
HAL Id: hal-00401728
https://hal.science/hal-00401728

Submitted on 5 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cosine Lobes for Interactive Direct Lighting in Dynamic
Scenes

Sylvain Meunier, Daniel Meneveaux, Lilian Aveneau, Djamchid Ghazanfarpour

To cite this version:
Sylvain Meunier, Daniel Meneveaux, Lilian Aveneau, Djamchid Ghazanfarpour. Cosine Lobes for
Interactive Direct Lighting in Dynamic Scenes. 2009. �hal-00401728�

https://hal.science/hal-00401728
https://hal.archives-ouvertes.fr

Cosine Lobes for Interactive Direct Lighting
in Dynamic Scenes

S. Meunier1, D. Meneveaux1, L. Aveneau1, D. Ghazanfarpour2

1 Xlim laboratory, CNRS UMR 6172, University of Poitiers, France
2 Xlim laboratory, CNRS UMR 6172, University of Limoges, France

Abstract
Many rendering systems rely on spherical harmonics or wavelets that provide a mean to solve the rendering equa-
tion using scalar products. In addition, these basis of functions may represent hemispherical lighting, visibility
and reflectance with a small number of coefficients. However, their use requires the projection of each term of the
rendering equation, which is computationally intensive at run-time (for instance with dynamic environments), and
limits practically the number of basis functions used at the expense of precision. In this paper, we show how cosine
lobes can also be used for representing each term of the rendering equation, without the drawbacks usually ex-
isting in the above basis of functions. Cosine lobe representations (such as Lambert, Phong or Lafortune models)
have already been used intensively by many authors for their advantage of intuitively and compactly representing
reflectance functions. Using this representation also for visibility and lighting, we explain how the rendering equa-
tion can be efficiently solved. As an application, we propose an interactive rendering system for direct lighting,
naturally including soft shadows and spatially varying materials.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Bitmap and frame buffer
operations I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture

1. Introduction

Several methods in the literature are proposed for producing
physically-based images with lighting simulations, complex
BRDF (bidirectional reflectance distribution function), natu-
ral lighting, a high number of objects and so on [PH04]. Un-
fortunately, producing realistic images at interactive frame
rates in dynamic scenes remains a challenging task. Many
authors have provided interesting solutions with the use of
orthogonal basis functions such as spherical harmonics (SH)
[SKS02], hemispherical harmonics (HSH) [Gau06] or Haar
wavelets (HW) [NRH03]. This type of representation sim-
plifies the rendering equation computation and replaces the
continuous integration by products of coefficients. Neverthe-
less, the projection of visibility, BRDF and/or incoming ra-
diance on the basis functions remains a costly process. This
problem is often addressed offline, with pre-computed ra-
diance transfer methods (PRT) [SKS02, NRH03], so as to
provide real time rendering. However, PRT still is difficult
to manage with fully dynamic scenes because the stored
data increases rapidly, unless some parameters be fixed (e.g.

viewpoint, objects, BRDF, etc.). Some applications compute
only a few coefficients for ensuring interactivity rather than
relying on pre-computed transfers [KLA04]. These methods
inhibit all frequency lighting environments with SH and pro-
duce blocking artifacts with HW.

In this paper we propose a method for overcoming the
limitations of previous methods, using the flexibility of
spherical radial basis functions (SRBF) [TS06]. They are de-
fined on the sphere, not necessarily uniformly distributed,
invariant under rotation and spatially localized; they only re-
quire choosing an axis and some shape parameters which
is much meaningful; the representation is compact (a small
number of coefficients accurately represent data). Our ap-
proach is based on cosine lobes, providing a mean for using
directly Phong and Lafortune BRDF models, with poten-
tially spatially varying, anisotropic, retro-reflection and/or
off-specular reflectance data [MLH02]. It provides practi-
cal solutions to represent many reflectance properties. Our
contributions include:

Technical Report, XLim laboratory

2 S. Meunier, D. Meneveaux, L. Aveneau, D. Ghazanfarpour / Cosine Lobes for Interactive Direct Lighting in Dynamic Scenes

• a method for solving rendering equation using a homoge-
neous representation based on cosine lobes;

• an acceleration system based on table fetching and linear
interpolations;

• an application using cosine lobes for estimating shadows
and direct lighting with various types of BRDF;

• an interactive rendering system providing all-frequency
shadows and realistic materials in dynamic scenes.

This paper shows how the rendering equation can be
efficiently solved when each term is represented by co-
sine lobes. Our application does not address diffuse inter-
reflections that should be handled using existing approxima-
tions proposed in [SGNS07,GJW08].

The remaining of this paper is organized as follows: Sec-
tion 2 reviews existing methods and highlights our contri-
butions; Section 3 presents an overview of our approach.
Section 4 details the use of cosine lobes for the rendering
equation; Section 5 explains the representation of visibility,
BRDF and incoming radiance using cosine lobe sums; Sec-
tion 6 presents and discusses the performances provided by
our method; Finally, Section 7 concludes and mentions fu-
ture work.

2. Related Work

Let us consider the rendering equation :

Lo(x,−→vo) =
Z

!+
fr(x,−→v ,−→vo)Li(x,−→v)(−→n ·−→v)d−→v (1)

=
Z

!+
f̃r(x,−→v ,−→vo)Li(x,−→v)d−→v (2)

where Lo denotes the outgoing radiance from a point x in
direction −→vo ; !+ is the upper hemisphere with solid angles
d−→v around directions−→v ; fr is the BRDF and f̃r the BRDF
multiplied by (−→n ·−→v); Li is the incoming radiance at x from
direction −→v and n the surface normal at x.

