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Abstra
tThe (d, 1)-total number λT
d (G) of a graph G is the width of the smallest range of integersthat su�
es to label the verti
es and the edges of G so that no two adja
ent verti
es havethe same 
olor, no two in
ident edges have the same 
olor and the distan
e between the 
olorof a vertex and the 
olor of any in
ident edge is at least d. This notion was introdu
ed byHavet and Yu in [6℄. In this paper, we study the (d, 1)-total number of sparse graphs andprove that for any 0 < ε < 1
2
, and any positive integer d, there exists a 
onstant Cd,ε su
hthat for any ε∆-sparse graph G with maximum degree ∆, we have λT

d (G) ≤ ∆ + Cd,ε.
1 Introdu
tionIn the 
hannel assignment problem, we need to assign frequen
y bands to transmitters. If twotransmitters are too 
lose, interferen
es will o

ur if they attempt to transmit on 
lose frequen
ies.In order to avoid this situation, the 
hannels assigned must be su�
iently far. Moreover, if twotransmitters are 
lose but not too 
lose, the 
hannels assigned must still be di�erent. Thisproblem is known under the L(p, q)-labelling problem of a graph G, where a L(p, q)-labellingis an integer assignment L to the verti
es of G su
h that ∀(u, v) ∈ V (G)2, dG(u, v) = 1 ⇒
|L(u) − L(v)| ≥ p and ∀(u, v) ∈ V (G)2, dG(u, v) = 2 ⇒ |L(u) − L(v)| ≥ q. In 1992, Griggs andYeh introdu
ed this labelling with p = 2 and q = 1 in [4℄. Sin
e, this notion has been widelystudied and gives many 
hallenging problems. In parti
ular, in 1995, Whittlesey, Georges andMauro [3℄ studied the L(2, 1)-labelling of the in
iden
e graph obtained from G. The in
iden
egraph of G is the graph obtained from G by repla
ing ea
h edge by a path of length 2. The
L(2, 1)-labelling of the in
iden
e graph of G is equivalent to an assignment of integers to ea
helement of V (G) ∪ E(G) su
h that :1. the edge-
oloring is proper, i.e. no two in
ident edges re
eive the same integer ;2. the vertex-
oloring is proper, i.e. no two adja
ent verti
es re
eive the same integer ;3. the di�eren
e between the integer assigned to a vertex and those assigned to its in
identedges is at least 2.
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This labelling is 
alled a (2, 1)-total labelling. It was introdu
ed by Havet and Yu in 2002 [6, 5℄and generalized to the (d, 1)-total labelling of a graph G.More formally, a (d, 1)-total labelling of a graph G = (V, E) is a fun
tion c : V ∪ E → Nverifying:
(i) ∀(u, v) ∈ V 2 : uv ∈ E ⇒ c(u) 6= c(v)

(ii) ∀(u, v, w) ∈ V 3 : uv ∈ E, uw ∈ E ⇒ c(uv) 6= c(uw)
(iii) ∀(u, v) ∈ V 2 : uv ∈ E ⇒ |c(u) − c(uv)| ≥ dThe span of a (d, 1)-total labelling is the maximum di�eren
e between two assigned integers.The (d, 1)-total number of a graph G, denoted by λT

d (G), is the minimum span of a (d, 1)-totallabelling of G. Figure 1 gives an example of a (2, 1)-total labelling with 6 
olors (we use integersbelonging to an interval beginning by zero).
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Figure 1: (2, 1)-total labelling of the Petersen's graph.Noti
e that the (1, 1)-total labelling is the traditional total 
oloring.We re
all some bounds (without proof) and a 
onje
ture for the (d, 1)-total number:Theorem 1 ([6℄) Let G be a graph with maximum degree ∆, then:
(i) λT

d (G) ≥ ∆ + d − 1.
(ii) If G is ∆-regular, λT

d (G) ≥ ∆ + d.
(iii) If d ≥ ∆, λT

d (G) ≥ ∆ + d.Let χ(G) (resp. χ′(G)) be the 
hromati
 number (resp. index) of G. Observe that if we 
olor theverti
es with 
olors belonging to an interval Iv 
ontaining χ(G) 
olors and the edges with 
olorsbelonging to an interval Ie 
ontaining χ′(G) 
olors, Iv and Ie being separated by an intervalof size d − 1, we obtain a (d, 1)-total labelling of the graph. Theorem 2 is dedu
ed from thisobservation :Theorem 2 ([6℄) Let G be a graph, then
(i) λT

d (G) ≤ χ(G) + χ′(G) + d − 2
(ii) λT

d (G) ≤ 2∆ + d − 1

Theorem 3 ([10℄) Let G be a 
onne
ted graph with maximum degree ∆, d ≥ 2, then λT
d (G) ≤

