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Abstract

This article is concerned with a multi-scale domain decomposition method, based on the FETI-DP
solver, for large-scale structural elastic analysis and suited to problems that exhibit structural hetero-
geneities, such as plate assemblies in the presence of structural details. In this approach once a partition
of the global fine mesh into subdomains has been performed (all subdomains possess a fine mesh) and
to optimize the computational time, the fine mesh is preserved only in the zones of interest (with local
phenomena due to discontinuity, hole, etc.) while the remaining subdomains are replaced by numerical
homogenized coarse elements. Indeed, the multi-scale aspect is introduced by the description of sub-
domains with either a fine or a coarse scale mesh. As a result, an extension of the FETI-DP domain
decomposition method is proposed in this article (called herein FETI-DP micro-macro) that allows the
simultaneous usage of different discretizations: fine (microscopic) mesh for subdomains in zones of inter-
est and coarse (macroscopic or homogenized) mesh for the complementary part of the structure. Using
this strategy raises the problem of the determination of the stiffness of coarse subdomains, and of the
incompatible finite element connection between fine and coarse subdomains. Two approaches (colloca-
tion and Mortar) are presented and compared. The article ends with patch tests, and some numerical
examples in 2D and 3D. The obtained numerical results exemplify the efficiency and capability of the
FETI-DP micro-macro approach and reveal that the Mortar approach is more accurate, at constant cost,
than the collocation approach.

This is the preprint of the following article: Ahmad Mobasher Amini, David Dureisseix, Patrice
Cartraud, Multi-scale domain decomposition method for large scale structural analysis with a zooming
technique: Application to plate assembly, International Journal for Numerical Methods in Engineer-
ing 79(4):417-443, Wiley, 2009, DOI: 10.1002/nme.2565, which has been published in final form at
http://doi.org/10.1002/nme.2565

Keywords: Domain Decomposition Method, FETI-DP, Multi-scale, homogenization, structural hetero-
geneities, Mortar method

1 INTRODUCTION

The structural design of complex structures now often relies on finite element simulations. In the case of a
large structure with small-size structural details, the finite element analysis is a difficult problem. To obtain
a solution for the whole structure as well as a good accuracy near the structural details, a model with a fine
mesh is required; this approach leads to a huge global finite element model with a large number of unknowns
that is difficult to solve.

In the last years, many researches have been conducted to develop efficient numerical methods those are
capable of solving large-scale problems. The direct sparse (out-of-core) solvers are robust, efficient and are
already employed in several commercial finite element codes. These solvers need large memory resources and
have a limited parallel scalability. The classical iterative solvers (Jacobi, Gauss Seidel, Conjugate Gradient,
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etc. [1]) are excellent from the memory usage point of view and can be easily parallelized [2]. But, their
efficiency depends on the type of problem considered, and are not the most suited methods for mechanical
engineering problems that are often ill-conditioned. Multigrid methods, see [3, 4], take advantage of using
different description levels within an iterative approach (sometimes, coarse levels can be built automatically,
as in smoothed aggregation methods [5]). Usually the coarsening ratio between two successive levels is
somehow small; this leads to the use of many different levels to bridge the gap between microscopic and
macroscopic scales.

An alternative choice is the domain decomposition methods (DDM), which combine advantages of both
direct and iterative solvers. The main idea is based on the splitting of a large-scale domain into several
subdomains with either overlapping or non-overlapping interfaces. For domain decomposition methods with
non-overlapping interfaces, three approaches have been intensively studied. Based on parameters chosen on
the interfaces, to enforce the continuity between the neighboring subdomains, these approaches are named
as the primal, dual and mixed domain decomposition method, respectively [6]. The primal method chooses
displacements as interface unknowns (Balancing Domain Decomposition method, or BDD, [7]). The dual
method chooses interface forces as unknowns (classically dealt with as Lagrange multipliers in the FETI, [8]
family of algorithms). In the mixed method where the interfaces play a major role, both displacements and
forces are unknowns (LATIN method, [9], and in a less extend [10, 11]).

Dual-primal FETI (FETI-DP) [12, 13] is the latest generation of the FETI methods that preserves the
numerical and parallel scalability of the original FETI and FETI-2 [14] methods for second and fourth-order
problems. This method also uses Lagrange multipliers to satisfy the continuity constraints on the interfaces.
Indeed, instead of introducing the coefficients for rigid body modes in the original FETI and the second set
of Lagrange multipliers in FETI-2, it chooses some ‘corner node’ degrees of freedom as basic unknowns so
that each subdomain is non-singular [15]. The coarse problem of FETI-DP, which is essential for reaching
scalability properties, is also sparser than the coarse problem of the method FETI or FETI-2. These features
make FETI-DP method much more robust and applicable for implementation than its previous versions. The
numerical experiments show that it also delivers better computational performance for most cases [12, 13].

In the domain decomposition method based iterative solvers, a direct sparse solver is used as the local
solver in each subdomain. During this step, local forward and backward substitutions consume somehow a
large percentage of the total CPU time. The total number of local resolutions depends almost linearly on
the number of subdomains when the Dirichlet optimal preconditioner is used.

Therefore, the computational cost can be optimized by reducing the time spent in the local resolution
step. In this article, we propose a method using the macro (homogenized) description of the subdomains
which are not directly in the zones of interest. This algorithm requires a preliminary local homogenization
step on the fine mesh of the subdomains, and removes unnecessary local factorizations on every subdomain
in the coarse zones. Additionally, this algorithm reduces the size of the interface condensed problem and
removes the unnecessary forward and backward substitution steps in the coarse zone, to save computational
cost. Nevertheless, an overhead due to the numerical homogenization step is introduced by this strategy.
This overhead is problem dependent, but in general, for large scale problems, it is acceptable and does not
prevent savings of overall CPU time costs.

In the framework of domain decomposition method with incompatible meshes, several approaches have
already been proposed in the literature, see e.g. [16], [17], [18] and references herein. However, in these works,
the point was the coupling of different discretizations across subdomain interface. In this article, starting with
a domain decomposition with matching interface, non-matching interfaces arise from the homogenization of
subdomains. This method is called FETI-DP micro-macro throughout this article, and is developed in an
elasticity framework.