Let Ls be the environment lighting at a point x from any
direction −→v . When objects are located between x and the
lighting environment, visibility has to be considered. Equa-
tion 3 can thus be rewritten :

Lo(x,−→vo) =
Z

!+
f̃r(x,−→v ,−→vo)Ls(x,−→v)V (x,−→v)d−→v (3)

V being the visibility term.

We aim at dealing with dynamic scenes (with potentially
varying BRDF, moving lighting sources and objects), so that
the triple product f̃r · Ls ·V be solved at run-time. Several
methods choose SH or HW basis of functions for repre-
senting f̃r, Ls and V , such as [KLA04, ZHL∗05, RWS∗06,
SGNS07,GJW08].

Generally speaking, orthogonal basis functions such as
SH and HW provide a useful representation of functions on

the sphere. Once the projection is performed, the integra-
tion becomes a dot product, allowing real-time or interac-
tive rendering for dynamic scenes. However, all the coeffi-
cients have to be estimated even though some (potentially
many) of them only contribute negligibly to lighting compu-
tations [KLA04].

Shadow fields [ZHL∗05] tabulate SH or HW visibility
representation in the space surrounding each blocker, re-
quiring large tables and many triple product computations.
SH exponentiation [RWS∗06,SGNS07,GJW08] replaces the
SH triple products by fast coefficients accumulation in log
space. With bounding sphere sets, these methods are capable
of handling more complex scenes and skinned objects. Nev-
ertheless, SH limit the application to low frequency light-
ing environments. Kautz et al. [KLA04] propose a hemi-
spherical rasterization of blocker geometry for estimating
a SH representation of the transfer function (f̃r.V in this
case). This method also uses SH with low memory require-
ments and no precomputation based on the scene geome-
try. [KLA04,ZHL∗05,RWS∗06,SGNS07,GJW08] are com-
monly denoted as blocker accumulation methods and imply
visibility computations for each shaded point.

Kozlowski and Kautz [KK07] perceptually analyze possi-
ble simplifications for visibility. They propose a directional
ambient occlusion method based on a piecewise constant ap-
proximation ofV . SH are used to smooth the results and even
with approximated shadows and highlights, images remain
visually plausible. Green et al. [GKMD06, GKD07] use a
similar simplification for shadows, associated with isotropic
gaussian functions (SRBF) for representing BRDF and/or
visibility; incoming radiance is represented by environment
maps, pre-filtered using gaussian functions, allowing real
time rendering. These methods have been designed for exist-
ing environment maps and do not allow interactive dynamic
lighting.

SRBF are well known in the computer graphics commu-
nity. For instance the generalized cosine lobe [LFTG97] and
the isotropic Gaussian kernel [War92] are used to model
BRDF, leading to a compact, expressive and physically plau-
sible representation. Tsai and Shih [TS06] adapt the Abel-
Poisson kernel to PRT. The compactness of SRBF leads to a
more efficient compression scheme than the clustered princi-
pal component analysis proposed in [SHHS03] and provides
faster rendering with more realistic results.

The attractiveness of SH/HW is practically limited by the
projection cost for high-frequency environments or BRDF.
For instance a small detail may require a lot of (sometimes
null) coefficients with SH/HW when only one cosine lobe
can be efficiently used. In addition, some useless computa-
tions have to be performed during the SH/HW projection,
when null coefficients are produced. We propose to over-
come this limitation with the use of an unfixed (contrary
to [TS06]) set of cosine lobes for every term : visibility,
lighting and reflectance.

Technical Report, XLim laboratory

S. Meunier, D. Meneveaux, L. Aveneau, D. Ghazanfarpour / Cosine Lobes for Interactive Direct Lighting in Dynamic Scenes 3

3. Overview

We propose to represent each term of the triple product
f̃r · Ls ·V by cosine lobes in the rendering equation (Equa-
tion 3). The integration is performed based on the idea that
the product of two lobes can be approximated by another
lobe (Sections 4). We provide an interactive application ded-
icated to direct lighting (Section 5), where our approxima-
tion proves efficient with freely and dynamically distributed
lobes, avoiding useless computations of null coefficients
(Section 6).

We have implemented a blocker accumulation system that
benefits from SRBF (with cosine lobes) advantages, while
providing interactive rendering in dynamic scenes with all-
frequency BRDF, visibility and incoming radiance. There-
fore, scene geometry is simplified using sphere sets (block-
ers and light sources); from a given point, a sphere defines a
cone, used for constructing a lobe.

The triple product f̃r · Ls ·V cosine lobes are generated
using:

• the BRDF (Lambert, Phong, Lafortune, etc.) representa-
tion for f̃r (see Section 5.1);

• a set of spherical light sources for Ls, with one lobe for
each sphere (see Section 5.2);

• for V , a visibility mask is produced using the simplified
objects geometry for constructing again spheres and thus
cosine lobes (see section 5.3).

4. The Rendering Equation and Cosine Lobes

A cosine lobe function is written:

c(−→v) = s max(−→a ·−→v ,0)e (4)
= s "(−→v) (5)

where s is the scaling factor, −→a is the axis and e is the lobe
thickness.

