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(d, 1)-total labelling of sparse graphs
Louis Esperet∗, Mikaël Montassier† and André Raspaud‡LaBRI UMR CNRS 5800, Université Bordeaux I,33405 Talene CedexFRANCE.28th February 2006

AbstratThe (d, 1)-total number λT
d (G) of a graph G is the width of the smallest range of integersthat su�es to label the verties and the edges of G so that no two adjaent verties havethe same olor, no two inident edges have the same olor and the distane between the olorof a vertex and the olor of any inident edge is at least d. This notion was introdued byHavet and Yu in [6℄. In this paper, we study the (d, 1)-total number of sparse graphs andprove that for any 0 < ε < 1
2
, and any positive integer d, there exists a onstant Cd,ε suhthat for any ε∆-sparse graph G with maximum degree ∆, we have λT

d (G) ≤ ∆ + Cd,ε.
1 IntrodutionIn the hannel assignment problem, we need to assign frequeny bands to transmitters. If twotransmitters are too lose, interferenes will our if they attempt to transmit on lose frequenies.In order to avoid this situation, the hannels assigned must be su�iently far. Moreover, if twotransmitters are lose but not too lose, the hannels assigned must still be di�erent. Thisproblem is known under the L(p, q)-labelling problem of a graph G, where a L(p, q)-labellingis an integer assignment L to the verties of G suh that ∀(u, v) ∈ V (G)2, dG(u, v) = 1 ⇒
|L(u) − L(v)| ≥ p and ∀(u, v) ∈ V (G)2, dG(u, v) = 2 ⇒ |L(u) − L(v)| ≥ q. In 1992, Griggs andYeh introdued this labelling with p = 2 and q = 1 in [4℄. Sine, this notion has been widelystudied and gives many hallenging problems. In partiular, in 1995, Whittlesey, Georges andMauro [3℄ studied the L(2, 1)-labelling of the inidene graph obtained from G. The inidenegraph of G is the graph obtained from G by replaing eah edge by a path of length 2. The
L(2, 1)-labelling of the inidene graph of G is equivalent to an assignment of integers to eahelement of V (G) ∪ E(G) suh that :1. the edge-oloring is proper, i.e. no two inident edges reeive the same integer ;2. the vertex-oloring is proper, i.e. no two adjaent verties reeive the same integer ;3. the di�erene between the integer assigned to a vertex and those assigned to its inidentedges is at least 2.
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This labelling is alled a (2, 1)-total labelling. It was introdued by Havet and Yu in 2002 [6, 5℄and generalized to the (d, 1)-total labelling of a graph G.More formally, a (d, 1)-total labelling of a graph G = (V, E) is a funtion c : V ∪ E → Nverifying:
(i) ∀(u, v) ∈ V 2 : uv ∈ E ⇒ c(u) 6= c(v)

(ii) ∀(u, v, w) ∈ V 3 : uv ∈ E, uw ∈ E ⇒ c(uv) 6= c(uw)
(iii) ∀(u, v) ∈ V 2 : uv ∈ E ⇒ |c(u) − c(uv)| ≥ dThe span of a (d, 1)-total labelling is the maximum di�erene between two assigned integers.The (d, 1)-total number of a graph G, denoted by λT

d (G), is the minimum span of a (d, 1)-totallabelling of G. Figure 1 gives an example of a (2, 1)-total labelling with 6 olors (we use integersbelonging to an interval beginning by zero).
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Figure 1: (2, 1)-total labelling of the Petersen's graph.Notie that the (1, 1)-total labelling is the traditional total oloring.We reall some bounds (without proof) and a onjeture for the (d, 1)-total number:Theorem 1 ([6℄) Let G be a graph with maximum degree ∆, then:
(i) λT

