared version will
be confronted with a blind validation on a real system.
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