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Abstract

This paper presents a numerical method for the
determination of the identifiable parameters of parallel
robots. The special case of Stewart-Gough 6 degrees-of-
freedom parallel robots is studied for classical and self
calibration methods, but this method can be generalized
to any kind of parallel robot. The method is based on QR
decomposition of the observation matrix of the calibration
system. Numerical relations between the identifiable and
non identifiable parameters can be obtained.

1. Introduction

The classical methods for parallel robot calibration need
external sensors to measure the position and orientation of
the mobile platform [1] [2] [3] [4] [5]. The calibration
problem is formulated in terms of minimizing the
difference between the measured and computed motorized
joint variables, it uses the inverse kinematic model which
is easy to calculate for parallel robots. Self calibration
methods using extra sensors on the passive joints have
been also proposed for parallel robots [6] [7] [8] [9].
These methods are based on the use of redundant sensors
on the passive joints and to adjust the values of the
kinematic parameters in order to minimize a residual
between the measured and the calculated values of the
angles of these joints. As many parallel robots don’t have
redundant sensors on the passive joint, mechanical
constraints on the leg can also be used [10] [11].

 For some calibration methods, all the geometric
parameters cannot be identified. In previous work, the
identifiable parameters of parallel robots are derived by
intuition. In the case of serial robots, the identifiable
parameters are computed from a QR decomposition of the
analytical observation matrix [12]. We propose to extend
this method for parallel robots even in the case where the
Jacobian matrix cannot be obtained analytically.

2. Description of the robot

The parallel robot studied here is the Stewart-Gough 6
degrees of freedom robot (Figure 1). The base

connections are composed of Universal joints (U-joints)
and the platform connections are composed of Spherical
joints (S-joints). The centers of the U-joints and S-joints
are denoted by Ai and Bi (i = 1 to 6) respectively. The
configuration of the parallel robot is given by the (6x1)
vector L representing the leg lengths AiBi for i=1,…,6:

L = [  l1   l2   l3   l4   l5   l6  ]T (1-a)

Typically each variable is given as:

ioffii qql ,+= (1-b)

where qi is the prismatic position sensor reading and qoff,i
is a fixed offset value.
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Figure 1: Stewart-Gough parallel robot

Let the frame F0 be fixed with respect to the base and
frame Fm fixed to the movable platform, such [7]:

- A1 is the origin of frame F0, while the x0 axis is
determined by (A1A2) and x0y0 plane is determined by the
points A1, A2 and A6.

- similarly, B1 is the origin of frame Fm, while B1B2
represents its xm axis and B1B2B6 its xmym plane.

With this definition of F0 and Fm we have:

0PxA1 = 0PyA1 = 0PzA1 = 0PyA2 = 0PzA2 = 0PzA6 = 0
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mPxB1 = mPyB1 = mPzB1 = mPyB2 = mPzB2 = mPzB6 = 0

Where jPPi denotes the coordinates of the point Pi with
respect to coordinate system Fj and:

jPPi = [ jPxPi   jPyPi   jPzPi ]T

Thus, the robot is described by 24 constant parameters
which may be not equal to zero.
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Figure 2: Definition of the frames

The (4x4) transformation matrix between frames F0 and
Fm giving the location (position and orientation) of the
platform with respect to the base is denoted by:

0Tm = 








1000
PA m

0
m

0
(2)

The location of frame F0 with respect to the world
reference frame F-1 of the environment is given by a
transformation matrix Z. In addition, the matrix E denotes
the location of the end-effector frame FE in frame Fm (cf.
Figure 2). The location of the end- effector frame relative
to the world reference frame is:

ETZT m
0

E
1 ⋅⋅=− (3)

Thus, the coordinates of  Ai relative to frame F-1 are:
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The coordinates of point Bi relative to frame FE are:









⋅=








⋅=








1
PE

1
PT

1
P

iii B
m

B
m

m
EB

E
(5)

The matrices Z and E can be defined using 6 independent
parameters. Thus, we can describe the geometry of the
robot using 36 constant parameters: either by –1PAi and
EPBi, or by 0PAi, mPBi and the matrices E and Z. The total
number of parameters is thus equal to 42, after taking into
account the 6 joint variables.

For the calibration, we propose to use the coordinates of
points Ai and Bi in frames F-1 and FE respectively in order
to have homogeneous parameters to identify (only
lengths). From these coordinates, it is easy to find the
transformations Z and E, and the coordinates of the points
of the base and the platform in frames F0 and Fm.