d (G) ≥ ∆ + d − 1.
(ii) If G is ∆-regular, λT

d (G) ≥ ∆ + d.
(iii) If d ≥ ∆, λT

d (G) ≥ ∆ + d.Let χ(G) (resp. χ′(G)) be the hromati number (resp. index) of G. Observe that if we olor theverties with olors belonging to an interval Iv ontaining χ(G) olors and the edges with olorsbelonging to an interval Ie ontaining χ′(G) olors, Iv and Ie being separated by an intervalof size d − 1, we obtain a (d, 1)-total labelling of the graph. Theorem 2 is dedued from thisobservation :Theorem 2 ([6℄) Let G be a graph, then
(i) λT

d (G) ≤ χ(G) + χ′(G) + d − 2
(ii) λT

d (G) ≤ 2∆ + d − 1

Theorem 3 ([10℄) Let G be a onneted graph with maximum degree ∆, d ≥ 2, then λT
d (G) ≤

∆ + 2d − 2 in the following ases :
2



(i) ∆ ≥ 2d + 1 and Mad(G) < 5
2

(ii) ∆ ≥ 2d + 2 and Mad(G) < 3
(iii) ∆ ≥ 2d + 3 and Mad(G) < 10

3where Mad(G) is the maximum average degree of G, i.e. Mad(G) = max{2|E(H)|/|V (H)|, H j

G}.Conjeture 1 ([6℄) Let G be a graph with maximum degree ∆, then λT
d (G) ≤ min{∆ + 2d −

1, 2∆ + d − 1}.Finally, the best known upper bound for general graphs is due to Esperet and Havet [2℄ whoproved :Theorem 4 Let G be a graph with maximum degree ∆, then λT
d (G) ≤ ∆ + O(log ∆).In [7℄, Molloy and Reed proved that the total hromati number of any graph with maximumdegree ∆ is at most ∆ plus an absolute onstant. Moreover, in [9℄, they gave a simpler proofof this result for sparse graphs. In this paper, we generalize their approah to the (d, 1)-totalnumber of sparse graphs.A vertex v is alled α-sparse i� |E(N(v))| ≤

(∆
2

)

− α∆. An α-sparse graph is a graph inwhih all the verties are α-sparse.Our main result is the following :Theorem 5 For any 0 < ε < 1
2 , and any positive integer d, there exists a onstant Cd,ε suhthat for any ε∆-sparse graph G with maximum degree ∆, we have λT

d (G) ≤ ∆ + Cd,ε.The proof of Theorem 5 is based on a probabilisti approah due to Molloy and Reed. It usesintensively onentration inequalities as well as Lovász Loal Lemma. Moreover, we onjeture:Conjeture 2 For any positive integer d, there exists a onstant Cd, suh that for any graph Gwith maximum degree ∆, we have λT
d (G) ≤ ∆ + Cd.In Setion 2, we present the proedure used to prove Theorem 5. In Setion 3, we analyse thisproedure. In the following, we will need some probabilisti tools (see Appendix A and [9℄ formore details).

2 Proof of Theorem 5Sine λT
d (G) ≤ 2∆ + d − 1, if we prove that for some ∆0(d, ε) and some Cd,ε, any ε∆-sparsegraph G of maximum degree ∆ ≥ ∆0 veri�es λT

d (G) ≤ ∆ + Cd,ε, then Theorem 5 will be proved.Let φ be a full or partial oloring of G. Any edge e = uv suh that |φ(u)− φ(e)| < d or/and
|φ(v) − φ(e)| < d is alled a rejet edge. The graph R indued by the rejet edges is alled therejet graph. It will be onvenient for us to onsider the rejet degree of a vertex v, whih is thenumber of edges e = uv suh that |φ(u) − φ(e)| < d. Observe that degR(v) is at most the rejetdegree of v plus 2d − 1.
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2.1 Sketh of ProofTo prove Theorem 5, we apply the following steps :Step 1. First, we will olor the edges by Vizing's Theorem using the olors {1, . . . , ∆}.Step 2. Then we will use the Naive Coloring Proedure to olor the verties with olors {1, . . . , ∆+
2d − 1}. This proedure reates rejet edges. However, we an prove that after the proe-dure, the maximum degree of the rejet graph R is a onstant Dd,ε whih does not dependon ∆.Step 3. Finally, we erase the olor of the verties of R and reolor these verties greedily with theolors {∆ + 3d − 2, . . . , ∆ + 3d − 1 + Dd,ε}. Taking Cd,ε = Dd,ε + 3d − 2, this proves that
λT

