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Magnetic Field Created by Tile Permanent

Magnets
R. Ravaud, G. Lemarquand, V. Lemarquand

Abstract1

This paper presents the analytical calculation of the three components of the magnetic field created by2

tile permanent magnets whose magnetization is either radial or axial. The calculations are based on the3

coulombian model of permanent magnets. The magnetic field is directly calculated, without the magnetic4

potential. Both axial and radial magnetization of the tiles are considered. The expressions obtained give the5

magnetic field in all the space. Such analytical expressions are very useful for the design and optimization6

of many industrial applications.7

Index Terms8

Analytical model, magnetic field, permanent magnet, axial magnetization, radial magnetization9

I. INTRODUCTION10

AFTER the parallelepiped, the most common shape for a permanent magnet in electrical engineering11

is certainly the tile, which can also be described as a ring sector. Such tiles can be either axially12

or radially magnetized. Therefore, the calculation of the magnetic field created by tile magnets is of great13

utility and numerous approaches exist.14

Numerical approaches do not allow one to perform numerous parametric studies quickly and have15

generally a high computational cost. Consequently, authors are looking for alternative solutions. Their16

approaches are often semianalytical ones [1], and they represent important steps toward the ideal analytical17
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ones. In fact, different points of view can be adopted, which all look for the same thing: the calculation of18

the magnetic field and the magnetic forces. Kim et al. [2][3] calculate the magnetic force from the vector19

potential, with complete elliptic integrals and a mesh-matrix method. Kwon et al.[4] work with spherical20

coordinates and multipole expansions to calculate the far field of permanent magnet motors. Selvaggi et21

al.[5] propose an approach with cylindrical coordinates and the use of Green’s function and Fourier series22

expansion to characterize the field from a set of permanent magnets. Babic and Akyel [6]-[8] calculate the23

force between coils thanks to Heuman’s Lambda function. Toroidal harmonics yield interesting solutions24

to formulate the magnetic field created by permanent magnet cylinders [9]. Conway uses Bessel’s function25

to calculate the inductance of coils using the vector potential [10] and proposes also a direct calculation26

of the magnetic field -without the vector potential- to reach the same goal [11].27

While these studies show variety in the starting point for the problem they want to solve, many others28

are more specific and describe methods to calculate the magnetic field created by toroidal magnets. Perigo29

et al.[12] present analytical-integral expressions for the axial and radial magnetic flux density components30

of axially magnetized toroidal magnets, either on- or off-axis. The application considered is an electron31

beam focusing system. Zhilichev [13] works with cylindrical coordinates and uses separation of variables32

to evaluate the magnetic field from the scalar potential for tubular linear permanent magnet machines. He33

gives 2D and 3D approximations. Furlani et al. propose solutions based on the vector potential for radially34

polarized multipole cylindrical magnets [14] as well as for axially polarized magnets for axial field motors35

[15][16]. Rakotoarison et al.[17] give a semianalytical method to calculate the field created by radially36

magnetized tile magnets from the scalar potential. They use a coulombian model of the magnets and take37

the volume charge density into account.38

All the studies dedicated to the calculation of the magnetic field created by toroidal or tile magnets are39

very useful: they constitute tools for the design and the optimization of devices which use such magnets40

and enable to meet specific requirements. For example, tile magnets with rotating magnetizations are41

used to make discrete Halbach cylinders [18] which have various applications, such as electrodynamic42

wheels [19] for maglev devices, the creation of homogeneous fields or tailored gradient fields [20], the43

magnetization of brushless machines to obtain sinusoidal field variation in the airgap [21]. Tile magnets44

are used with peculiar profiles to reduce the cogging torque in axial flux machines [22] as well as in radial45
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flux ones [23], but also to control the torque in permanent magnet couplings [24][25] and gears. They46

are constitutive parts of displacement sensors [26] and also ironless loudspeakers [27][28] demonstrating47

their widespread use.48

This paper presents analytical expressions for the three components of the magnetic field created by49

tile permanent magnets. The magnetic field is directly calculated, without a previous calculation of the50

scalar or vector potential[29][30][31]. The expressions given are for a ring sector, but remain valid when51

the sector is extended to the whole ring. The axial magnetization of the tiles is considered in the first52