For this purpose, this article is organized as follows. In Section 2, the general framework of the FETI-
DP method is briefly recalled. In Section 3, the main steps of the FETI-DP micro-macro approach are
presented. Section 4 introduces the essentials of two connection methods (collocation and Mortar) and
Section 5 concerns the determination of the macro (homogenized) stiffness of the macro zone. Section 6
presents the new interface problem of the FETI-DP micro-macro approach with two discretization scales for
the subdomains. In Section 7, the method is validated with patch tests, and several examples and results
are discussed. Finally, Section 8 concludes the article and suggests several future works.
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2 DOMAIN DECOMPOSITION APPROACH

2.1 Selection of a domain decomposition method

Domain decomposition methods are both efficient and flexible tools for structural analysis [19, 2]. When the
size of the model increases, the iterative resolution methods, e.g. conjugate gradient (CG) method, can be
used to solve the problem. They often allow a parallel treatment of the resolution phase. This article is not
concerned with the parallelization of the resolution, but focus on the modularity of the methods, especially
for coupling different subdomains that may have been modeled with different discretization levels.

The different versions of the FETI method (FETI-1 [8], FETI-2 [14], FETI-DP [12, 13]) belongs to the
family of the non-overlapping domain decomposition methods with Lagrange multipliers. These methods
have been developed as iterative solvers for large-scale systems of equations in structural analysis, obtained
by using the finite element method. Among all the domain decomposition methods that were presented by
several authors, the FETI-DP method is chosen here as a basis of development for the following reasons.
Usually with a multi-scale domain decomposition method, the reference problem is split into subdomains
and the coarse space problem is numerically built from this fine scale description. The coarse problem can
be discrete by nature, and is not always related to any finite element model.

Within a micro-macro approach, as detailed in 3, the coarse nodes of the FETI-DP method may be used
to define a coarse subdomain, which constitutes a structural homogenization of the detailed subdomain. In
that way, the coarse compatibility of displacements are ensured automatically between neighboring coarse
subdomains.

2.2 Basic FETI-DP method

In this Section, the FETI-DP method, as presented in [12, 13] is briefly reviewed to keep this article self-
contained, and to define the notations that will be used hereafter.

Let us consider the domain Ω, partitioned into a set of Ns non-overlapping subdomains Ωs. The
subdomain-related nodes are classified into three groups: corner nodes (c), non-corner interface nodes (b)
and the remaining internal nodes (i), as well as their related degrees of freedom, see Figure 1.

corner node (c)

interface node

 (b)

internal node (i)

Ω4 Ω5 Ω6

Ω1 Ω2 Ω3

Figure 1: Classification of the subdomain nodes

The assembled stiffness matrix Ks, the solution vector us and the loading vector fs on each subdomain
can be split as follows:

Ks =

 Ks
ii Ks

ib Ks
ic

Ks
bi Ks

bb Ks
bc

Ks
ci Ks

cb Ks
cc

 , us =

 usi
usb
usc

 , fs =

 fsi
fsb
fsc

 (1)

Denoting with uc the global vector of corner degrees of freedom, the global vector of degrees of freedom,
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u, and the subdomain-related vector of non-corner degrees of freedom, usr, are defined as:

u =

[
ur
uc

]
=


u1
r

.

.

.
uNs
r

uc

 , usr =

[
usi
usb

]
(2)

Using these notations, one can also split the subdomain stiffness matrix into:

Ks =

[
Ks
rr Ks

rc

KsT

rc Ks
cc

]
(3)

Moreover, the continuity of the global solution is enforced at corner nodes. Two mapping matrices, Bsr and
Lsc, are introduced to locate the corresponding degrees of freedom. Here, Bsr are signed boolean matrices
locating the non-corner degrees of freedom of the subdomain Ωs that belongs to the global interface, and Lsc
are localization matrices that give the corner degrees of freedom of each subdomain, from the global vector
of corner degrees of freedom: usc = Lscuc.

Expressing the equilibrium equation for each subdomain in a global variational form leads to:

Ks
rru

s
r +Ks

rcL
s
cuc +Bs

T

r λ = fsr for s=1, ... , Ns
Ns∑
s=1

Ls
T

c KsT

rc u
s
r +

Ns∑
s=1

Ls
T

c Ks
ccL

s
cuc =

Ns∑
s=1

Ls
T

c fsc = fc
(4)

with Lagrange multipliers λ on the global interface, that traduce forces used to enforce the interface continuity
condition:

Ns∑
s=1

Bsru
s
r = 0 (5)

To guaranty the non-singularity of the Ks
rr, it is important that each subdomain contains at least three

non colinear corner nodes, [15].
With the above equations and after some algebraic transformations, the following dual-primal problem

is obtained (using Lagrange multipliers λ, and primal corner displacement uc, as unknowns):[
FIrr FIrc
FTIrc −K?

cc

] [
λ
uc

]
=

[
dr
−f?c

]
(6)

where

FIrr =

Ns∑
s=1

BsrK
s−1

rr Bs
T

r FIrc =

Ns∑
s=1

BsrK
s−1

rr Ks
rcL

s
c

dr =

Ns∑
s=1

BsrK
s−1

rr fsr f?c = fc −
Ns∑
s=1

Ls
T

c KsT

rc K
s−1

rr fsr

Kcc =

Ns∑
s=1

Ls
T

c Ks
ccL

s
c

K?
cc = Kcc −

Ns∑
s=1

(Ks
rcL

s
c)
TKs−1

rr (Ks
rcL

s
c)

(7)

By condensing uc on λ in the equation (6), the following symmetric positive definite dual interface
problem is obtained:

FIλ = Dr (8)
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with:
FI = FIrr + FIrcK

?−1

cc FTIrc

Dr = dr − FIrcK?−1

cc f?c
(9)

The interface problem (8) is usually not solved by a direct method. Since in this case, the matrix FI
and the vector Dr should be assembled and for large-scale problems, assembling the interface problem can
require unaffordable storage and computational resources. Moreover, assembling and solving the interface
problem in a direct way would be a bottleneck for the parallel performance of the method.