d (G) ≤ ∆ + Cd,ε.We now present the Naive Coloring Proedure.2.2 The Naive Coloring ProedureFor eah vertex v, we maintain two lists of olors : Lv and Fv. Lv is the set of olors whihdo not appear in the neighborhood of v. Initially, Lv = {1, . . . , ∆ + 2d − 1}. After iteration I(spei�ed later), Fv will be a set of forbidden olors. Until iteration I, Fv = ∅.During the Naive Coloring proedure, we will perform i∗ (spei�ed later) iterations of thefollowing proedure :Step 1. Assign to eah unolored vertex v a olor hoosen uniformly at random in Lv.Step 2. Unolor any vertex whih reeives the same olor as a neighbor in this iteration.Step 3. Iteration i ≤ I. Let v be a vertex having more than T (spei�ed later) neighbors uwhih are assigned a olor c(u) suh that |c(uv)− c(u)| < d in this iteration. For any
v, we unolor all suh neighbors.Iteration i > I.(a) Unolor any vertex v whih reeives a olor from Fv in this iteration.(b) Let v be a vertex having more than one neighbor u whih is assigned a olor suhthat |c(uv)− c(u)| < d in this iteration. For any v, we unolor all suh neighbor.() Let v be a vertex having at least one neighbor u suh that |c(uv) − c(u)| < d inthis iteration. For any v, we plae {c(vw) − d + 1, . . . , c(vw), . . . , c(vw) + d − 1}in Fw for every w ∈ N(v).Step 4. For any vertex v whih retained its olor c, we remove c from Lu for any u ∈ N(v).After i∗ iterations of this proedure, we have have a partial oloring of G. We then ompletethis oloring in order to obtain a rejet graph R with a bounded maximum degree whih doesnot depend on ∆ (Setion 4.3).

3 Analysis of the proedure3.1 The �rst iterationLet ζ = ε
2e3 . In this subsetion, we prove that:Claim 1 The �rst iteration produes a partial oloring with bounded rejet degree for whih everyvertex has at least ζ

2∆ repeated olors in its neighborhood.4



We reall that C = ∆ + 2d − 1 is the initial size of eah olor list Lv. Let Av be the numberof olors c suh that at least two neighbors of v reeive the olor c and all suh verties retaintheir olor during Step 2. Let Bv be the number of neighbors of v whih are unolored at Step3. Notie that verties are unolored at Step 3 regardless of what happened at Step 2. Let Xvbe the event that �Av < ζ∆�. Let Yv be the event that �Bv ≥ ζ
2∆�. If no type X event ours,every vertex has at least ζ∆ repeated olors in its neighborhood at the end of Step 2. If no type

Y event ours, less than ζ
2∆ verties are unolored in eah neighborhood. As a onsequene, ifwe show that with positive probability, no type X or Y event ours, Claim 1 will be proved.Claim 2 Pr(Xv) < e−α log2 ∆, for a partiular onstant α > 0.Proof. We �rst bound the expeted value of Av. Let A′

v be the number of olors c suh thatexatly two neighbors of v reeive the olor c and are not unolored during Step 2. Notie that
Av ≥ A′

v, and thus E(Av) ≥ E(A′
v). Let u and w be two non adjaent neighbors of v. Theprobability that u and w are olored with c, while no other neighbor of v is olored with c, andwhile no neighbor of u or w is olored with α is exatly ( 1

C

)2 (
1 − 1

C

)3∆−3
>
(

1
C

)2 (
1 − 1

C

)3∆.Sine G is ε∆-sparse, |E(N(v))| ≤
(∆

2

)