section below and the radial magnetization in the second.53

II. AXIALLY MAGNETIZED TILES54

A. Notation and Geometry55

The geometry which is considered is a tile permanent magnet and the related parameters are shown56

in Fig.1. The tile inner radius is rin, the tile outer one is rout and its height is h. The angular width of57

the tile is θ2 − θ1. The axis z is an axis of symmetry. The coulombian model of a permanent magnet is58

used. Consequently, the tile permanent magnet is represented by two curved planes which correspond to59

the upper (z = h) and lower (z = 0) faces of the ring sector. The upper one is charged with a surface60

magnetic pole density +σ∗; the lower one is charged with the opposite surface magnetic pole density61

−σ∗. All the illustrative calculations are done with σ∗ = ~J.~n = 1T . In order to simplify the calculations,62

the upper face only is taken into account to determine the three magnetic field components. However,63

the total magnetic field can be calculated by the application of the linear superposition principle to both64

faces.65

Let us consider a point P on the ring sector upper face. The magnetic field ~H created by the source66

point P (r, θs, z) at any observation point M(r, θ, z) of the space is given by (1).67

~H(r, θ, z) =
σ∗

4πµ0

∫ θ2

θ1

∫ rout

rin

−−→
PM∣∣∣−−→PM

∣∣∣
3 r1dr1dθs (1)

where µ0 is the vacuum magnetic permeability (µ0 = 4π.10−7SI) and σ∗ is the fictitious magnetic pole68
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Fig. 1. Axially magnetized tile permanent magnet : parameter definition.

surface density in tesla. Equation (1) can be written as follows:69

~H(r, θ, z) =
σ∗

4πµ0

∫ θ2

θ1

∫ rout

rin

(r − r1 cos(θ − θs))~ur − r1 sin(θs − θ)~uθ + (z − z1)~uz

(r2
1 + r2 + (z − z1)2 − 2r1r cos(θ − θs))

3
2

r1dr1dθs (2)

B. Components along the three directions ~ur, ~uθ, ~uz70

The integration of (2) leads to the magnetic field components along the three axes defined Hr(r, θ, z),71

Hθ(r, θ, z), Hz(r, θ, z).72

1) Azimuthal component Hθ(r, θ, z): The magnetic field azimuthal component Hθ(r, θ, z) created by73

the upper face is given by (3).74

Hθ(r, θ, z) =
σ∗

4πµ0
(η(θ, θ1)− η(θ, θ2)) (3)

with75

η(θ, θi) =

√
r2 + r2

in + (z − h)2 − 2rrin cos(θi − θ)
r

+cos(θi − θ) log
[
rin − r cos(θi − θ) +

√
r2 + r2

in + (z − h)2 − 2rrin cos(θi − θ)
]

−
√

r2 + r2
out + (z − h)2 − 2rrout cos(θi − θ)

r
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Fig. 2. Field azimuthal component Hθ(r, θ, z) versus the radial distance r of the observation point; h = 3mm, rin = 25mm,
rout = 28mm, θ1 = 0, θ2 = π

2
, θ = π

2

− cos(θi − θ) log
[
rout − r cos(θi − θ) +

√
r2 + r2

out + (z − h)2 − 2rrout cos(θi − θ)
]

(4)

Equation (3) is valid for any observation point M(r, θ, z) with 0 ≤ θ ≤ 2π. Figure 2 represents the76

azimuthal component Hθ(r, θ, z) versus the radial distance r of the obervation point. The parameter values77

are h = 3 mm, θ1 = 0 rad, θ2 = π
2 rad, θ = 0 rad, rin = 25 mm, rout = 28 mm.78

2) Radial component Hr(r, θ, z): The field radial component Hr(r, θ, z) created by the upper face is79

given by (5).80

Hr(r, θ, z) =
σ∗

4πµ0
(α(u2, r, z)− α(u1, r, z)) (5)

where81

ui = cos(θ − θi) (6)

and82

α(ui, r, z) = F1(ui, r, z)

(
G1(ui, r, z)E∗

[
arcsin[

√
r2 + r2

out − 2rroutui + (z − h)2

(r + rout)2 + (z − h)2
],

(r + rout)2 + (z − h)2

(r − rout)2 + (z − h)2

])