2.1 Kinematic modeling

The inverse kinematic model (IKM) which computes the
leg lengths vector for a desired -1TE is unique and easy to
obtain [13]. While, the direct kinematic model (DKM),
which gives the matrix -1TE as a function of a given leg
lengths vector, is difficult to obtain analytically and up to
40 solutions may exist [14]. A numerical iterative method
based on the inverse Jacobian matrix is used to find a
local solution for the DKM.

3. General calibration models

The aim of the kinematic calibration is to estimate
accurately the geometric parameters. All the calibration
methods are based on calculating a function, for sufficient
number of configurations, in terms of the robot parameters
and some external variables. The model parameters are
estimated by minimizing this function by solving a
nonlinear system of equations. The general form of the
calibration equation is:

1 1
1

e e
e

f ( , , )
F( , , ) 0

f ( , , )

q x
Q X

q x

η
η

η

 
 = = 
 
 

! (6)

where η denotes the geometric parameters, Q={ q1,…, qe

}T contains the prismatic positions of the robot for e
different configurations, and X = { x1,…, xe }T are the
corresponding external measured variables such as the
Cartesian coordinates. This nonlinear optimization
problem can be solved by the leastsq function of Matlab
based on the Levenberg-Marquardt method.

Supposing that the U- and S-joints are perfect, we have to
identify the error ∆-1PAi, ∆EPBi, ∆qoff,i (with i = 1,…,6).
They will be collected in the vector ∆η. Before solving
the calibration equation, it is important to define the
identifiable parameters, because only these parameters can
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be identified without ambiguity. We propose to determine
these parameters using QR decomposition of the
observation matrix of the linearized model of randomly e
configurations satisfying the constraints of the calibration
procedure. The outlines of this algorithm is given
references[12,15]. The linearized equations corresponding
to the nonlinear equation (6) can be written as:

)W(Q,),(Q, ρηηη +∆⋅=∆ XY (7)

where ∆Y is the difference between the model and the real
robot, W is the (r , np) observation matrix of the system,
with np the number of geometric parameters and r >> np,

The vector ρ indicates the residual errors owing to noise
or modeling errors.

For parallel robots, the observation matrix W can be
obtained analytically for the calibration method which is
based on the IKM. For all the other methods we have to
calculate W numerically by  supposing small variations ε
on each geometric parameter and calculating the
corresponding ∆Yi. The jth column of W corresponding to
that parameter will be computed as ∆Yj/ε . Good results
are obtained with ε =  10-6 meter for each parameter.

The number of the identifiable parameters denoted by b.
The QR decomposition will provide as a set of identifiable
parameters those corresponding to the first b independent
columns of W. We assign a priority number to each
parameter, the parameters with higher priority will be
placed at first in η. We place at first the offsets qoff,i
(priority 3), and we place at the end the 12 coordinates of
the points defining frames F0 and Fm (-1PxA1, -1PyA1,
-1PyA2, -1PzA1, -1PzA2, -1PzA6, EPxB1, EPyB1, EPyB2, EPzB1,
EPzB2, EPzB6) (priority 1), the other parameters will get
priority 2 and will be placed after the offset parameters in
the following order:

-1PxA2,…, -1PxA6, -1PyA3,…, -1PyA6, -1PzA3,…, -1PzA6, then
EPxB2,…, EPxB6, EPyB3,…, EPyB6, EPzB3,…, EPzB6.

4. Application to calibration methods

We compute the identifiable parameters for several
calibration methods for the parallel robot whose nominal
parameters are given in Table 1. The obtained identifiable
parameters are valid for any robot of the Stewart-Gough
type. The grouping relations of the non identifiable
parameters are functions of the numerical values of the
geometric parameters.

leg 1 2 3 4 5 6
-1PxAi 0 0,8426 0,9382 0,5168 0,3258 -0,0955
-1PyAi 0 0 0,1654 0,8952 0,8952 0,1654
-1PzAi 0 0 0 0 0 0
EPxBi 0 0,1042 0,3340 0,2819 -0,1777 -0,2298
EPyBi 0 0 0,3980 0,4883 0,4883 0,3980
EPzBi 0 0 0 0 0 0
qoff,i ,85 0,85 0,85 0,85 0,85 0,85

Table 1: Nominal values of the geometric parameters

4.1 Calibration using the IKM

Measuring the location of the platform, the inverse
kinematic model (IKM) can be used to compute the 6 leg
lengths of the robot. The calibration method consists in
minimizing the residual between the computed and the
measured prismatic variables [2].