The FETI-DP method can be viewed as the transformation of the global problem Ku = f , into the
interface problem (8), and a resolution with a iterative, e.g. conjugate gradient (CG), algorithm. This
method does not need to explicitly assemble the interface operators (9). The main cost lies in the factorization
of the subdomain matrices Ks

rr, and the use of matrix-vector products. Each matrix-vector product can be
efficiently performed using subdomain by subdomain sparse matrix-vector product and local forward and
backward substitutions.

From an implementation point of view, solving the interface problem (8) leads to the following steps:

• step 1:

δk = FIrrλ
k =

Ns∑
s=1

BsrK
s−1

rr Bs
T

r λk (10)

• step 2:

δk ← δk + FIrcK
?−1

cc FTIrcλ
k (11)

Step 1 is the same as for the FETI method (local computation on each subdomain and assembling). Step
2 can be presented in three sub-steps as follows:

• Step 2.1:

yk = FTIrcλ
k =

Ns∑
s=1

Ls
T

c KsT

rc K
s−1

rr Bs
T

r λk (12)

• Step 2.2: Solve K?
ccx

k = yk to get xk

• Step 2.3:

zk = FIrcx
k =

Ns∑
s=1

BsrK
s−1

rr Ks
rcL

s
cx
k (13)

Steps 2.1 and 2.3 correspond to local computations in each subdomain. The product Ks−1

rr Bs
T

r λk is already

performed in Step 1 and the product Ks−1

rr Ks
rc is pre-computed in a preliminary step, when constructing K?

cc.
Step 2.2 is the coarse space resolution of the mutilevel domain decomposition. This problem is solved at each
iteration, for which it propagates globally the information among all the subdomains. Such a global problem
is mandatory to reach scalability [20]. Note that for 3D problems arising for second-order partial differential
equations, to recover scalability, an enrichment of the coarse space of FETI-DP method is required [12].
The matrix K?

cc is sparse; its pattern is that of a stiffness matrix obtained by considering only the coarse
super-elements defined on coarse nodes on each subdomain.

3 FETI-DP MICRO-MACRO DESCRIPTION

Depending on the problem and on the design process, if a global fine mesh is available, it can be splitted
artificially into subdomains. In such a case, if a classical domain decomposition method is applied, each
subdomain possesses its own fine mesh, which are compatible on the interface. When the local effects (stress
concentration, discontinuity, etc.) are limited to few zones, this approach can be improved, since a quite large

percentage of the CPU time is consumed by the local resolution on subdomains, i.e. computation of Ks−1

rr qk

where qk is a vector in equations (10), (12) and (13). The detailed analysis of the CPU time profiles depends
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on the number of subdomains, the size of the coarse problem, and the selection of the preconditioner. Some
CPU time reports can be found in [14] and [21]. According to these references, 55 % to 65 % of the total
CPU time is consumed by local resolutions. The reduction of these computations will therefore significantly
improve the computational performance.

A multi-scale domain decomposition approach with different levels of discretization in subdomains is
proposed herein: one considers the fine mesh only into the subdomains with local effects that the designer
decided to check. The subdomains in zones of interest are therefore meshed finely (microscopic level) and sub-
domains located in the remaining areas of the structure are described with a coarse mesh only (macroscopic
or homogenized level), see Figure 2.

macro zone micro zone

coarse node

micro-macro

interface

micro-micro

interface

b)

a)

macro-macro

interface

Figure 2: Different levels of description: a) fine meshes in all the subdomains b) mixing fine and coarse
descriptions

In order to develop a multi-scale domain decomposition method, one has to tackle three issues: (i) the
choice of the micro and macro zones, (ii) the connection of fine and coarse meshes (incompatible mesh
connection) on the subdomain interfaces and (iii) the determination of the macro stiffness.

It must be mentioned that in this work, the choice of the fine and coarse mesh is not automated, but
rely on the expertise of the user. An important feature, not developed herein, is the possibility of switching
the zoomed areas of interest on-the-fly during the analysis. Since the process is iterative, it won’t need to
be restarted from scratch, but would be designed in an adaptive framework. This aspect of the approach is
currently under development. The issues (ii) and (iii) will be addressed in next Sections.

4 FINE AND COARSE MESH CONNECTION METHOD

The classical FETI-DP method is based on the perfect continuity of the displacement field on the interface,
(5). When different discretizations in the subdomains are considered, the problem of incompatible connection
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of meshes appears at the micro-macro interface and the interface connections have to be reformulated, see
Figure 2.

Let us consider two neighbouring subdomains Ωf and Ωc (fine and coarse, respectively) that are connected
on a local interface Γ, see Figure 3. Along this interface, the coarse subdomain shares only two corner nodes,
which are common to the finely meshed subdomain.

fine mesh 

side (f)

coarse mesh

 side (c)

Ωf Ωc

Γ } nf  
nodes

Figure 3: Interface of fine and coarse mesh

As a general rule, the mesh connection on the interface Γ, consists in satisfying the following continuity
equation:

∀x ∈ Γ = Ωf ∩ Ωc, ufb (x) = ucb(x) (14)

where ufb (x) and ucb(x) are the continuous displacement fields on the fine and coarse sides of the interface Γ.

On the fine side, the continuous displacement field, ufb (x), is defined from the underlying fine mesh and
the shape functions of the corresponding elements. On the coarse side, the coarse element is built from an
homogenization process, and is defined with its coarse nodes. In order to define a continuous displacement
field on this coarse element, the shape functions corresponding to a classical finite element are used. In this
work, since plate assemblies are considered, discrete Kirchhoff elements will be used, i.e. DKT or DKQ, see
Appendix 1. With these shape functions, the displacement vectors ucr and ucb are denoted as:

ucr = Ccu
c
c

ucb = LcrCcu
c
c

(15)

where Cc is the matrix of shape function values (interpolation matrix) on the coarse subdomain at the
location of the fine mesh nodes, ucc is the displacement vector of subdomain Ωc at the coarse nodes and Lcr is
the localization matrix that restrict the degrees of freedom on the global incompatible interface, the corner
nodes being excluded.