+F1(ui, r, z)Π∗
[
arcsin[

√
r2 + r2

out − 2rroutui + (z − h)2

(r + rout)2 + (z − h)2
],

(r + rout)2 + (z − h)2

(r − rout)2 + (z − h)2

]

−F2(ui, r, z)

(
G2(ui, r, z)E∗

[
arcsin[

√
r2 + r2

in − 2rrinui + (z − h)2

(r + rin)2 + (z − h)2
],

(r + rin)2 + (z − h)2

(r − rin)2 + (z − h)2

])
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−F2(ui, r, z)Π∗
[
arcsin[

√
r2 + r2

in − 2rrinui + (z − h)2

(r + rin)2 + (z − h)2
],

(r + rin)2 + (z − h)2

(r − rin)2 + (z − h)2

]

+
(u2

i − 1)√
1− u2

i

log
[
rout − rui +

√
r2 + r2

out − 2rroutui + (z − h)2
]

− (u2
i − 1)√
1− u2

i

log
[
rin − rui +

√
r2 + r2

in − 2rrinui + (z − h)2
]

(7)

with :83

F1(ui, r, z) =
1√

1− u2
i

2rout(1 + ui)
√

rrout(ui−1)
(r−rout)2+(z−h)2

√
r2+r2

out−2rroutui+(z−h)2

(r+rout)2+(z−h)2√
rrout(1+ui)

(r+rout)2+(z−h)2

√
r2 + r2

out − 2rroutui + (z − h)2
(8)

84

F2(ui, r, z) =
1√

1− u2
i

2rin(1 + ui)
√

rrin(ui−1)
(r−rin)2+(z−h)2

√
r2+r2

in
−2rrinui+(z−h)2

(r+rin)2+(z−h)2√
rrin(1+ui)

(r+rin)2+(z−h)2

√
r2 + r2

in − 2rrinui + (z − h)2
(9)

85

G1(r, z) =
(r − rin)2 + (z − h)2

2rrin
(10)

86

G2(r, z) =
(r − rout)2 + (z − h)2

2rrout
(11)

87

E∗[k] =
∫ φ= π

2

0

√
1− k2 sin(θ)2dθ (12)

Equation (5) is valid for any observation point M(r, θ, z) with θ 6= θi and 0 ≤ θ < 2π. This expression88

remains valid for ring permanent magnets, for which the angular width is 2π (θ2 − θ1 = 2π). It leads89

to the expression of the radial component already given by the authors for ring magnets [32]. Figure 390

represents the field radial component Hr(r, θ, z) versus the radial distance r. The used parameters are91

h = 3 mm, θ1 = 0 rad, θ2 = π
2 rad, θ = 0 rad, rin = 25 mm, rout = 28 mm.92

3) Axial component Hz(r, θ, z): The field axial component Hz(r, θ, z) created by the upper face is93

given by (13).94

Hz(r, θ, z) =
σ∗

4πµ0
(γ(θ, θ2)− γ(θ, θ1)) (13)
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Fig. 3. Field radial component Hr(r, θ, z) versus the radial distance r of the observation point; h = 3mm, rin = 25mm,
rout = 28mm, θ1 = 0 rad, θ2 = π

2
rad, θ = π

2
rad

with95

γ(θ, θi) = h1η1(θ, θi)Π∗
[

2(c1 + d1)f
2c1f −

√
2
√

d2
1f(−e + f)

, i sinh−1

[√ −1
c1 + d1

√
c1 − d1 cos(θ − θi)

]
,
c1 + d1

c1 − d1

]

+h2η1(θ, θi)Π∗
[

2(c1 + d1)f
2c1f +

√
2
√

d2
1f(−e + f)

, i sinh−1

[√ −1
c1 + d1

√
c1 − d1 cos(θ − θi)

]
,
c1 + d1

c1 − d1

]

−h3η2(θ, θi)Π∗
[

2(c2 + d2)f
2c2f −

√
2
√

d2
2f(−e + f)

, i sinh−1

[√ −1
c2 + d2

√
c2 − d2 cos(θ − θi)

]
,
c2 + d2

c2 − d2

]

−h4η2(θ, θi)Π∗
[

2(c2 + d2)f
2c2f +

√
2
√

d2
2f(−e + f)