− ε∆2, whih implies that there are at least ε∆2 pairs ofnon adjaent verties among the neighbors of v. There are C hoies for the olor c, thus
E(A′

v) > Cε∆2

(

1

C

)2(

1 − 1

C

)3∆

=
ε∆2

C

(

1 − 1

C

)3∆

For ∆ > 2, we have ln(1 − 1
C ) ≥ − 1

C − 1
C2 , and thus (1 − 1

C

)3∆ ≥ e−3e−
3
C . For ∆ large enough,

∆/C >
√

3/2 and e−
3
C >

√
3/2, so:

E(A′
v) >

3ε∆

4e3
=

3

2
ζ∆Sine E(Av) ≥ E(A′

v), we also have E(Av) > 3
2ζ∆. Let ATv be the number of olors assignedto at least two neighbors of v, and let Delv be the number of olors assigned to at least twoneighbors of v and not retained by at least one of them. Note that Av = ATv − Delv, and bylinearity of expetation, E(Av) = E(ATv) − E(Delv). The random variable ATv only dependson the ∆ olors assigned to the neighbors of v. Moreover, hanging one of these olors an onlya�et ATv by at most 1. Using the Simple Conentration bound, we obtain:

Pr (|ATv − E(ATv)| > t) < 2e−
t2

2∆ . (1)The random variable Delv only depends on the nearly ∆2 olors assigned to the verties atdistane at most 2 from v. As previously, hanging one of these olors an only a�et Delv byat most 1. Furthermore, if Delv ≥ s, we an �nd at most 3s verties, whih olors ertify thatDelv ≥ s (for eah olor α ounted by Delv ≥ s, we take two neighbors x and y of v olored with
α and a neighbor z of x or y also olored with α). Applying Talagrand's Inequality with c = 1and r = 3, we obtain for all t ≥ √

∆ log ∆

Pr (|Delv − E(Delv)| > t) < 4e−
(t−60

√
3E(Delv))2

24E(Delv) < 4e−
t2

25∆ , (2)sine E(Delv) ≤ ∆. Reall that E(Av) = E(ATv) − E(Delv). Let t = 1
2 log ∆

√

E(Av). If
|Av −E(Av)| > log ∆

√

E(Av) we have either |ATv −E(ATv)| > t or |Delv −E(Delv)| > t. Using(1) and (2), the probability that this happens is at most
2e−

t2

2∆ + 4e−
t2

25∆ < 2e−
3
16 ζ log2 ∆ + 4e−

3
200 ζ log2 ∆ < e−

ζ
100 log2 ∆
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So, for ∆ large enough, Pr

(

|Av − E(Av)| > log ∆
√

E(Av)
)

< e−
ζ

100
log2 ∆.

Pr

(

|Av − E(Av)| > log ∆
√

E(Av)
)

≥ Pr

(

Av < E(Av) − log ∆
√

E(Av)
)

≥ Pr

(

Av <
3

2
ζ∆ − log ∆

√
∆

)

≥ Pr (Av < ζ∆)Sine Pr(Xv) = Pr(Av < ζ∆), we proved that Pr(Xv) < e−
ζ

100
log2 ∆. 2Claim 3 Pr(Yv) < e−β∆, for a partiular onstant β > 0.Proof. Let u be a neighbor of v. The vertex u will be unolored in Step 3 if for some neighbor

w of u, u and T other neighbors x1, . . . , xT of w are eah assigned a olor c(xi) suh that
|c(u)− c(wu)| < d and |c(xi) − c(wxi)| < d for all 1 ≤ i ≤ T . The probability that this happensis at most

∆

(

∆ − 1

T

)(

2d − 1

C

)T+1

<
(2d − 1)T

T !For T large enough, (2d − 1)T /T ! < ζ/4, and thus E(Bv) < ζ∆
4 . The random variable Bv onlydepends on the nearly ∆3 olors assigned to the verties at distane at most 3 from v. Changingone of these olors an a�et Bv by at most T + 1. Moreover, if Bv ≥ s there is a set of at most

(T + 1)s verties whih olors ertify that Bv ≥ s (for eah unolored neighbor u of v, take uand T other neighbors x1, . . . , xT of some neighbor w of u, suh that |c(u) − c(wu)| < d and
|c(xi) − c(wxi)| < d for all 1 ≤ i ≤ T ). Applying Talagrand's Inequality to Bv with c = T + 1and r = T + 1, we obtain for all t ≥ √

∆ log ∆

Pr (|Bv − E(Bv)| > t) < 4e
−

(t−60(T+1)
√

(T+1)E(Bv))2

8(T+1)3E(Bv) < 4e
− t2

9(T+1)3∆ .