Several methods were presented in the literature to connect two incompatible meshes, such as collocation
[22], Mortar [23], interface element method [24] as well as other approach discussed in [25]. The weak relation
for continuity of the displacement field at the subdomain interface can be written as follow:∫

Γ

w(x).(ufb (x)− ucb(x))dΓ = 0 (16)

where w is a weighting function. Different choices of w correspond to different types of connection.
A micro-macro interpretation of the displacement fields is presented hereafter to guide the modeling

choice. For this purpose, the displacement field on the fine mesh is divided in two parts: a macroscopic part
(ufMb ) and a microscopic part (ufmb ), as follow:

ufb (x) = ufMb (x) + ufmb (x) (17)

A classical choice consists to define the macro part (ufMb ) as the interpolation of the coarse field at the nodes
of the fine mesh on the interface (ucb).

ufMb (x) = ucb(x) (18)
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From Equations (17),(18), it can be seen that the connection between fine and coarse meshes amounts to
define locality constraints for the microscopic part of the displacement. Several approaches are discussed
in [26], where macro and micro scales are superposed in the localization zone. In the work presented in
this paper, micro and macro scales are separated. Moreover, the approach is embedded in the FETI-DP
framework. As a consequence, due to the strong continuity at the corner nodes, the microscopic field ufmb
has to be zero on these nodes.

Two types of connection are discussed here, which are based on the displacements (kinematic) and Mortar
(static) approach.

4.1 Collocation method

The simplest way to satisfy the equation (16) consists of using the weighting function, w, as Dirac (δ)
functions on the all nodes of the fine mesh side of the interface. Such a procedure will be called ‘collocation’.

This approach enforces the equality of the fine displacement field on one side, with the interpolation of
the coarse displacement field on the other side:

ufb (xi) = ucb(xi) for i=1 to nf (19)

where nf is the number of interior interface nodes on the fine mesh side, see Figure 3.
Taking into account (17) and (18), it yields for the microscopic displacement vector:

ufmb = 0 (20)

i.e. for all interior interface nodes on the fine mesh side, the micro displacement is null. Finally, from
ufb = Bfr u

f
r and using (15), the continuity equation (19) on the interface can be written in matrix form as:

Afufr = Dcucc (21)

where:
Af = Bfr

Dc = LcrCc
(22)

and ur, ub and uc are subdomain, interface and coarse nodes displacement vectors, respectively.

4.2 Mortar method

The Mortar method introduced in [23] is one rigorous and popular approach to enforce a weak continuity of
the displacement field (16) at non-matching discrete interfaces. Within the framework of Mortar methods,
the weighting function, w, plays the role of a Lagrange multiplier field, and a key point of the method is the
space of these Lagrange multipliers which has to be chosen carefully [27, 28]. A usual choice is a modified
finite element trace space of the coarsest mesh [27], with modifications concerning the end nodes of the
interface [23], which are here the coarse nodes shared by the two subdomains, see e.g. [18]. In the case
studied here with a coarse subdomain interface with only two nodes, if the shape functions are linear, the
Lagrange multiplier has to be taken as a constant.

For plate elements used in this work, the shape functions used for membrane degrees of freedom are
linear, while for bending the interpolation can be linear, quadratic, or cubic, see Appendix 1. However, for
sake of simplicity, the Lagrange multiplier is chosen as a constant for each type of degree of freedom, on
each interface between two subdomains. It leads us to an average displacement connecting method on the
interface.

In this case, the displacement fields on the two sides of the interface satisfy the following relation:∫
Γ

(ufb (x)− ucb(x))dΓ = 0 (23)

Here the same assumption are made as in (18), i.e. the macro displacement part of the fine side equals
the interpolation of the coarse displacement fields on the coarse interface side. Therefore, with considering
equation (17), one obtains: ∫

Γ

ufmb (x)dΓ = 0 (24)

8



i.e. the average of the micro displacement part, ufmb , is null on the interface. It is recalled here that the

micro displacement ufmb is null at the corner node locations.
The discretization of the gluing condition (23) leads to the linear constraint of the degrees of freedom on

two sides of the interface. The following notation is used again:

ufb (x) = N(x)ufb = N(x)Bfr u
f
r (x)

ucr = Ccu
c
c

ucb(x) = N(x)Lcru
c
r = N(x)LcrCcu

c
c

(25)

where for sake of simplicity, the continuous displacement fields, ufb (x) and ucb(x), are approximated using
piecewise linear finite element shape function, N(x), defined on the interface fine mesh side.

Note that once the coarse displacement field has been interpolated (with matrix Cc), the same discretiza-
tions are obtained for the coarse and fine sides of the interface. Therefore, the shape functions Nf and N c

on the two sides of the interface are the same and are denoted N .
By substituting (25) in the equation (23), one obtains the following equation:∫

Γ

[N(x)Bfr u
f
r −N(x)LcrCcu

c
c]dΓ = 0 (26)

And in the matrix form, it yields:

Afufr = Dcucc (27)

with
Af = HBfr

Dc = HLcrCc

H =

∫
Γ

N(x)dΓ

(28)

where H denotes the integral of the shape function on the interface.
Disregarding the choice of the connection method, collocation or Mortar, the relation between the degrees

of freedom on the two sides of the interface can be put in similar forms (21) and (27). This relation is used
for managing the incompatible interface constraints by domain decomposition method in the next Section.

5 Numerical homogenization of a finely meshed subdomain

In the previous section, two connection methods between incompatible displacement fields on the interface
between non-matching subdomains were presented. In this section, we are concerned with the determination
of an homogenized stiffness for coarse subdomains.

It is recalled there that the starting point of the method is a domain decomposition of the structure
from subdomains with a fine mesh, compatible on the interface. Then, macro zones are chosen, and their
corresponding subdomains are described only from their coarse nodes, see Figure 2. When a subdomain is
discretized at a macroscopic (homogenized) scale, a macroscopic stiffness should be associated to it. This
can be deduced from its fine discretization in a preliminary stage.