, i sinh−1

[√ −1
c2 + d2

√
c2 − d2 cos(θ − θi)

]
,
c2 + d2

c2 − d2

]

(14)

with96

η1(θ, θi) =

(
−i

√
d1(−1+cos(θ−θi))

c1−d1

√
d1(1+cos(θ−θi))

c1+d1

1
cos(θ−θi)

)

(
2
√

−1
c1+d1

√
d2
1f (−e + d1)(d2

1(e− f)) + 2c2
1f

) (15)

97

η2(θ, θi) =

(
−i

√
d2(−1+cos(θ−θi))

c2−d2

√
d2(1+cos(θ−θi))

c2+d2

1
cos(θ−θi)

)

(
2
√

−1
c2+d2

√
d2
2f (−e + d2)(d2

2(e− f)) + 2c2
2f

) (16)

98

h1 = 2ad1(
√

2c1f +
√

d2
1f(−e + f)) + b1(

√
2d2

1(e− f)− 2c1

√
d2
1f(−e + f)) (17)
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Parameters
a 2(z − h)(r2 + (z − h)2)
b1 2(z − h)rrout

c1 r2 + r2
out + (z − h)2

d1 −2rrout

e −r2 − 2(z − h)2

f r2

b2 2(z − h)rrin

c2 r2 + r2
in + (z − h)2

d2 −2rrin

TABLE I
DEFINITION OF THE PARAMETERS USED IN (13)

99

h2 = 2ad1(−
√

2c1f +
√

d2
1f(−e + f)) + b1(

√
2d2

1(−e + f)− 2c1

√
d2
1f(−e + f)) (18)

100

h3 = 2ad2(
√

2c2f +
√

d2
2f(−e + f)) + b2(

√
2d2

2(e− f)− 2c2

√
d2
2f(−e + f)) (19)

101

h4 = 2ad2(−
√

2c2f +
√

d2
2f(−e + f)) + b2(

√
2d2

2(−e + f)− 2c2

√
d2
2f(−e + f)) (20)

where Π∗[n, φ, m] is given in terms of the incomplete elliptic integral of the third kind by (21).102

Π∗[n, φ, m] =
∫ φ

0

1
(1− n sin(θ)2)

√
1−m sin(θ)2

dθ (21)

Although the result Hz(r, θ, z) is a real number, equation (14) contains the imaginary number i (i2 = −1)103

because we did not succeed in obtaining a real expression for the axial component Hz(r, θ, z). The104

parameters used in (14) are defined in Table I. However, as the imaginary part is the consequence of105

numerical noise and nearly equals zero, when the expression (14) is used in symbolic mathematical tools106

such as Mathematica or Maple, the real part of Hz(r, θ, z) only has to be considered. Equation (13) is107

valid for any observation point M(r, θ, z) with θ 6= θi and 0 ≤ θ < 2π. Here again, this expression108

remains valid for ring permanent magnets, i.e. when the angular width is 2π (θ2 − θ1 = 2π). It also109

leads to the expression of the axial component already given by the authors for ring magnets [32]. Figure110

4 represents the axial component Hz(r, θ, z) versus the radial distance r of the observation point. The111

parameter values are h = 3 mm, θ1 = 0 rad, θ2 = π
2 rad, θ = 0 rad, rin = 25 mm, rout = 28 mm.112
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Fig. 4. Field axial component Hz(r, θ, z) versus the radial distance r of the observation point; h = 3mm, rin = 25mm,
rout = 28mm, θ1 = 0 rad, θ2 = π
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2
rad

III. RADIALLY MAGNETIZED TILES113

A. Notation and geometry114

The geometry and its parameters are shown in Fig.(5). The axis z is an axis of symmetry. Again, the115

coulombian model of permanent magnets is used. The permanent magnet ring sector is thus represented116

by two curved planes which correspond here to the inner and outer faces of the ring. The inner face is117

charged with a magnetic pole surface density +σ∗; the outer one is charged with the opposite magnetic118

pole surface density −σ∗. We only consider the inner face to simplify the analytical calculation. As stated119

previously, the total magnetic field can be calculated by the application of the linear superposition principle120

to both faces.121

The magnetic pole volume density is not taken into account in this paper. This means that the total sum122

of all the charges in the model does not equal zero. Indeed, as the magnetization is radial, the magnetic123