Fixing x, −→vo and assuming f̃r, Ls and V approximated by
any cosine lobe sums:

f̃r(−→v) =#
i

(
si"i(−→v)

)
(6)

Ls(−→v) =#
j

(
s j" j(−→v)

)
(7)

V (−→v) =#
k

(
sk"k(−→v)

)
(8)

Note that si"i, s j" j and sk"k do generally not correspond
to the same cosine lobes (even when i= j = k).

Equation 3 can be rewritten:

Lo =
Z

!
#
i

(
si"i(−→v)

)
#
j

(
s j" j(−→v)

)
#
k

(
sk"k(−→v)

)
d−→v

(9)

=#
i
#
j
#
k
sis jsk

Z

!
"i(−→v)" j(−→v)"k(−→v) d−→v (10)

YX

Z

Y
X

Z

X

Y

Z

X

Y

Z

X

Z

X

Z

Figure 1: Example of cosine lobe product. Cosine lobes
in the left box are multiplied. The top-right box provides
the resulting surface while the bottom-right box illustrates
the (single) lobe corresponding to our approximation: the
global shape and direction are preserved.

However, the term
R
!"i(−→v)" j(−→v)"k(−→v) d−→v cannot be

precomputed because cosine lobes are not fixed. Thus, start-
ing from equation 9:

Lo =
Z

!
#
i, j

[
si"i(−→v)s j" j(−→v)

]
#
k
sk"k(−→v) d−→v (11)

we propose to approximate
[
si"i(−→v)s j" j(−→v)

]
by a single

cosine lobe sl"l(−→v):

Lo ≈
Z

!
#
l
sl"l(−→v)#

k
sk"k(−→v) d−→v (12)

=
Z

!
#
l,k

[
sl"l(−→v)sk"k(−→v)

]
d−→v (13)

The rendering equation finally becomes a sum of cosine lobe
integrations:

Lo ≈
Z

!
#
m
sm"m(−→v) d−→v =#

m
sm

Z

!
"m(−→v) d−→v (14)

Sections 4.1 and 4.2 describe how the product of two
lobes is managed and how the cosine lobe integration can
be precomputed.

4.1. Product

We propose to approximate the product of two cosine lobes
c1 and c2 by another single cosine lobe cr:

c1(−→v)c2(−→v) ≈ cr(−→v) (15)
≈ s1s2prmax(−→ar ·−→v ,0)er (16)

pr is called the partial scaling factor. The parameters pr,−→ar and er depend on e1, e2 and $ (the angle between −→a1
and −→a2). pr, −→ar and er are precomputed for a wide range of
(e1,e2,$) triplets and store the result in a table. For main-
taining directionality and shape for the approximated cosine
lobe (see Figure 1), we choose to minimize the L2 distance

Technical Report, XLim laboratory

4 S. Meunier, D. Meneveaux, L. Aveneau, D. Ghazanfarpour / Cosine Lobes for Interactive Direct Lighting in Dynamic Scenes

between c1(−→v) · c2(−→v) and cr(−→v):

{pr ,−→ar ,er} = arg min
{pr ,−→ar ,er}

Z

!

(
c1(−→v)c2(−→v)− cr(−→v)

)2d−→v

(17)

Since solving this optimization problem for the param-
eters altogether is time-consuming and prone to numerical
errors, we propose an approach in two steps: (i) finding the
axis −→ar and (ii) fitting the partial scaling factor pr and the
exponent er .

First step:

{ar} = arg max
{−→ar }

c1(−→ar)c2(−→ar) (18)

is done with the Nelder-Mead method. The algorithm is ini-
tialized with

−→a1+−→a2
‖−→a1+−→a2 ‖

since −→ar is necessary between−→a1 and
−→a2 .

Second step:

{pr,er} = arg min
{pr ,er}

Z

!

(
c1(−→v)c2(−→v)− cr(−→v)

)2d−→v (19)

is done with the Levenberg-Marquardt algorithm. er is ini-
tialized with e1 + e2 which is the solution for −→a1 = −→a2 and
pr with 1.

In practice e1 and e2 are sampled in [0,100000] so that
any scene type be handled. $ is ranged in [0,%]. Our sam-
pling strategy is based on the cosine lobe integration varia-
tion (see Figure 2). We pick 16 linearly spaced samples in
each interval [0,1], [1,10]. . . , [10000,100000], which is em-
pirically an acceptable trade-off between storage, computing
time and accuracy.

10−1 100 101 1020

1

2

3

4

5

6

Cosine lobe exponent

In
te

gr
at

io
n

va
lu

e

Figure 2: Integration value according to cosine lobe expo-
nents (logarithmic scale), with a scaling factor s set to 1. The
low variation for high exponents allows a sparser sampling
than with lower exponents.

Such an approximation produces precise results compared
to the actual lobe product integration: we have estimated
the integration difference value between (i) the approxi-
mated lobe product in the table and (ii) the corresponding
lobe product. The integration is processed using an adaptive
Simpson quadrature with a tolerance set to 10−7; the mean
error is equal to 7.1379× 10−4, with a variance equal to

1.2091× 10−8 ; the median error value is 0. Note that the
maximum error (Figure 3) occurs with very low exponents
e1 and e2, that are practically rarely used, even with Lafor-
tune model. In addition, as explained in Section 4.3, cosine
lobe exponents produced during rendering always increase.