The critical step of any homogenization method lies in the localization step and concerns the way a
macroscopic field loading is applied to the microscopic level. A main difficulty is the definition of suited
boundary conditions to be applied to the microscopic field on the micro domain. These boundary conditions
correspond to a modeling of the loadings applied by the neighboring subdomains. Therefore, to ensure con-
sistency of the FETI-DP micro-macro approach, the previous assumptions used for connection (collocation
or Mortar) are applied again. These assumptions can be explained in the framework of homogenization
methods. Thus, for the collocation approach, since the micro displacement field is supposed to be zero on
the subdomain boundary, this approach amounts to the strain approach of the Hill-Mandel method [29].
For the Mortar method, the micro displacement field is constrained to be zero at the corner nodes. The
other boundary degrees of freedom are associated with a Lagrange multiplier which is constant. Thus there
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are similarities with the stress approach of the Hill-Mandel method [29], in which uniform stress boundary
conditions are considered.

For a subdomain s, these boundary conditions were given by equations (15) and (19) (collocation) and
equation (26) (Mortar) respectively, when fine and coarse mesh connection was treated. Since in the homog-
enization process only one domain with a fine mesh is considered, they can be written in the general form
of the equation (21) and (27) as follows:

Asusr = Dsusc (29)

Moreover, the internal degrees of freedom, which are free of any loading, are condensed statically on the
coarse ones. In this way, it is possible to derive a macro stiffness only defined on the coarse degrees of
freedom. This homogenized stiffness is thus of a kinematic or static type, depending on the assumption used
for the localization process.

For each subdomain s, omitting the superscript s for simplification in the following, and considering the
boundary conditions (29) on all the boundary of the subdomain, the equilibrium equation of this subdomain
is:

∀ũi, ũb, ũc, Aũb = Dũc,

 ũi
ũb
ũc

T (

 Kii Kib Kic

Kbi Kbb Kbc

Kci Kcb Kcc

 ui
ub
uc

−
 fi
fb
fc

) = 0 (30)

where i, b and c still represent the subdomain internal, interface (non-corner) and corner degrees of
freedom, respectively. One can enforce the boundary conditions by Lagrange multipliers in the equilibrium
equations, which leads to: 

Kii Kib Kic 0
Kbi Kbb Kbc AT

Kci Kcb Kcc −DT

0 A −D 0



ui
ub
uc
µ

−

fi
fb
fc
0

 = 0 (31)

The macroscopic stiffness on the corner degrees of freedom of the subdomain is obtained by condensing the
internal degrees of freedom ui, then in a second stage, ub and µ onto the coarse degrees of freedom uc.

As a result, one obtains the following expression for the macroscopic (homogenized) stiffness KH and the
macroscopic (homogenized) consistent generalized force fH from the equilibrium equation (31):

KHuc = fH (32)

where:
KH = (K̄?

cc + K̄?
cbK̄

?−1

bb K̄?
bc)

fH = f̄?c + K̄?
cbK̄

?−1

bb f̄?b (33)

with:
K̄?
cc = K?

cc −K?
cbK

?−1

bb K?
bc

K̄?
cb = DT +K?

cbK
?−1

bb AT

K̄?
bb = AK?−1

bb AT

f̄?c = f?c −K?
cbK

?−1

bb f?b

f̄?b = AK?−1

bb f?b

(34)

and the terms obtained from the first condensation are:

K?
cc = Kcc −KciK

−1
ii Kic

K?
cb = Kcb −KciK

−1
ii Kib

K?
bb = Kbb −KbiK

−1
ii Kib

f?c = fc −KciK
−1
ii fi

f?b = fb −KbiK
−1
ii fb

(35)

These notations will be used in next Section to derive the new interface problem of the FETI-DP micro-
macro approach.
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6 FETI-DP MICRO-MACRO FORMULATION

Up to this point, three types of subdomain connections on the interface can be encountered, see Figure 2:

• connection of two subdomains with compatible fine meshes,

• connection of two subdomains with compatible coarse meshes,

• connection of the subdomains with incompatible fine and coarse meshes.

The first one is classical in FETI-DP method and the second one is satisfied automatically, since the coarse
nodes are common between several subdomains. For the third one, the two methods (collocation and Mortar)
presented previously, can be used. The different connections on the interfaces, once assembled for the whole
problem, are:

Ns∑
s=1

Bsru
s
r = 0 micro-micro connections

Ns∑
s=1

(Asusr −Dsusc) = 0 micro-macro connections

(36)

Here, the formulation of the FETI-DP micro-macro method is presented by using the connections (36),
the consistent macro stiffness matrix KH , and the generalized force vector fH , (33).

This can be achieved by introducing a second set of Lagrange multipliers, µ, for micro-macro interface,
in addition to the classical Lagrange multipliers, λ, for micro-micro interface.

The unconstrained equilibrium equation for all the subdomains now reads:

∀ũsr, ũsc = Lscũc,
∑
s∈Nsf

[
ũsr
Lscũc

]T ([
Ks
rr Ks

rc

Ks
cr Ks

cc

] [
usr
Lscuc

]
−
[
fsr
fsc

])
+
∑
s∈Nsc

(Lscũc)
T (Ks

HL
s
cuc − fsH) = 0 (37)

where Nsf and Nsc are the sets of subdomains with fine and coarse mesh, respectively.
It should be noted that usr contains all degrees of freedom of a subdomain, other than the corners degrees

of freedom. So, for the macro subdomains, the degrees of freedom are restricted to usc.
Using the interface continuity condition (36) in equation (37), it leads to:

Ks
rru

s
r +Ks

rcL
s
cuc = fsr −Bs

T

r λ−As
T

µ for s=1, ... , Nsf (38)

and:

∑
s∈Nsf

Ls
T

c Ks
cru

s
r +

 ∑
s∈Nsf

Ls
T

c Ks
ccL

s
c +

∑
s∈Nsc

Ls
T

c Ks
HL

s
c

uc =

 ∑
s∈Nsf

Ls
T

c fsc +
∑
s∈Nsc

Ls
T

c fsH

+
∑
s∈Nsf

Ls
T

c DsT µ (39)