∆ + 2d − 2 in the following 
ases :
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(i) ∆ ≥ 2d + 1 and Mad(G) < 5
2

(ii) ∆ ≥ 2d + 2 and Mad(G) < 3
(iii) ∆ ≥ 2d + 3 and Mad(G) < 10

3where Mad(G) is the maximum average degree of G, i.e. Mad(G) = max{2|E(H)|/|V (H)|, H j

G}.Conje
ture 1 ([6℄) Let G be a graph with maximum degree ∆, then λT
d (G) ≤ min{∆ + 2d −

1, 2∆ + d − 1}.Finally, the best known upper bound for general graphs is due to Esperet and Havet [2℄ whoproved :Theorem 4 Let G be a graph with maximum degree ∆, then λT
d (G) ≤ ∆ + O(log ∆).In [7℄, Molloy and Reed proved that the total 
hromati
 number of any graph with maximumdegree ∆ is at most ∆ plus an absolute 
onstant. Moreover, in [9℄, they gave a simpler proofof this result for sparse graphs. In this paper, we generalize their approa
h to the (d, 1)-totalnumber of sparse graphs.A vertex v is 
alled α-sparse i� |E(N(v))| ≤

(∆
2

)

− α∆. An α-sparse graph is a graph inwhi
h all the verti
es are α-sparse.Our main result is the following :Theorem 5 For any 0 < ε < 1
2 , and any positive integer d, there exists a 
onstant Cd,ε su
hthat for any ε∆-sparse graph G with maximum degree ∆, we have λT

d (G) ≤ ∆ + Cd,ε.The proof of Theorem 5 is based on a probabilisti
 approa
h due to Molloy and Reed. It usesintensively 
on
entration inequalities as well as Lovász Lo
al Lemma. Moreover, we 
onje
ture:Conje
ture 2 For any positive integer d, there exists a 
onstant Cd, su
h that for any graph Gwith maximum degree ∆, we have λT
d (G) ≤ ∆ + Cd.In Se
tion 2, we present the pro
edure used to prove Theorem 5. In Se
tion 3, we analyse thispro
edure. In the following, we will need some probabilisti
 tools (see Appendix A and [9℄ formore details).

2 Proof of Theorem 5Sin
e λT
d (G) ≤ 2∆ + d − 1, if we prove that for some ∆0(d, ε) and some Cd,ε, any ε∆-sparsegraph G of maximum degree ∆ ≥ ∆0 veri�es λT

d (G) ≤ ∆ + Cd,ε, then Theorem 5 will be proved.Let φ be a full or partial 
oloring of G. Any edge e = uv su
h that |φ(u)− φ(e)| < d or/and
|φ(v) − φ(e)| < d is 
alled a reje
t edge. The graph R indu
ed by the reje
t edges is 
alled thereje
t graph. It will be 
onvenient for us to 
onsider the reje
t degree of a vertex v, whi
h is thenumber of edges e = uv su
h that |φ(u) − φ(e)| < d. Observe that degR(v) is at most the reje
tdegree of v plus 2d − 1.
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2.1 Sket
h of ProofTo prove Theorem 5, we apply the following steps :Step 1. First, we will 
olor the edges by Vizing's Theorem using the 
olors {1, . . . , ∆}.Step 2. Then we will use the Naive Coloring Pro
edure to 
olor the verti
es with 
olors {1, . . . , ∆+
2d − 1}. This pro
edure 
reates reje
t edges. However, we 
an prove that after the pro
e-dure, the maximum degree of the reje
t graph R is a 
onstant Dd,ε whi
h does not dependon ∆.Step 3. Finally, we erase the 
olor of the verti
es of R and re
olor these verti
es greedily with the
olors {∆ + 3d − 2, . . . , ∆ + 3d − 1 + Dd,ε}. Taking Cd,ε = Dd,ε + 3d − 2, this proves that
λT