pole surface density of the curved planes is uniform. The charge on the outer plane is thus greater than124

the charge on the inner plane, as the surfaces of these planes. The volume charge density, linked to the125

magnetization divergence, appears in fact to set the global charge to zero. If the radial width of the tile is126

small, which also means that the tile is thin, then the difference between the inner and outer plane surface127

is small, and so is the magnetic pole volume density: its neglecting is an acceptable approximation. This128

approximation becomes less and less valid when the thickness of the tile increases. This paper presents129

expressions for radially magnetized thin tiles.130

Let us consider a point P on the tile inner face. The magnetic field ~H created by the source point131
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Fig. 5. Radially magnetized permanent magnet tile: parameter definition

P (r, θs, z) at any observation point M(r, θ, z) of the space is given by (22).132

~H(r, θ, z) =
σ∗

4πµ0

∫ θ2

θ1

∫ h

0

−−→
PM∣∣∣−−→PM

∣∣∣
3 r1dz1dθs (22)

where µ0 is the magnetic permeability of the vacuum (µ0 = 4π.10−7SI) and σ∗ is the fictitious magnetic133

pole surface density given in tesla . Equation (22) can be written as follows:134

~H(r, θ, z) =
σ∗

4πµ0

∫ θ2

θ1

∫ h

0

(r − r1 cos(θ − θs))~ur − r1 sin(θs − θ)~uθ + (z − z1)~uz

(r2
1 + r2 + (z − z1)2 − 2r1r cos(θ − θs))

3
2

r1dz1dθs (23)

B. Components along the three directions ~ur, ~uθ, ~uz135

The integration of (23) leads to the magnetic field components created by the inner face along the three136

axes defined Hr(r, θ, z), Hθ(r, θ, z), Hz(r, θ, z).137

1) Azimuthal component Hθ(r, θ, z): The field azimuthal component Hθ(r, θ, z) is given by (24).138

Hθ(r, θ, z) =
σ

4πµ0
(β(θ, θ1)− β(θ, θ2)) (24)
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Fig. 6. Field azimuthal component Hθ(r, θ, z) versus the radial distance r of the observation point; h = 3 mm, rin = 25 mm,
rout = 28 mm, θ1 = 0 rad, θ2 = π

2
rad, θ = 0 rad

with139

β(θ, θi) =
rin(b− z)

r
√
−(b− z)2

arctan

[√
r2 + r2

in + (b− z)2 − 2rrin cos(θi − θ)√
−(b− z)2

]

−rin

r
tanh−1

[√
r2 + r2

in + z2 − 2rrin cos(θi − θ)
z

]

(25)

Equation (24) is valid for any observation point M(r, θ, z) with 0 ≤ θ ≤ 2π. Figure 6 represents the140

azimuthal component Hθ(r, θ, z) versus the radial distance r of the observation point. The parameters141

values are h = 3mm, θ1 = 0, θ2 = π
2 , θ = 0, rin = 25mm, rout = 28mm.142

2) Radial component Hr(r, θ, z): The radial component of the field Hr(r, θ, z) is given by (26).143

Hr(r, θ, z) =
σ∗

4πµ0
(β(u1)− β(u2)) (26)

with144

ui = cos(θ − θi) (27)

and145

β(ui) =




2i(1 + ui)
√

d(−1+ui)
c+e1+dui

(−(a1d + b1(c + e1))) F∗
[
i sinh−1[

√−c+d−e1√
c+e1+dui

], c+d+e1
c−d+e1

]

d
√−c + d− e1e1

√
d(1+ui)

c+e1+dui

√
1− u2

i



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Parameters
a1 rinrz
b1 -r2

inz
c r2 + r2

in

d −2rrin

e1 z2

a2 −rinr(z − h)
b2 r2

in(z − h)
e2 (z − h)2

TABLE II
DEFINITION OF THE PARAMETERS USED IN (26)