From equation (38) it follows that:

usr = Ks−1

rr (fsr −Bs
T

r λ−As
T

µ−Ks
rcL

s
cuc) (40)

Substituting equation (40) into equation (39) leads after some algebraic transformations to the new dual-
primal interface problem with three unknowns (two Lagrange multipliers, λ and µ, and a primal displacement
uc):  −K?

cc Fcl Fcm
Flc Fll Flm
Fmc Fml Fmm

 uc
λ
µ

 =

 −f?cdl
dm

 (41)
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where:
K?
cc =

∑
s∈Nsf

Ls
T

c Ks
ccL

s
c +

∑
s∈Nsc

Ls
T

c Ks
HL

s
c −

∑
s∈Nsf

Ls
T

c Ks
crK

s−1

rr Ks
rcL

s
c

Fll =
∑
s∈Nsf

BsrK
s−1

rr Bs
T

r

Fmm =
∑
s∈Nsf

AsKs−1

rr As
T

and
Fcl =

∑
s∈Nsf

Ls
T

c Ks
crK

s−1

rr Bs
T

r

Fcm =
∑
s∈Nsf

Ls
T

c (Ks
crK

s−1

rr As
T

+DsT )

Flm =
∑
s∈Nsf

BsrK
s−1

rr As
T

and finally

f?c =
∑
s∈Nsf

Ls
T

c fsc +
∑
s∈Nsc

Ls
T

c F sH −
∑
s∈Nsf

Ls
T

c Ks
crK

s−1

rr fsr

dl =
∑
s∈Nsf

BsrK
s−1

rr fsr

dm =
∑
s∈Nsf

AsKs−1

rr fsr

7 SOLUTION METHOD AND NUMERICAL EXAMPLES

Several approaches, in the context of substructure based iterative solver, already dealt with additional
constraints with additional Lagrange multipliers, such as the incorporation of linear multipoint constraints
[16, 17], and for FETI-DP formulation with Mortar constraints [30, 18].

Numerous techniques (outer iterations on µ, simultaneous iterations on λ and µ and outer iterations on
λ) presented in [17, 16, 31], are used for solving the resulting problem (41).

In this article, the topic concerns mainly the modularity of the method. Therefore, the method of
simultaneous iterations on λ and µ is chosen, which is the direct extension of the FETI-DP method, to solve
the interface problem (41) of the FETI-DP micro-macro method.

In a first step, the consistency of the FETI-DP micro-macro method is checked with patch tests. After
that, in the second step, several numerical examples (cantilever beam in bending, infinite plate with a hole
in traction and bending, etc.) are presented. Throughout the numerical examples, the results are compared
either to an analytical solution or to a numerical reference solution (obtained with a classical finite element
method, with a fine mesh in all subdomains).

Two categories of FETI-DP micro-macro methods are considered in the following, according to the
assumptions used for the connection of the fine and coarse mesh and the homogenization of the coarse mesh.
A static approach where the Mortar method is used, and a kinematic one if the collocation approach is
chosen. It is recalled at this point that collocation corresponds to the strain approach of the Hill-Mandel
homogenization theory, while the Mortar method presents similarities with the stress approach, see section
5.

The first results of this approach were presented in [32] and [33].

7.1 Patch tests

Before applying the FETI-DP micro-macro method to different examples, one has to validate the two main
features of the method, i.e. the connection between fine and coarse subdomains and the homogenization
used to derive the coarse subdomain stiffness. To this end, patch tests are now considered, with a uniform
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state of stress and strain, and a membrane or bending loading. The examples are presented in Figure 4, with
a pure traction and a pure bending case, in 2D and 3D respectively, and displacement boundary conditions
in order to prevent any rigid body displacement.

Exemple in bending

X

Y

Exemple in traction

X

Z Y

u=0
v=0
w=0 v=0

w=0

w=0

u=0
v=0

v=0

Figure 4: Patch test with one subdomain

In a first step, the problem is solved using only one coarse domain. Its macro stiffness is computed from
the static or kinematic homogenization of a fine mesh, as detailed in section 5. In both cases, and for the
membrane and bending patch tests, the analytical displacement solution is recovered, up to the machine
precision for floating point computations.

X

Y

X

Y

Z

Figure 5: Patch test with an heterogeneous domain decomposition

In a second step, the same problems are considered, using the FETI-DP micro-macro proposed in this
article. Thus, an heterogeneous domain decomposition is studied, with fine and coarse subdomains, as shown
in Figure 5. Fine mesh is used in the subdomain located in the center, while the others are described as a
coarse subdomain with the macro stiffness obtained from homogenization of a fine mesh similar to that of
the central domain. Once again, the analytical displacement solution is obtained, for membrane and bending
loadings, and for both types of methods, kinematic or static.

It can be noticed that the analytical solution of the problems studied in this section exhibits a uniform
state of stress (generalized stress for the bending case) and a zero micro displacement on the interface,
according to the definition of equations (17) and (18). These situations are fully compatible with assumptions
used for the homogenization and connection between micro and macro subdomains, see equations (20) and
(24). Therefore, it is logical that the the FETI-DP micro-macro approach passes the patch test.

More complicated examples will be considered in the following sections, in order to assess the approxi-
mations of the FETI-DP micro-macro method, due to the homogenization of coarse subdomains and to the
connections between coarse and fine subdomains.

7.2 End loaded cantilever beam

In this subsection, an end-loaded cantilever beam, depicted in Figure 6, is studied. The loading consists in
a parabolic shear force P and a linear traction force repartition at the end of the beam as follows:

• the shear forces (−P ) and (+P ) in y direction, with a parabolic distribution defined by (43), are
imposed at two ends of the beam (at x = 0 and x = L, −H2 < y < H

2 ),
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• at x = L, a linear force density in the x direction leads to a resultant bending moment (−M = −PL)
in z direction, to balance the structure.

Displacement boundary conditions are also imposed at few nodes in order to prevent any rigid body motion,
see Figure 6. The overall beam equilibrium provides the reactions which correspond to the force repartition
shown in Figure 6. The goal of this example is to study the global response of structure by FETI-DP
micro-macro method.