4.2. Integration

Note that the cosine lobe integration value only depends on
the exponent:

Z

!
c(−→v) d−→v =

Z

!
s max(−→a ·−→v ,0)ed−→v (20)

= s
Z

!
max(−→X ·−→v ,0)e d−→v (21)

where c is an arbitrary lobe and−→X is any axis.

Since this integration is time-consuming, we choose to
pre-compute a set of values for e in the range [0,100000]
using the common adaptive Gauss quadrature. For limiting
memory requirements, the table sampling strategy also re-
lies on the cosine lobe integration variation (see Figure 2):
the first samples are densely distributed while the last ones
can be sparser; 128 linearly spaced samples are estimated in
each interval [0,1], [1,10]. . . , [10000,100000]. At run-time,
the rendering process uses linear interpolation; it is fast and
the error remains low with this sampling strategy (see sec-
tion 6).

4.3. Rendering

The shading of a 3D point seen from a given viewpoint is
performed using only cosine lobe sums for BRDF, visibility
and lighting. Equation 3 can be rewritten:

Lo =
Z

!+

I

#
i

(
ci(−→v)

) J

#
j

(
c j(−→v)

) K

#
k

(
ck(−→v)

)
cdot(−→v)d−→v

(22)
where cdot(−→v) is the cosine lobe −→n ·−→v .

Using approximation 16, equation 22 becomes

Lo =
I·J·K
#
m

Z

!+
cm(−→v)d−→v (23)

Many cosine lobe products only negligibly contribute to
the outgoing radiance Lo, for two main reasons: (i) when
a product c1 · c2 is approximated as a new cosine lobe cr
(see Equation 16), the exponent er is greater than e1 and
e2 (see Figure 6); (ii) integration values of cosine lobes de-
crease when exponents increase. Thus, a negligible cosine
lobe multiplied with another lobe is approximated by a neg-
ligible lobe.

When the product of two cosine lobe sums is expanded
(see Equations 11 and 13), we propose to check the integra-
tion value of each approximated cosine lobe product. If the
integration value is smaller than a given threshold ti, the new

Technical Report, XLim laboratory

S. Meunier, D. Meneveaux, L. Aveneau, D. Ghazanfarpour / Cosine Lobes for Interactive Direct Lighting in Dynamic Scenes 5

Figure 3: Lobe product approximation (Section 4.1) error: e1 and e2 correspond to the lobes exponents and $ is the angle
between the lobes axis. The error is defined as the absolute difference between the integration of c1 · c2 and cr. The error value
is represented by a color; the white regions correspond to a low error; the black regions to a high error. An important error
(≈ 50%) is noticeable for e1 and e2 between 0 and 1 approximatively and an angle $ around %/2. Left: full representation for
e1 and e2 in range [0..100000]; Right: zoom on the region corresponding to the highest error.

cosine lobe can be neglected (removed from the expanded
sum).

Figure 4 presents a statistical distribution of lobe products
integration values (10 million of randomly generated prod-
ucts). This Figure shows that even a small threshold avoids
many lobes computations.

In our application, a single threshold ti is set manually by
the user for all shaded points (see Figure 5); other strategies
with varying thresholds depending on time constraints or the
scene configuration could also be investigated.

In addition, given a product of several lobes, when the first
one can be neglected, all the remaining computations can
obviously be avoided. Consequently, the ordering of compu-
tations affects the number of products actually performed.
Section 5.4 describes the ordering strategy we propose for
our application.

5. Cosine Lobes for Direct Lighting

This section describes an application that uses our represen-
tation for direct lighting. We discuss cosine lobes construc-
tion for each term of the integral. Once lobes are defined, the
computations are performed using the precomputed products
and integration described above.

10−2 10−1 100 1010

20

40

60

80

100

Integration value

Pe
rc

en
ta

ge

Figure 4: Percentage of lobe products integration (ordinate)
smaller than or equal to a given value. The dashed curve
represents integrated products in a low frequency environ-
ment (exponents ∈ [0,10]); the dotted curve corresponds to a
higher frequency environment (exponents ∈ [0,100]) and the
last curve to exponents ∈ [0,1000]. In practice, exponents
often grow up to 15000.

5.1. Review of Cosine Lobe-Based BRDF Models

Phong and Lafortune models [Pho75, LFTG97] rely on co-
sine lobes for compactly representing BRDF. This section
expresses those models according to our formalism.

Phong Model

f̃r(−→v) = kd(−→n ·−→v)+ ksmax(−→r ·−→v ,0)es (24)
= cd(−→v)+ cs(−→v) (25)

Technical Report, XLim laboratory

6 S. Meunier, D. Meneveaux, L. Aveneau, D. Ghazanfarpour / Cosine Lobes for Interactive Direct Lighting in Dynamic Scenes

ti = 5× 10−2 ti = 1× 10−3 ti = 0

Figure 5: The scene is rendered using several values of ti. Visibility is represented with a high number of thin cosinus lobes
(small contributions) in penumbra, while umbra require a small number of thick lobes. Consequently, when ti is too high,
shadows become aliased.