The equation for each leg and each configuration
is:
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Applying this equation for the 6 legs of the robot and e
configurations, we have the relation:

ηη ∆=∆ .),W(XQ (9)

where ∆Q is the difference between the measured
prismatic joint values and those computed by the IKM.

Note that the observation matrix W can be computed
analytically. Using (9) for e random configurations, with
e >> 7 such that the number of rows of W is greater than
the number of the parameters. The rank of the matrix W is
42. Thus, all the parameters can be identified. The
condition number of W can be used as a measure of the
excitation of the parameters by the calibration method.
Using e configurations such that the number of equations
is 4 times the number of parameters we find that The
condition number of W is about 350.

4.2 Calibration with measurement of the position of
the platform

Measuring only the position of the platform, we cannot
use the IKM of the robot since we have only 3 equations
to solve a system of 6 unknowns (the 6 leg lengths of the
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robot). Nevertheless, using the direct kinematic model
(DKM), if we consider a configuration q of the robot and
pE the measured position of the effector in frame F-1, we
can write the nonlinear model of calibration as:

1
E EP ( , ) 0q pη− − = (10)

The corresponding linear differential model is:

ηη ∆Ψ=∆ .),(pE q (11)

The Jacobian matrix Ψ is obtained numerically by
supposing small variation on each parameter and
calculating the corresponding variation on Ep∆ .

Measuring the position of the end-effector for a sufficient
number e of random configurations (minimum 14
configurations), we have:
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The rank of the matrix W is obtained as 39. The
identifiable parameters of the system are obtained by the
QR decomposition of this matrix. Applying the rules of
priority described in section 3, the errors ∆EPyB2, ∆EPzB2

and ∆EPzB6 are not identifiable and their effect are
grouped on the other parameters which defines the
positions of the S-joints on the mobile platform. We
propose to fixe these parameters such that:

0
622 B

E
B

E
B

E === PzPzPy (13)

This makes that the orientation of frame E, which cannot
be determined, is such that the x axis is along the
measured point and the point B2 while the xy plane is
along the measured point and the points B2 and B6. The
condition number of the observation matrix W for this
calibration method using a  number of equations which is
equal to 4 times the number of parameters is about 2000.

4.3 Calibration using two inclinometers

In this calibration method the rotation angles of the
platform of the robot about xm and ym axis are measured
by two inclinometers fixed on the platform [5]. For a
given configuration q, the theoretical values α1 and α2 of
the inclinometers can be computed using the DKM. These
values are functions of some elements of the orientation
matrix –1AE and of the angle γ between the inclinometers
axes. The linear differential model can be written as:

ηγηΦ ∆Ψ=∆ .),,(q (14)

where ∆Φ is the difference between the inclinometers
measured values Φm and those computed by the model Φ,
and Ψ is the numerical Jacobian matrix (cf. section 3).

Using a sufficient number e of configurations:

ηγη
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∆⋅=
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(15)

The rank of W is 36, there are 4 non identifiable
parameters concerning the U-joints (∆-1PxA1, ∆-1PyA1,
∆-1PzA1 and ∆-1PyA2) and 3 on the position of the S-joints
(∆EPxB1, ∆EPyB1 and ∆EPzB1). The effect of these
parameters are grouped on the other parameters of the
base (U-joints) and the platform (S-joints) respectively.

These results are confirmed by the study of the geometry
of the system. The position coordinates of the
inclinometers on the platform have no effect.
Consequently, we can consider that the origin OE, which
cannot be determined by this method, is aligned with the
origin of frame Fm. Then we have by convention:

0
111 B

E
B

E
B

E === PzPyPx (16)

Similarly, the position of the base of the robot with
respect to F-1 has no influence on the inclinometers
measurement, as well as its orientation around the vertical
axis. We can define arbitrarily the origin of frame F-1  as
A1 and the axis x-1 and z-1 such that A2 is in the plane
(A1x-1z-1). Then we have by definition:

0
2111 A

-1
A

-1
A

-1
A

-1 ==== PyPzPyPx (17)

The condition number of the linear observation matrix W
for this method using a  number of equations which is
equal to 4 times the number of parameters is about  2000.