X

Y

p
ar

ab
o

li
c 

fo
rc

e

H

L

P
P

M

O

A

X

Y

H

O

A

Figure 6: 2D cantilever beam in bending

This problem is bi-dimensional (plane stress) and the analytical solution is given e.g. in [34]. The
displacement is:

u(x, y) = −Py
EI

[1

2
(L2 − x2) +

(2 + ν)

6

(
y2 − H2

4

)]
v(x, y) = − P

EI

[L3

3
− L2x

2
+
x3

6
+

(4 + 5ν)

24
H2(L− x) +

ν

2
xy2
] (42)

The stresses are given by:

σxx(x, y) =
P

I
xy

σyy(x, y) = 0

σxy(x, y) =
P

I

(H2

8
− y2

2

) (43)

For the computations, the data used are, for the material parameters: Young’s modulus E = 1 GPa and
Poisson’s ratio ν = 0.3. For the beam geometry, a unit thickness is considered, H = 4 m and L = 8 m. The
loading parameters are P = 7.5 × 105 N and M = 6 × 106 N.m, respectively. Finally the moment of inertia
is I = H3/12.

In this example, the stress state is not uniform on the interface and in addition the micro displacement is
not zero on the micro-macro interface. These two conditions will check the homogenization and micro-macro
connection in the situation more severe than the patch test.

Let us consider the deflection in vertical direction at the point A, see Figure 6, for the two types of mesh
connection and homogenization. For different number of subdomains, one consider half of them equipped
with a fine mesh, see Figure 7. The results are compared with the solution obtained with the uniform
fine discretization (with a displacement −2.78× 10−2 m), see Figure 8, while the analytic reference value is
−2.81× 10−2 m.

It can be seen that the FETI-DP micro-macro solution is in very good agreement with the analytical
solution, even with a very small number of subdomains (one coarse and one fine). In the case of 8 subdomains
(4 coarse and 4 fine subdomains) the relative difference on the global displacement of the point A is 3 % for
the kinematic case and 1.5 % for the static case.
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Figure 7: Decomposition in subdomains and micro-macro mesh (beam bending)
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Figure 8: 2D beam with bending: displacement of the node A

15



7.3 An infinite plate with a hole in traction — plane stress study

The FETI-DP micro-macro method has been assessed in the previous example regarding overall results. The
objective of the next example is to study the ability of the method to provide a good approximation of local
results. To this end, the example of a plate in traction with a circular hole is considered, see Figure 9. Large
stress gradients are expected around the hole, and the method will be used limiting the subdomains with
a fine discretization in the vicinity of this stress concentration zone, other zones being modeled with coarse
(homogenized) mesh.

P

L

H
P

eθ
er

a

A
B

x

y

θ

Figure 9: Plate with a hole in traction and decomposition in subdomains

The plate is subjected to a uniform tension, P , in the x direction. The analytical solution in the case of
an infinite plate is presented in [34]. The stresses are given by the following relations:

σrr =
P

2
[(1− a2

r2
) + (1− 4a2

r2
+

3a4

r4
) cos(2θ)]

σθθ =
P

2
[(1 +

a2

r2
)− (1 +

3a4

r4
) cos(2θ)]

σrθ =
P

2
[(1 +

2a2

r2
− 3a4

r4
) sin(2θ)]

(44)

where r and θ are the polar coordinates and the angle θ is measured from the positive x axis in the counter-
clockwise direction. The maximum values of stress occur on the hole boundary and are given by:

σθθ(B) = σθθ(θ =
π

2
) = 3P

σθθ(A) = σθθ(θ = 0) = −P
(45)

This analysis is based on the plane stress assumption. The isotropic material parameters are: Young’s
modulus E = 210 GPa, and Poisson’s ration ν = 0.3. The following parameters are used for the plate
geometry: L = 2.1 m , H = 2.1 m, r = 0.07 m and a unit thickness. The load value is p = 100 kN.

The parameters for the FETI-DP micro-macro method are 7× 7 subdomains, which means that the hole
diameter is close to half the subdomain length, see Figure 9. As a first step, the subdomain containing the
hole is the only subdomain with a fine mesh. Since the studied plate is not infinite, a numerical reference
solution is computed with a fine mesh in all the subdomains. The FETI-DP micro-macro solution is then
compared to numerical and analytical reference solutions.

In order to assess the difference between the solution of the FETI-DP micro-macro method (with subscript
num) and numerical reference solution (with subscript ref), we can define a relative energy norm of the error
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Figure 10: Relative energy norm error, 1 micro subdomain

as:

rΩ =
Edif

Eref
(46)

where:

Edif =

∫
Ω

ε(udif) : σ(udif)dΩ

Eref =

∫
Ω

ε(uref) : σ(uref)dΩ

udif = unum − uref

(47)

This error is also computed at the finite element level, i.e. by integrating on each element, to get a local
error and is displayed in Figure 10, for the central subdomain with a fine mesh. It can be seen that the static
method provides more accurate results than the kinematic one. Moreover, for the static method, the error
is localized on the subdomain boundary, i.e. in the vicinity of the connection zone with surrounding coarse
subdomains, with a concentration at the corner nodes. However, the error decreases quickly when one moves
away from the boundary. An other comparison point of view would consist in using the local contribution to
the error. Since the elements of the mesh are approximatively of the same size, both plots lead to the same
conclusion. These results are consistent with those obtained in [35, 36], where a static connection approach
was used, without using corner continuity (note that such an additional constraint can be also prescribed in
this last approach, as in [37]). On the other hand, the error obtained with the kinematic approach is lower
in the vicinity of the connection zone, but increases as one gets closer to the central hole.

The deformed shape of the same subdomain is presented in Figure 11. Clearly, with the kinematic
approach the interfaces are straight lines, while for static approach, the average of the displacement is null
on each interface.