0
2000

4000
6000

8000
9150

0
2000

4000
6000

8000
9150

0

5000

10000

15000

19 000

e2e1

er

Figure 6: Representation of er according to e1 and e2 for
the approximation of the product c1.c2 for a fixed $. Note
that er is greater or equal than e1 and e2 (the corresponding
surface is not a plane).

where

cd(−→v) = kdmax(−→n ·−→v ,0)1 (26)

and

cs(−→v) = ksmax(−→r ·−→v ,0)es (27)

kd defines the diffuse cosine lobe and −→n is the surface
normal. es is the specular cosine lobe exponent, and ks the
scale factor. −→r is the reflection of −→vo by −→n .

Note that the original Phong model is not physically cor-
rect, but we can as well express the modified Phong model
[Lew94] with our representation.

Lafortune Model

fr(−→v) =#
i
&imax(−→v TMi

−→vo)ei (28)

=#
i
ci(−→v) (29)

where, according to [LFTG97], and using Helmoltz reci-
procity :

ci(−→v) = ki‖Mi
−→vo‖ei max(

Mi
−→vo

‖Mi
−→vo‖

·−→v ,0)ei (30)

ki is the scale factor of ci, Mi represents the lobe axis in
a local frame depending on material anisotropy and ei the
exponent.

5.2. Incoming Radiance

Given a spherical light source (r, p,v) defined by a radius r,
a position p and a radiance value v, the incident radiance on
the hemisphere centered around a given point x is delimited
by a spherical cap (a cone); the cosine lobe corresponding to
the incident radiance coming from this light source is:

clight(−→v) = vmax
(

p− x
‖p− x‖ ·−→v ,0

)ecap
(31)

ecap parameter corresponds the the spherical cap angle $cap
(see Figure 7). ecap is estimated solving the following opti-

Figure 7: $cap represents the spherical cap angle corre-
sponding to sphere (p, r).

mization problem

{ecap} = arg min
{ecap}

Z

!

(
fcap(−→v)− ccap(−→v)

)2d−→v (32)

where fcap is a function representing a spherical cap:

fcap(−→v) =
{
1 if −→v ·−→a ≥ cos($cap)
0 else (33)

Technical Report, XLim laboratory

S. Meunier, D. Meneveaux, L. Aveneau, D. Ghazanfarpour / Cosine Lobes for Interactive Direct Lighting in Dynamic Scenes 7

and

ccap(−→v) = 1max(−→a ·−→v ,0)ecap (34)

In practice, ecap is precomputed and stored in a table con-
taining 1000 values, and linearly interpolated at run-time.

When using several light sources, the corresponding co-
sine lobes may overlap. However, our visibility processing
(described in the next Section) naturally handles this case.

5.3. Visibility

In the off-line process, objects are simplified by sphere sets
using the methods proposed by Wang et al. [WZS∗06] or by
Bradshaw and O’Sullivan [BO02]; they have been already
successfully used for visibility computations by many au-
thors [RWS∗06, SGNS07, GJW08]. These methods closely
approximate the object surface with only a few spheres (for
instance only 64 spheres for the Stanford bunny provide sat-
isfactory shadow results in our application). The computed
sphere sets strongly simplify objects geometry and are still
deformable with articulated skeletons systems.

As for light sources, we aim at defining cosine lobes using
spherical caps (cones):

V (−→v) = 1− focc(−→v) (35)

where focc(−→v) is (see Equation 33 and Figure 7):

focc(−→v) =
{
1 if −→v ·−−→aocc ≥ cos($occ)
0 else (36)

With N spheres, visibility becomes:

V (−→v) =
N
'
j=1

(
1− f j(−→v)

)
(37)

= 1−
2N−1
#
k=1

gk(−→v) (38)

where gk is a term corresponding to a product of spherical
caps.

Unfortunately, this expression leads to the computation of
2N terms. Replacing each spherical by only one lobe still re-
quires 2N lobes and introduces imprecisions that cumulate
during the computation of the above product. The main rea-
son is that one cosine lobe does not accurately approximate a
spherical cap, and finally caps overlapping (that is correctly
handled for visibility in Equation 38) produces errors with
this representation.

To tackle these problems, we propose to hierarchically
build a visibility mask, to control lobes generation (includ-
ing overlapping problems) and to limit their number. One
visibility mask is built for each (spherical) light source so
as to precisely identify the incoming light directions and the
effective blockers. This process is repeated for each point at
each frame.

Given a point x, for each light source represented by a
sphere (r, p), a unit square Sunit surrounding the correspond-
ing cone (see Figure 8(a)) is placed at a distance dist, de-
duced from the cone angle ($cap). Blockers are clipped and
the remaining spheres are splatted onto Sunit . Note that Sunit
may be placed behind the light source.

(a) (b) (c)

Figure 8: Occluding spheres splatting: (a) a unit square is
placed according to the spherical light source; (b) useless
blockers are clipped; (c) remaining spheres are splatted onto
the unit square.

sphere 1 sphere 1 sphere 2

sphere 2 sphere 3 sphere 3

Figure 9: Quad-tree construction example. 3 spheres are
splatted and a maximal depth of 2 is used. Red leafs are sub-
divided, yellow leafs are not currently considered, and green
leafs corresponding to shadows are frozen.

Splatted spheres are used to build a quad-tree (see Fig-
ure 9). The quad-tree depth is practically limited to 4 or 5.
We have chosen an aggressive approach where partially cov-
ered leaves are ignored so as to reduce the number of cosine
lobes. However, the conservative alternative can be easily
implemented, keeping the partially covered leaves (see Fig-
ure 10). A cosine lobe is built for each shadow leaf using a
bounding sphere (see Figure 11).