4.4 Calibration with mechanical constraints on the
orientation of the legs

This method uses the variables of the motorized prismatic
joints corresponding to configurations where either one U-
joint or one S-joint is fixed by mechanical lock, thus the
leg direction is constant with respect to the base or with
the movable platform [11].

Each U-joint i is described by 2 angles θ1,i and θ2,i, while
each S-joint i is defined using three angles θ3,i, θ4,i and θ5,i.
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For a given configuration q, these angles can be computed
by a generalized direct kinematic model [11]:
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4.4.1 Fixing the U-joint of a leg

Supposing 2 configurations qa and qb for which the ith U-
joint has been locked. The nonlinear error function
between them is given as 0),(),( =− ηη bb

u
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The differential equation is given as:
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With a sufficient number e of configurations:
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The rank of W is 29, giving 7 non identifiable parameters
of the base and 6 non identifiable parameters for the
platform. The interpretation of this result is given in
section 4.4.4. The condition number of the observation
matrix for this method using a  number of equations 4
times the number of parameters is about 2500.

4.4.2 Fixing the S-joint of a leg

Using a set of configurations Q = { q1,…,qe } for which
the ith S-joint has been locked, we can write a differential
linear system of equations by the use of relation (19):
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The rank of W (which is computed numerically) is 29, this
gives 6 non identifiable parameters for the base and 7 non
identifiable parameters for the platform. The condition
number of the linear observation matrix W for this
calibration method using a  number of equations which is
equal to 4 times the number of parameters is about 7500.

4.4.3 Mixing the data of locking different joints

If two or more sets of configurations are used, where in

each set either an U-joint or a S-joint has been fixed, the
rank of the numerical observation matrix W of the
calibration system is 30. The QR decomposition of this
matrix shows that 6 parameters of the base and 6
parameters of the platform are not identifiable. With the
priority rules, defined in section 3, these parameters
correspond to those which define the base and the end-
effector transformation matrices Z and E. In practice we
put them equal to zero:
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E ====== PzPzPyPzPyPx (24)

This gives:  frame F-1 = F0 and Fm = FE.

The condition number of the observation matrix W for
this method using a  number of equations which is equal
to 4 times the number of parameters is about (with one U-
joint and one S-joint locked) using four time the number
of equations that are necessary is about 700.

4.4.4 Comments

This autonomous method cannot identify the Z and E
elements because they have no effect on the angles of the
legs with respect to the base or the platform. Thus, the
maximum number of identifiable parameters by such
autonomous calibration method is 30.

When only one set of configurations is used with one U-
joint (respectively one S-joint) locked, a 7th geometric
parameter of the base (respectively of the platform) cannot
be identified. In fact, placing the center of the locked joint
along its leg direction will satisfy the locking constraint
(cf. figure 3). That is why we have a non identifiable
parameter more. This situation has not been mentionned
in reference [11], but it has been shown that two different
joints must be locked to get good results.

4.5 Calibration with sensors on Universal joints

Zhuang [9] has presented autonomous methods based on
the use of extra sensors on some passive U-joints.
Knowing a set of e random configuration Q and the real
(measured) values of θ1,i and θ2,i of U-joint i for each
configuration, the following linear differential system can
be written from  (18):
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where ( ) r
1

iuy  is the vector of the values measured for the

ith U-joint and 1
iuy  is computed from the DKM.

constrained leg

2 positions
for the U-jo int

Figure 3: Two different robots with the same orientation
of one leg for a given configuration q

The QR decomposition of W shows that using only one
sensor reading is sufficient to identify 30 parameters
which is the maximum for a self calibration method. In
this case, the condition number of W is about 1500. This
means that the increase of the number of measured angles
increases the observability of the system, using 6 sensors
on 3 passive U-joint gives reduces the condition number
to about 350.

5. Conclusion

This paper presents a generalized method which gives the
identifiable and non identifiable geometric parameters for
the calibration methods of parallel robots. This method is
based on the QR decomposition of a numerical
observation matrix of the calibration system which is
obtained numerically by supposing small variations on
each geometric parameter of the model. Results are given
for several methods, the physical interpretation of the non
identifiable parameters has been given. The observability
measure of each method is given by the condition number
of the observation matrix of the linearized model.
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