Kinematics Static

Figure 11: Deformation of the central subdomain

To compare local stress values, the orthoradial stress at the points A and B (see Figure 9) are reported,
as a function of the mesh density, see Figures 12 and 13. As mentioned previously, a significant error is
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obtained with the kinematic approach, while satisfactory results are given by the static approach, even if
the size of the micro zone is only twice the hole diameter.
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Figure 12: Infinite plate: stress at node A (σθθ)
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Figure 13: Infinite plate: stress at node B (σθθ)

It can also be checked that for both methods, the error rapidly decreases when the size of the micro zone
increases. Thus, for this problem and 7 × 7 subdomains again, the micro zone is now extended to 3 × 3
subdomains at the center of the plate (instead of 1 in the previous example). The errors obtained with the
FETI-DP micro-macro method are given in Figure 14, and are significantly smaller than those obtained with
only one micro subdomain, see Figure 10. For the kinematic method, the error still reaches its maximum
value in the vicinity of the hole boundary.
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Figure 14: Relative energy norm of error, 3× 3 micro subdomains

7.4 Plate with a hole in bending

The same example is reused, but with a bending loading, prescribed in the same way as for the beam-like
structure of Section 7.2. For the case where the micro zone is restricted to only one subdomain, the relative
energy error is shown in Figure 15, which has to be compared to Figure 10 for the traction loading (membrane
solution). In the bending case, the error is lower than in the traction case. The spatial distribution of the
error is also different, since maximum values are obtained on the micro zone boundary. However, in the
vicinity of the hole and with a closer examination of the error levels, the static approach is still slightly more
accurate than the kinematic one.

 1.23E−03

 1.14E−02

 3.18E−02

 5.22E−02

 7.26E−02

 9.30E−02

 0.11

 0.13

Kinematics approach Static approach

Figure 15: Relative energy norm error, 1 micro subdomain, bending case

7.5 Application to a plate assembly

In this Section, a more complicated example, with plate assembly and structural heterogeneities (holes) is
considered, see Figure 16.

The structure is subjected to an overall bending and traction loading, through a linearly varying traction
force applied at one end, the other end being clamped. The material is considered as an isotropic one with
the following parameters: Young’s modulus E = 200 GPa and Poisson’s ration ν = 0.3. The following data
are used for the geometry: length L = 3.0 m, breadth B = 2.0 m, height H = 2.0 m, with a uniform thickness
t = 0.005 m and a hole radius r = 0.1 m. For this study, the structure was divided into 36 subdomains, and
fine mesh is considered only in the subdomains embedding the holes, see Figure 16. Once again, a reference
numerical solution is obtained with a fine mesh in every subdomain. Using this solution, the relative energy
error of the FETI-DP micro-macro solution is computed, on the micro subdomains, and is given on Figure 17.
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Figure 16: Plate assembly subjected to an overall bending and traction loading (left), subdomains with fine
and coarse meshes (right)

As previously, the accuracy of both static and kinematic approaches is satisfactory. For the static approach,
the error is mainly located close to the coarse nodes, and decreases rapidly to a small value in the vicinity
of the hole. The reverse is obtained for the kinematic approach.
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Figure 17: Relative energy norm of error, plate assembly

8 CONCLUSIONS

In this article, a multi-scale extension of the FETI-DP method was presented for large-scale structural
analysis. With this method, called FETI-DP micro-macro, different discretization scales can be used in
the subdomains, thanks to an homogenization step. Starting from a classical domain decomposition with
matching interfaces, most of the subdomains are homogenized, and the original mesh (fine mesh) is kept
only in the zones where local phenomena with high stress gradients are expected. One can then optimize
the computation time.
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Two methods have been proposed for the connection of micro and macro subdomains on the interface: a
collocation approach and a method which can be viewed as a limit case of the Mortar method. The interface
continuity is written in a weak sense, while corner continuity is enforced in a strong sense, due to the FETI-
DP framework. These methods contrast with other connection approaches where the continuity is written
on macro interface quantities, which are not classical degrees of freedom, see e.g. [35, 36]. In the same
way, two homogenization methods of the macro subdomains have been presented, with a localization process
consistent with the assumptions made for the connection process. Therefore, two FETI-DP micro-macro
approaches can be defined. Both were validated by using the patch tests.

The other numerical examples have shown that accurate results can be obtained from the proposed
methods. For a given problem, it turns out that the results are sensitive to the size of the micro zone. In the
case of a problem with structural heterogeneities, it means that the micro zone has to be large enough around
them. Both static and kinematic approaches exhibit errors in the vicinity of the incompatible interfaces.
However, for the static approach, this can be considered as a boundary layer effect, since the error decreases
away from the interfaces. The reverse is obtained for the kinematic approach. Thus, the static approach
provides more accurate results and appears to be more efficient than the kinematic one.

Concerning outlooks on this study, from a user point of view, automatic assessment of the error due to
the discretization [38] and to the scale description [39] would be of particular interest, as an indication to
decide to change the scale modeling. This decision could also be done as an interactive way, during iterations
of the scheme to reach an adequate error level on the areas of interest. Obviously, the scale description is
not limited to two levels. A third level of description could also be used, for instance for a very local analysis
of fatigue or crack propagation risk, which could also be performed with coupling the plate model with a 3D
model at the finest level.

Another interesting aspect to pursue this work is to adapt a specific preconditioner for the method of
simultaneous iterations on λ and µ to solve the interface problem (see section 7). Several procedures have
been proposed in the literature [17], that could be tested on the problem we are interested herein.

Appendix 1
The stiffness matrix of the coarse elements are obtained from homogenization of a fine mesh. However, in

order to connect coarse element with surrounding micro subdomain, a continuous displacement field has to
be defined on its boundary. To this end, shape functions corresponding to a classical finite element (coarse
element) are chosen.

For the membrane behavior, a linear interpolation, is a good approximation for the in-plane displacements.
But for the bending case with a Discrete Kirchhoff Triangle (DKT) and/or a Discrete Kirchhoff Quadrilateral
(DKQ) plate element, the interpolation functions are cubic for the out-of-plane displacement w, quadratic
for the rotation denoted with θn, and linear for the rotation denoted with θt (t is the in-plane direction of
the element edge, and n is the in-plane normal to the edge) [40], see Figure 18.
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t
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θn

θt

Cubic Quadratic Linearwi wj
θni θnj θti θtj

Figure 18: interpolation of the coarse field on the interface
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