Nearby cosine lobes mutually overlap and the error must
be corrected. Therefore, we propose to associate a weight to
each lobe:

V (−→v) = cunit(−→v)−
N−1
#
i
wici(−→v) (39)

where

cunit(−→v) = 1.max(−→n ·−→v ,0)0 = 1 (40)
cunit(−→v)ca(−→v) = ca(−→v) (41)

Technical Report, XLim laboratory

8 S. Meunier, D. Meneveaux, L. Aveneau, D. Ghazanfarpour / Cosine Lobes for Interactive Direct Lighting in Dynamic Scenes

Figure 10: Shadows artifacts when depth of visibility mask is not high enough. Top row: with aggressive visibility; bottom row:
with conservative visibility. From left to right: visibility depth is equal to 2, 3 and 5.

Figure 11: Once visibility mask is built (left), one bounding
sphere is constructed per shadow leaf and the associated co-
sine lobes are produced (right).

and wi depends on the distance dist and on the leaves depth.
When dist varies, the cosine lobes overlap varies as well (see
Figure 12). wi values are fixed experimentally for various
values of dist ∈ {0.25,0.5,1,2,3,4,5,6,7,8,9,10} and for
each depth.

Figure 12: The cosine lobes overlapping vary according to
the distance dist, even with the same visibility mask.

Weights can be adjusted manually once with a single
scene (one plane, one object and one light source is enough)

so as to obtain smooth shadows. First, weight values are ini-
tialized to 0; the first level weight is then chosen to obtain a
perfect dark in the umbra area. The weight associated with
each successive level is then fixed so as to avoid shadows
sharpness with the previous ones. This process is performed
only once and the resulting weights can be used with any
scene. At run-time, weights are linearly interpolated accord-
ing to dist.

5.4. Ordering Computations

This section describes our strategy for ordering lobe prod-
ucts in Equation 22, so as to reduce computing time. Let
us recall that the cosine lobe cr resulting from the prod-
uct of two lobes c1 and c2 depends on e1, e2 and $ (see
Section 4.1). Firstly, when $ increases, cr integration value
decreases. Secondly, with visibility masks, all the products
between visibility lobes and incoming radiance lobes are ac-
tually useful (cannot be neglected). Thirdly, in our applica-
tion (direct lighting), incoming radiance requires less cosine
lobes than visibility. Thus, firstly multiplying reflectance and
lighting (before visibility) produces fast results. This strat-
egy produces results remaining close to Monte-Carlo inte-
gration with interactive rendering (Figure 13), though it does
not ensure the best precision.

6. Results and Discussion

This section presents some results obtained with our appli-
cation, implemented in C++. All the results have been pro-
duced with an Intel Core 2 Duo T7500 (2.2GHz) CPU and
an NVidia Geforce 8400 GS.

Technical Report, XLim laboratory

S. Meunier, D. Meneveaux, L. Aveneau, D. Ghazanfarpour / Cosine Lobes for Interactive Direct Lighting in Dynamic Scenes 9

(a) Reference (b) Our application

Figure 13: Shadows with direct lighting for a scene com-
posed of 5 and a plane: (a) reference path tracing image and
(b) image computed using our application. Maximal depth of
the visibility mask is set to 5.

Constructing our 3 pre-computed tables (product, integra-
tion and spherical caps) requires approximately 4 hours. Let
us recall that these tables do not depend on the scene char-
acteristics: they are computed once and for all. The mem-
ory required for their storage is less than 10 MB. For the
sake of clarity, the following results only corresponds to
cosine lobes representation, without any optimization: for
each frame, the whole image is completely computed (no
caching technique is employed, nor spatial or temporal co-
herency). Our application consists in shading a selected set
of 3D points (either triangle vertices or estimated per pixel,
employing a G-buffer). Shading is performed on the CPU
and rasterization uses OpenGL.

Due to the flexibility and adaptivity of cosine lobes repre-
sentation (number of lobes, bandwith, free distribution, etc.),
computing efforts can be concentrated on regions where
lighting needs to be detailed. For instance, penumbra areas
requires a higher number of lobes for representing visibility
than umbra areas or fully-lit regions, where only a few com-
putations can produce precise results. Consequently, our ap-
plication performances vary according to chosen materials
(Figure 14), number of shaded points, maximum depth of
visibility masks and chosen threshold of cosine lobe prod-
ucts (Figures 16 and 5) or relative position between occlud-
ers and lights. Frame rates are given in the caption of each
figure.

Presently, many approaches dedicated to dynamic scenes
are based on SH. Generally speaking such orthogonal basis
functions are adapted to integrations. However, the projec-
tion on these basis functions is costly. For instance, on Fig-
ure 16, umbra and lit regions would have required the same
amount of computation and are restricted to low-frequency
effects, contrary to our cosine-lobe based approach.

Once cosine lobe sums are defined, the approach given in
section 4 approximates lobe products and uses tables for re-
ducing computing time. Figure 15 shows that these approxi-
mations lead to a small difference, compared to Monte-Carlo
integration. For the Monte-Carlo reference image, the maxi-
mum radiance value is 0.701961, the mean radiance value

Figure 14: Spatially varying BRDF are possible using
Lafortune model. This scene is composed of 65536 shaded
points, 1 spherical light source and no occluder, 13.73 frame
per second.