Taking t = ζ∆
8 , we obtain Pr

(

|Bv − E(Bv)| > ζ∆
8

)

< 4e
− ζ2∆

576(T+1)3 < e
− ζ2∆

577(T+1)3 . Now, sine
Pr

(

|Bv − E(Bv)| >
ζ∆

8

)

≥ Pr

(

Bv > E(Bv) +
ζ∆

8

)

≥ Pr

(

Bv >
3

8
ζ∆

)

≥ Pr

(

Bv ≥ ζ∆

2

)

we have Pr(Yv) < e
− ζ2

577(T+1)3
∆. 2We now use Lovász Loal Lemma to prove Claim 1. Eah event Xv only depends on theolors assigned to the verties at distane at most 2 from v, and eah event Yv depends on theolors assigned to the verties at distane at most 3 from v. Hene, eah event is mutuallyindependent of all but at most 2∆6 other events. For ∆ su�iently large, Pr(Xv) < 1

8∆6 and
Pr(Yv) < 1

8∆6 . Using Lovász Loal Lemma, this proves that with positive probability no type
X or Y event happens. Thus with positive probability, the �rst iteration produes a partialoloring with bounded rejet degree, suh that eah vertex has at least ζ∆

2 repeated olors in itsneighborhood.
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3.2 The next iterationsLet di =
(

1 − 1
4e

− 2
ζ

)i

∆ and fi = 4(2d−1)
ζ

∑i−1
j=I+1 Dj. Let i∗ be the smallest integer i suh that

di ≤
√

∆. Observe that for any i ≤ i∗, we have di ≥ (1 − 1
4e

− 2
ζ )
√

∆.Claim 4 At the end of eah iteration 1 ≤ i ≤ i∗, with positive probability every vertex has atmost di unolored neighbors, and eah list Fv has size at most fi.Proof. We prove Claim 4 by indution on i. At the end of the �rst iteration, every vertexhas at least ζ∆
2 repeated olors in its neighborhood. So the number of unolored verties in theneighborhood of any vertex is at most (1 − ζ)∆, whih is less than d1 =

(

1 − 1
4e

− 2
ζ

)

∆. Mor-ever, for any vertex v, the list Fv is still empty at the end of the �rst iteration, thus |Lv| ≤ 0 = f1.Suppose i > 1. By indution, there are at most di−1 unolored verties in eah neighborhoodat the beginning of iteration i, and eah Fv has size at most fi−1. We de�ne the random variable
Di

v as the number of unolored neighbors of v after iteration i, and the random variable F i
v asthe size of the list Fv after iteration i. To omplete the indution, we show that with positiveprobability, Di

v ≤ di and F i
v ≤ fi for any vertex v. Sine every vertex v has at least ζ∆

2 repeatedolors in its neighborhood, every list Lv has size at least ζ∆
2 . Thus, the probability that a newlyolored vertex is not unolored during Step 2 is at least (1 − 2

ζ∆

)∆. So the probability that anewly olored vertex is unolored during Step 2 is at most:
1 −

(

1 − 2

ζ∆

)∆

≤ 1 − 3

4
e−

2
ζFor i ≤ I, the probability that the newly olored vertex v is unolored during Step 3 is at most:

∆

(

di−1

T

)(

2d − 1

ζ∆/2

)T+1

≤
(

2(2d − 1)