d (G) ≤ ∆ + Cd,ε.We now present the Naive Coloring Pro
edure.2.2 The Naive Coloring Pro
edureFor ea
h vertex v, we maintain two lists of 
olors : Lv and Fv. Lv is the set of 
olors whi
hdo not appear in the neighborhood of v. Initially, Lv = {1, . . . , ∆ + 2d − 1}. After iteration I(spe
i�ed later), Fv will be a set of forbidden 
olors. Until iteration I, Fv = ∅.During the Naive Coloring pro
edure, we will perform i∗ (spe
i�ed later) iterations of thefollowing pro
edure :Step 1. Assign to ea
h un
olored vertex v a 
olor 
hoosen uniformly at random in Lv.Step 2. Un
olor any vertex whi
h re
eives the same 
olor as a neighbor in this iteration.Step 3. Iteration i ≤ I. Let v be a vertex having more than T (spe
i�ed later) neighbors uwhi
h are assigned a 
olor c(u) su
h that |c(uv)− c(u)| < d in this iteration. For any
v, we un
olor all su
h neighbors.Iteration i > I.(a) Un
olor any vertex v whi
h re
eives a 
olor from Fv in this iteration.(b) Let v be a vertex having more than one neighbor u whi
h is assigned a 
olor su
hthat |c(uv)− c(u)| < d in this iteration. For any v, we un
olor all su
h neighbor.(
) Let v be a vertex having at least one neighbor u su
h that |c(uv) − c(u)| < d inthis iteration. For any v, we pla
e {c(vw) − d + 1, . . . , c(vw), . . . , c(vw) + d − 1}in Fw for every w ∈ N(v).Step 4. For any vertex v whi
h retained its 
olor c, we remove c from Lu for any u ∈ N(v).After i∗ iterations of this pro
edure, we have have a partial 
oloring of G. We then 
ompletethis 
oloring in order to obtain a reje
t graph R with a bounded maximum degree whi
h doesnot depend on ∆ (Se
tion 4.3).

3 Analysis of the pro
edure3.1 The �rst iterationLet ζ = ε
2e3 . In this subse
tion, we prove that:Claim 1 The �rst iteration produ
es a partial 
oloring with bounded reje
t degree for whi
h everyvertex has at least ζ

2∆ repeated 
olors in its neighborhood.4



We re
all that C = ∆ + 2d − 1 is the initial size of ea
h 
olor list Lv. Let Av be the numberof 
olors c su
h that at least two neighbors of v re
eive the 
olor c and all su
h verti
es retaintheir 
olor during Step 2. Let Bv be the number of neighbors of v whi
h are un
olored at Step3. Noti
e that verti
es are un
olored at Step 3 regardless of what happened at Step 2. Let Xvbe the event that �Av < ζ∆�. Let Yv be the event that �Bv ≥ ζ
2∆�. If no type X event o

urs,every vertex has at least ζ∆ repeated 
olors in its neighborhood at the end of Step 2. If no type

Y event o

urs, less than ζ
2∆ verti
es are un
olored in ea
h neighborhood. As a 
onsequen
e, ifwe show that with positive probability, no type X or Y event o

urs, Claim 1 will be proved.Claim 2 Pr(Xv) < e−α log2 ∆, for a parti
ular 
onstant α > 0.Proof. We �rst bound the expe
ted value of Av. Let A′

v be the number of 
olors c su
h thatexa
tly two neighbors of v re
eive the 
olor c and are not un
olored during Step 2. Noti
e that
Av ≥ A′

v, and thus E(Av) ≥ E(A′
v). Let u and w be two non adja
ent neighbors of v. Theprobability that u and w are 
olored with c, while no other neighbor of v is 
olored with c, andwhile no neighbor of u or w is 
olored with α is exa
tly ( 1

C

)2 (
1 − 1

C

)3∆−3
>
(

1
C

)2 (
1 − 1

C

)3∆.Sin
e G is ε∆-sparse, |E(N(v))| ≤
(∆

2

)