Figure 15: Comparison between Monte-Carlo integration
(top left) and our approach (top right) for the cosine lobe
sums integration. Lobe sums are generated using the meth-
ods described in Section 5. The bottom images show the dif-
ference. The bottom left image represents positive values and
the bottom right the negatives.

is 0.127906; with our approach, the maximum difference
is 0.054902 while the mean difference is 0.003884. Note
that our method introduces a bias: regions located in shad-
ows, where more cosine lobes products are computed, ex-
hibit more negative difference values.

We also compare the images produced by our application
with path tracing for direct lighting and soft shadows. As
shown in Figure 13, the results are hardly distinguishable.

Table 6 presents the computing time ratio corresponding
to each rendering part, for different types of scenes, with
hard and soft shadows, complex or simple material and var-
ious numbers of occluders. The last row corresponds to a
scene that does not contain any occluder, implying no visi-
bility computations.The main part of computing time is dedi-
cated to visibility mask construction, as for any other blocker
accumulation method.

Shadows are considered by many authors as a key is-

Technical Report, XLim laboratory

10 S. Meunier, D. Meneveaux, L. Aveneau, D. Ghazanfarpour / Cosine Lobes for Interactive Direct Lighting in Dynamic Scenes

ti = 0 False colors False colors ti = 0.001

f ps= 14.93 f ps= 17.27

f ps= 15.18 f ps= 15.38

0 60 120 180 240 300

Figure 16: Performance gains obtained according to the threshold ti (Section 4.3). The scene is composed of 4096 shaded
point, one spherical light source and 64 spherical occluders (the bunny). The threshold is chosen so as to keep indistinguishable
the difference between resulting images (left and right columns). The false-color images illustrate the number of cosine lobe
products computed (scale is given at the bottom). The specular highlight properly interacts with the shadows, our method
naturally allows to avoid many computations due to the threshold. Note that frame rates increase when the highlight moves
away from the shadow. We can see a reduction of about 50% of the number of product computations (corresponding to 2 frames
per second in practice, because of visibility mask construction cost).

Figure a b c d e
14 29.6 15.5 0 0 54.9
18 0.3 0.2 82.7 6.1 10.7
17(a) 2.6 2.7 76.2 8.1 10.4
17(b) 1.5 1.5 63 15.8 18.2
17(c) 0.7 0.7 54 20.3 24.3

Table 1: CPU time (percent) for the shading loop: (a) gener-
ation of cosine lobe sums for reflectance, (b) lighting, (c) vis-
ibility mask construction, (d) visibility mask lobes, (e) ren-
dering equation integration computation.

sue for realistic rendering; their processing is often handled
specifically. Figures 13 and 17 show that our method nat-
urally produces realistic direct lighting (including hard and
soft shadows), without introducing specific processing. Our
application can be used with any type of material, using a
spatially varying Lafortune BRDF model (see Figure 14).
We do not introduce any occluder in this scene for high-
lighting the low cost for representing reflectance and lighting
with cosine lobe sums. Figure 18 illustrates a difficult case
for the construction of the visibility mask. Self-shadowing is
robustly supported with adapted sphere sets.

7. Conclusion

In this paper, we present a new method for solving the ren-
dering equation using approximated cosine lobe products.
We propose an interactive application for direct lighting in-
cluding all-frequency lighting / materials, soft shadows and
dynamic scenes. As shown in the results, cosine lobes as ba-
sis functions are useful for properly targeting relevant hemi-
spherical directions (flexibility) in terms of BRDF, incoming
radiance or visibility. In addition, their representation only
requires a few parameters (compactness).

Shading is only performed on the CPU and performances
can be further improved using a full GPU implementation,
adapting for instance the streaming reduction algorithm pro-
posed in [RAH07] for avoiding useless computations con-
cerning negligible lobe products. Furthermore, our applica-
tion demonstrates the feasibility of rapidly computing direct
lighting, without using any spatial and temporal coherency.
Visibility masks are often identical for close neighborhoods
of shaded points; this coherency can be used for reducing the
computing time.

Global illumination in dynamic scenes has been addressed
using spherical proxies and spherical harmonics [SGNS07,
GJW08]. Similarly to these authors, our direct lighting ap-
plication makes use of blocker accumulation. In the future,

Technical Report, XLim laboratory

S. Meunier, D. Meneveaux, L. Aveneau, D. Ghazanfarpour / Cosine Lobes for Interactive Direct Lighting in Dynamic Scenes 11

(a) 15.9 fps (b) 10.1 fps (c) 4.75 fps

Figure 17: Shadow smoothing according to the distance between plane and the Bunny. Frame rates decrease with respect to
the (increasing) shadowed area. Penumbra implies complex visibility masks and more cosine lobes. 16384 points are shaded
considering a strictly diffuse material, 1 spherical light source, 64 spherical occluders, fixing the maximal depth of the visibility
mask to 5 and the threshold to 0.001 (Section 4.3).

Figure 18: Two chocolate-flavoured bunnies in a green box. These pictures take 6.25s for rendering. 480000 points are shaded,
using 1024 spherical occluders, 2 cosine lobes for the reflectance models and 1 spherical light source. We choose 5 for the
maximum depth of the visibility mask.

we aim at adapting their interesting simplifications to cosine
lobes for overcoming the usual SH drawbacks.

Finally, cosine lobes can also be used in various SRBF
applications, such as the representation of high frequency
environment maps [TS06], anisotropic materials [LFTG97],
or real-time environment map rendering applications, such
as Green et al. [GKD07] method.