ζ∆

)T+1
1

T !
≤ 1

4
e−

2
ζObserve that for I su�iently large in terms of ζ and d, we have

fi =
4(2d − 1)∆

ζ

i−1
∑

j=I+1

(

1 − 1

4
e−

2
ζ

)j

≤ 4(2d − 1)∆

ζ
× 4e

2
ζ

(

1 − 1

4
e−

2
ζ

)I+1

<
ζ∆

16
e−

2
ζ .Thus, for i > I, the probability that the vertex v is unolored during Step 3(a) is at most:

|Fv|
|Lv|

≤ 2

ζ∆
fi−1 <

1

8
e−

2
ζ

And the probability that v is unolored during Step 3(b) is at most:
∆di−1

(

2(2d − 1)

ζ∆

)2

≤
(

1 − 1

4
e−

2
ζ

)I (
2(2d − 1)

ζ

)2

≤ 1

8
e−

2
ζCombining these results, the probability that a newly olored vertex is unolored during Step 2or Step 3 is at most 1 − 3

4e
− 2

ζ + 1
4e

− 2
ζ = 1 − 1

2e
− 2

ζ . As a onsequene,
E(Di

v) ≤
(

1 − 1

2
e−

2
ζ

)

di−1
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Let X i
v be the event that Di

v >
(

1 − 1
4e

− 2
ζ

)

di−1. We de�ne the random variable NF i
v as thenumber of olors added to Fv during iteration i. Let Y i

v be the event that NF i
v > 4(2d−1)

ζ
di−1.Using Lovász Loal Lemma, we prove that with positive probability none of the type X or Yevents ours.Claim 5 Pr(X i

v) < e−δ log2 di−1 , for a partiular onstant δ > 0.Proof. Let v be a vertex of G. Let A be the number of neighbors of v that are unolored duringStep 2. For i ≤ I we de�ne B as the number of neighbors of v that are unolored during Step3. For i > I we de�ne C (resp. D) as the number of neighbors of v that are unolored duringStep 3.(a) (resp. 3.(b)). Using the Simple Conentration Bound on A, Talagrand's Inequalityon B and D, and Cherno� Bound on C, ombined with E(Di
v) ≤ (1 − 1

2e
− 2

ζ )di−1, we prove thefollowing inequalities:
Pr

(

|A − E(A)| >
1

2
log di−1

√

E(A + B)

)

< 2e−
e
−

2
ζ

64 log2 di−1 (3)
Pr

(

|B − E(B)| >
1

2
log di−1

√

E(A + B)

)

< 4e
− e

−

2
ζ

64(T+1)3
log2 di−1 (4)

Pr

(

|A − E(A)| >
1

3
log di−1

√

E(A + C + D)

)

< 2e−
e
−

2
ζ

144 log2 di−1 (5)
Pr

(

|C − E(C)| >
1

3
log di−1

√

E(A + C + D)

)

< 2e−
1

144 log2 di−1 (6)
Pr

(

|D − E(D)| >
1

3
log di−1

√

E(A + C + D)

)

< 2e−
e
−

2
ζ

1152 log2 di−1 (7)The proof of these results is very lose from the proofs of Claims 2 and 3. Combining (3), (4),(5), (6) and (7), we obtain for T and ∆ large enough :
Pr(Xi

v) < e
− e

−

2
ζ

65(T+1)3
log2 di−1

2Claim 6 Pr(Y i
v ) < e−γdi−1, for a partiular onstant γ > 0.Proof. The probability that a neighbor u of v is assigned a olor c(u) suh that |c(u)−c(uv)| < dis 2d−1

|Lu|
≤ 2(2d−1)

ζ∆ . Thus E(NFv) ≤ 2(2d−1)
ζ∆ di−1. Applying Talagrand's Inequality to the randomvariable NFv with c = (2d − 1)2 and r = 1, we obtain :

Pr (|NFv − E(NFv)| > t) < 4e
− ζt2

16(2d−1)5di−1for any t > log di−1

√

di−1. Taking t = 2d−1
ζ

di−1, we obtain :
Pr

(

NFv >
4(2d − 1)