+




2i(1 + ui)
√

d(−1+ui)
c+e1+dui

(b1c− a1d)Π∗
[

e1
c−d+e1

, i sinh−1[
√−c+d+e1
c+e1+dui

], c+d+e1
c−d+e1

]

d
√−c + d− e1e1

√
d(1+ui)

c+e1+dui

√
1− u2

i




+




2i(1 + ui)
√

d(−1+ui)
c+e2+dui

(−(a2d + b2(c + e2))) F∗
[
i sinh−1[

√−c+d−e2√
c+e2+dui

], c+d+e2
c−d+e2

]

d
√−c + d− e2e2

√
d(1+ui)

c+e2+dui

√
1− u2

i




+




2i(1 + ui)
√

d(−1+ui)
c+e2+dui

(b2c− a2d)Π∗
[

e2
c−d+e2

, i sinh−1[
√−c+d+e2
c+e2+dui

], c+d+e2
c−d+e2

]

d
√−c + d− e2e2

√
d(1+ui)

c+e2+dui

√
1− u2

i




(28)

where F ∗[φ,m] is defined by (31) and Π∗[n, φ, m] is given by (21). Here again, Eq.(28) contains the146

imaginary number i (i2 = −1) although the result Hr(r, z) is a real number because we did not succeed in147

obtaining a real expression for the radial component Hr(r, θ, z). The parameters used in (28) are defined148

in Table II. Of course, when using the expression (28) in tools like Mathematica or Mapple, the imaginary149

part of Hr(r, θ, z) has to be dropped, as it only corresponds to numerical noise and nearly equals zero.150

Equation (26) can be used to calculate the radial component of the magnetic field at any observation151

point M(r, θ, z) with θ 6= θi and 0 ≤ θ < 2π. When the tile angular width becomes 2π (θ2 − θ1 = 2π),152

so for ring magnets, the expression becomes the one already given in a previous paper [32]. Figure 7153

represents the field radial component Hr(r, θ, z) versus the radial distance r of the observation point. The154

parameter values are h = 3 mm, θ1 = 0 rad, θ2 = π
2 rad, θ = 0 rad, rin = 25 mm, rout = 28 mm.155
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Fig. 7. Field radial component Hr(r, θ, z) versus the radial distance r of the observation point; h = 3 mm, rin = 25 mm,
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3) Axial component Hz(r, θ, z) : The field axial component Hz(r, θ, z) is given by (29):156

Hz(r, θ, z) =
σ∗

4πµ0
(α(θ, θ2)− α(θ, θ1)] (29)

with157

α(θ, θi) =
2rin

(r − rin)2 + (z − h)2
F∗

[
θ − θi

2
,− 4rrin

(r − rin)2 + (z − h)2

]

− 2rin

(r − rin)2 + z2
F∗

[
θ − θi

2
,− 4rrin

(r − rin)2 + z2

]

(30)

where F∗[φ, m] is given in terms of the elliptic integral of the first kind by (31).158

F∗[φ|m] =
∫ θ=φ

θ=0

1√
1−m sin(θ)2

dθ (31)

Equation (29) is valid for any observation point M(r, θ, z) with 0 ≤ θ ≤ 2π. Figure 8 represents159

the field axial component Hz(r, θ, z) versus the radial distance r of the observation point. The parameter160

values which are taken for the calculation are h = 3 mm, θ1 = 0 rad, θ2 = π
2 rad, θ = 0 rad, rin = 25 mm,161

rout = 28 mm.162
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Fig. 8. Field axial component Hz(r, θ, z) versus the radial distance r of the observation point; h = 3 mm, rin = 25 mm,
rout = 28 mm, θ1 = 0 rad, θ2 = π
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IV. CONCLUSION163

This paper gives the analytical expressions of the three components of the magnetic field created by tile164

permanent magnets whose magnetization is either radial or axial. When the tiles are axially magnetized,165

the magnetic field can be calculated using these expressions at any point in space. For radially magnetized166

tiles, the expressions given correspond to the field created by thin tiles, whose inner and outer radii are167

not too different, and can be used at any point of the space as well. The magnetic field is directly168

calculated, without the help of the magnetic potentials. The utility of such analytical expressions for the169

three components of the magnetic field created by tile permanent magnets lies in the fact that the related170

calculations have a low computational cost, especialy with regard to methods using finite elements or171

finite differences, and that they allow efficient parametric optimization studies of devices, which is very172

important for all applications.173

The Mathematica files containing the analytical expressions used to calculate the three components of the174

magnetic field for axial and radial magnetizations are available line [33].175
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