References

[BO02] BRADSHAW G., O’SULLIVAN C.: Sphere-
tree construction using dynamic medial axis approxima-
tion. In SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer anima-
tion (2002), pp. 33–40.

[Gau06] GAUTRON P.: Cache de luminance et cartes
graphiques : une approche pour la simulation d’éclairage

temps réel dans des scènes animées. PhD thesis, Univer-
sité de Rennes 1, 2006.

[GJW08] GUERRERO P., JESCHKE S., WIMMER M.:
Real-time indirect illumination and soft shadows in dy-
namic scenes using spherical lights. Computer Graphics
Forum 27, 8 (2008), 2154–2168.

[GKD07] GREEN P., KAUTZ J., DURAND F.: Efficient
reflectance and visibility approximations for environment
map rendering. Comput. Graph. Forum 26, 3 (2007), 495–
502.

[GKMD06] GREEN P., KAUTZ J., MATUSIK W., DU-
RAND F.: View-dependent precomputed light transport
using nonlinear gaussian function approximations. In
SI3D ’06: Proceedings of the 2006 symposium on Inter-
active 3D graphics and games (2006), pp. 7–14.

[KK07] KOZLOWSKI O., KAUTZ J.: Is accurate occlu-
sion of glossy reflections necessary? In APGV ’07: Pro-

Technical Report, XLim laboratory

12 S. Meunier, D. Meneveaux, L. Aveneau, D. Ghazanfarpour / Cosine Lobes for Interactive Direct Lighting in Dynamic Scenes

ceedings of the 4th symposium on Applied perception in
graphics and visualization (2007), pp. 91–98.

[KLA04] KAUTZ J., LEHTINEN J., AILA T.: Hemispher-
ical rasterization for self-shadowing of dynamic objects.
In Proceedings of Eurographics Symposium on Render-
ing 2004 (2004), pp. 179–184.

[Lew94] LEWIS R. R.: Making shaders more physically
plausible. Computer Graphics Forum (Eurographics ’94
Conference Issue) 13, 3 (1994), 1–13.

[LFTG97] LAFORTUNE E. P. F., FOO S.-C., TORRANCE
K. E., GREENBERG D. P.: Non-linear approximation of
reflectance functions. In SIGGRAPH ’97: Proceedings
of the 24th annual conference on Computer graphics and
interactive techniques (1997), pp. 117–126.

[MLH02] MCALLISTER D. K., LASTRA A., HEIDRICH
W.: Efficient rendering of spatial bi-directional re-
flectance distribution functions. In HWWS ’02: Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware (2002), pp. 79–88.

[NRH03] NG R., RAMAMOORTHI R., HANRAHAN P.:
All-frequency shadows using non-linear wavelet lighting
approximation. In SIGGRAPH ’03: ACM SIGGRAPH
2003 Papers (2003), pp. 376–381.

[PH04] PHARR M., HUMPHREYS G.: Physically Based
Rendering: From Theory to Implementation. Morgan
Kaufmann Publishers Inc., 2004.

[Pho75] PHONG B. T.: Illumination for computer gener-
ated pictures. vol. 18, pp. 311–317.

[RAH07] ROGER D., ASSARSSON U., HOLZSCHUCH
N.: Efficient stream reduction on the gpu. In Workshop
on General Purpose Processing on Graphics Processing
Units (2007).

[RWS∗06] REN Z., WANG R., SNYDER J., ZHOU K.,
LIU X., SUN B., SLOAN P.-P., BAO H., PENG Q., GUO
B.: Real-time soft shadows in dynamic scenes using
spherical harmonic exponentiation. ACM Trans. Graph.
25, 3 (2006), 977–986.

[SGNS07] SLOAN P.-P., GOVINDARAJU N. K.,
NOWROUZEZAHRAI D., SNYDER J.: Image-based
proxy accumulation for real-time soft global illumination.
In PG ’07: Proceedings of the 15th Pacific Conference on
Computer Graphics and Applications (2007), pp. 97–105.

[SHHS03] SLOAN P.-P., HALL J., HART J., SNYDER J.:
Clustered principal components for precomputed radiance
transfer. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Pa-
pers (2003), pp. 382–391.

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precom-
puted radiance transfer for real-time rendering in dy-
namic, low-frequency lighting environments. In SIG-
GRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques (2002),
pp. 527–536.

[TS06] TSAI Y.-T., SHIH Z.-C.: All-frequency precom-
puted radiance transfer using spherical radial basis func-
tions and clustered tensor approximation. In SIGGRAPH
’06: ACM SIGGRAPH 2006 Papers (2006), pp. 967–976.

[War92] WARD G. J.: Measuring and modeling
anisotropic reflection. In SIGGRAPH ’92: Proceedings
of the 19th annual conference on Computer graphics and
interactive techniques (1992), pp. 265–272.

[WZS∗06] WANG R., ZHOU K., SNYDER J., LIU X.,
BAO H., PENG Q., GUO B.: Variational sphere set ap-
proximation for solid objects. Vis. Comput. 22, 9 (2006),
612–621.

[ZHL∗05] ZHOU K., HU Y., LIN S., GUO B., SHUM H.-
Y.: Precomputed shadow fields for dynamic scenes. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers (2005),
vol. 24, pp. 1196–1201.

Technical Report, XLim laboratory