ζ
di−1

)

≤ Pr

(

|NFv − E(NFv)| >
2d − 1

ζ
di−1

)

< 4e
−

di−1

2ζ(2d−1)3

2The variable X i
v only depends on the olors assigned to the verties at distane at most 3 from

v during iteration i, while the variable Y i
v depends on the olors assigned to the verties at distaneat most 2 from v during iteration i. Thus, eah type X or Y event is mutually independantfrom all but at most 2d6

i−1 other events. Using Claims 5 and 6, we have Pr(X i
v) < 1

8d6
i−1

and
Pr(Y i

v ) < 1
8d6

i−1
for ∆ large enough (reall that aording to our hoie of i∗ we always have

di ≥ (1 − 1
4e

− 2
ζ )
√

∆). Lovász Loal Lemma ompletes the indution. 28



3.3 The �nal phaseAt this point, we have a partial oloring suh that:
• eah vertex v has at most √∆ unolored neighbors;
• the rejet degree of eah vertex is at most IT + 1;
• eah vertex has a list of at least ζ∆

2 available olors.It will be more onvenient to use lists of equal sizes. So we arbitrarily delete olors from eahlist, so that for every unolored vertex v, we have |Lv| = ζ∆
2 . For eah unolored vertex, wehoose a subset of olors from Lv whih will be andidates for v and we prove that with positiveprobability, there exists a andidate for eah unolored vertex, suh that we an omplete ourpartial oloring of G.A andidate a for v is said to be good if:Condition 1 for every neighbor u of v, a is not andidate for u;Condition 2 for every neighbor u of v, and every neighbor w of u, there is no andidate

b of w suh that |c(uv) − a| < d and |c(uw) − b| < d.If we �nd a good andidate for every unolored vertex, Condition 1 ensures that the vertexoloring obtained is proper, and Condition 2 ensures that no rejet degree inreases by more thanone.Claim 7 There exists a set of andidates Sv for eah unolored vertex v, suh that eah setontains at least one good andidate.Proof. For eah unolored vertex v, we hoose a random permutation of Lv, and take the�rst twenty olors of the list as set of andidates for v. Let Cv be the event that none of theandidates for v is a good andidate. Eah event Cv depends from at most ∆4 other events. Wenow show that Pr(Cv) < 1
4∆4 . Lovasz Loal Lemma will omplete the proof.Let v be an unolored vertex of G. We de�ne:

Bad1 = {c ∈ Lv : c is andidate for some neighbor of v}
Bad2 = {c ∈ Lv : hoosing c for v violates Condition 2}
Bad = Bad1 ∪ Bad2Let D be the event that |Bad| ≤ 60(2d − 1)2

√
∆. A andidate for v is good if and only if itdoes not belong to Bad. Observe that :

Pr(Cv|D) ≤
( |Bad|

|Lv|

)20

≤
(

60(2d − 1)2
√

∆
ζ∆
2

)20

≤ 12020(2d − 1)40

ζ20∆10So for ∆ su�iently large, Pr(Cv|D) < 1
8∆4 .Eah vertex has at most √∆ unolored neighbors, thus |Bad1| ≤ 20

√
∆ ≤ 20(2d − 1)2

√
∆.We now show that with very high probability, the size of Bad2 is at most 40(2d − 1)2

√
∆. Aolor c belongs to Bad2 if for some neighbor u of v suh that |c(uv)− c| < d, there is a neighbor

w of u and a andidate a for w suh that |c(uw) − a| < d. Thus we obtain:
Pr(c ∈ Bad2) ≤ (2d − 1) × 20

√
∆ × 2d − 1

ζ∆
2

≤ 40(2d − 1)2

ζ
√

∆9



E(|Bad2|) ≤
ζ∆

2
× 40(2d − 1)2

ζ
√

∆
≤ 20(2d − 1)2

√
∆

The random variable |Bad2| only depends on at most ∆2 permutations of olor lists ofunolored verties at distane at most 2 from v. Moreover, exhanging two members of oneof the permutations an a�et |Bad2| by at most 2d − 1. If |Bad2| ≥ s, we an ertify this bygiving, for eah olor α ∈ Bad2, a neighbor u of v suh that |c(uv)−α| < d, as well as a neighbor
w of u having a andidate a suh that |c(uw) − a| < d. Reall that a is a andidate for w if itbelongs to the �rst twenty positions of the permutation of Lw. So we only need to give s hoiesof andidates to ertify that |Bad2| ≥ s. We apply MDiarmid's Inequality to X = |Bad2| with
n = 0, m = ∆2, c = 2d − 1, r = 1, and t = 10(2d − 1)2

√
∆ :

Pr

(

|X − E(X)| > 10(2d − 1)2
√

∆ + 60(2d − 1)
√

E(X)
)

< 4e
− 100(2d−1)4∆

8(2d−1)2E(X)

Sine E(X) ≤ 20(2d − 1)2
√

∆, this implies for ∆ su�iently large:
Pr

(

|Bad2| > 40(2d − 1)2
√

∆
)

< 4e−
5
8

√
∆

So for ∆ large enough, Pr
(

D
)

< 1
8∆4 . We an express the probability of Cv as Pr(Cv) =

Pr(Cv|D)Pr(D) + Pr(Cv|D)Pr(D). And so,
Pr(Cv) ≤ Pr(Cv|D) + Pr(D) <

1

4∆4

2We obtain a oloring of G with maximum rejet degree at most IT + 2. So the rejet graph
R obtained has maximum degree at most IT + 2d + 1. We unolor the verties of R and reolorthem greedily with the olors {∆ + 3d− 2, . . . , ∆ + IT + 5d}. This �nal oloring is a (d, 1)-totallabelling of G. Sine I and T are independant of ∆, we proved that λT

d (G) ≤ ∆ + Cd,ε.Remark 1 By looking arefully at eah inequality during the proedure, we an replae ∆ + Cd,εby ∆ + Cεd log d, where Cε is a onstant that does not depend on d.
4 Further workTheorem 5 an be transformed into a randomized algorithm, using a powerful tehnique intro-dued by Bek [1℄ and extended to a wide range of appliations of the symmetri form of theLoal Lemma by Molloy and Reed [8℄.
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A Probalisti toolsSimple Conentration Bound. Let X be a random variable determined by n independent trials
T1, . . . , Tn and satisfying:1. Changing the outome of any one trial an a�et X by at most c.Then,

Pr(|X − E(X)| > t) ≤ 2e−
t2

2c2n

Talagrand's Inequality. Let X be a non-negative random variable, not identially 0, whih is deter-mined by n independent trials T1, . . . , Tn, and satisfying the following for some c, r > 0 :1. Changing the outome of any one trial an a�et X by at most c.2. For any s, if X ≥ s then there is a set of at most rs trials whose outomes ertify that X ≥ s.Then for any 0 ≤ t ≤ E(X),
Pr

(

|X − E(X)| > t + 60c
√

rE(X)
)

≤ 4e
− t2

8c2rE(X)

MDiarmid's Inequality. Let X be a non-negative random variable, not identially 0, whih is deter-mined by n indenpendent trials T1, . . . , Tn and m independent permutations Π1, . . . , Πm and satisfyingthe following for some c, r > 0 :1. Changing the outome of any trial an a�et X by at most c.2. Interhanging two elements in any one permutation an a�et X by at most c.3. For any s, if X ≥ s then there is a set of at most rs hoies whose outomes ertify that X ≥ s.Then for any 0 ≤ t ≤ E(X),
Pr

(

|X − E(X)| > t + 60c
√

rE(X)
)

≤ 4e
− t2

8c2rE(X)

Lovász Loal Lemma. Consider a set E of (typially bad) events suh that for eah A ∈ E1. Pr(A) ≤ p < 1, and2. A is mutually independent of a set of all but at most d of the other events.If 4pd ≤ 1 then with positive probability, none of the events in E our.
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