− ε∆2, whi
h implies that there are at least ε∆2 pairs ofnon adja
ent verti
es among the neighbors of v. There are C 
hoi
es for the 
olor c, thus
E(A′

v) > Cε∆2

(

1

C

)2(

1 − 1

C

)3∆

=
ε∆2

C

(

1 − 1

C

)3∆

For ∆ > 2, we have ln(1 − 1
C ) ≥ − 1

C − 1
C2 , and thus (1 − 1

C

)3∆ ≥ e−3e−
3
C . For ∆ large enough,

∆/C >
√

3/2 and e−
3
C >

√
3/2, so:

E(A′
v) >

3ε∆

4e3
=

3

2
ζ∆Sin
e E(Av) ≥ E(A′

v), we also have E(Av) > 3
2ζ∆. Let ATv be the number of 
olors assignedto at least two neighbors of v, and let Delv be the number of 
olors assigned to at least twoneighbors of v and not retained by at least one of them. Note that Av = ATv − Delv, and bylinearity of expe
tation, E(Av) = E(ATv) − E(Delv). The random variable ATv only dependson the ∆ 
olors assigned to the neighbors of v. Moreover, 
hanging one of these 
olors 
an onlya�e
t ATv by at most 1. Using the Simple Con
entration bound, we obtain:

Pr (|ATv − E(ATv)| > t) < 2e−
t2

2∆ . (1)The random variable Delv only depends on the nearly ∆2 
olors assigned to the verti
es atdistan
e at most 2 from v. As previously, 
hanging one of these 
olors 
an only a�e
t Delv byat most 1. Furthermore, if Delv ≥ s, we 
an �nd at most 3s verti
es, whi
h 
olors 
ertify thatDelv ≥ s (for ea
h 
olor α 
ounted by Delv ≥ s, we take two neighbors x and y of v 
olored with
α and a neighbor z of x or y also 
olored with α). Applying Talagrand's Inequality with c = 1and r = 3, we obtain for all t ≥ √

∆ log ∆

Pr (|Delv − E(Delv)| > t) < 4e−
(t−60

√
3E(Delv))2

24E(Delv) < 4e−
t2

25∆ , (2)sin
e E(Delv) ≤ ∆. Re
all that E(Av) = E(ATv) − E(Delv). Let t = 1
2 log ∆

√

E(Av). If
|Av −E(Av)| > log ∆

√

E(Av) we have either |ATv −E(ATv)| > t or |Delv −E(Delv)| > t. Using(1) and (2), the probability that this happens is at most
2e−

t2

2∆ + 4e−
t2

25∆ < 2e−
3
16 ζ log2 ∆ + 4e−

3
200 ζ log2 ∆ < e−

ζ
100 log2 ∆

5



So, for ∆ large enough, Pr

(

|Av − E(Av)| > log ∆
√

E(Av)
)

< e−
ζ

100
log2 ∆.

Pr

(

|Av − E(Av)| > log ∆
√

E(Av)
)

≥ Pr

(

Av < E(Av) − log ∆
√

E(Av)
)

≥ Pr

(

Av <
3

2
ζ∆ − log ∆

√
∆

)

≥ Pr (Av < ζ∆)Sin
e Pr(Xv) = Pr(Av < ζ∆), we proved that Pr(Xv) < e−
ζ

100
log2 ∆. 2Claim 3 Pr(Yv) < e−β∆, for a parti
ular 
onstant β > 0.Proof. Let u be a neighbor of v. The vertex u will be un
olored in Step 3 if for some neighbor

w of u, u and T other neighbors x1, . . . , xT of w are ea
h assigned a 
olor c(xi) su
h that
|c(u)− c(wu)| < d and |c(xi) − c(wxi)| < d for all 1 ≤ i ≤ T . The probability that this happensis at most

∆

(

∆ − 1

T

)(

2d − 1

C

)T+1

<
(2d − 1)T

T !For T large enough, (2d − 1)T /T ! < ζ/4, and thus E(Bv) < ζ∆
4 . The random variable Bv onlydepends on the nearly ∆3 
olors assigned to the verti
es at distan
e at most 3 from v. Changingone of these 
olors 
an a�e
t Bv by at most T + 1. Moreover, if Bv ≥ s there is a set of at most

(T + 1)s verti
es whi
h 
olors 
ertify that Bv ≥ s (for ea
h un
olored neighbor u of v, take uand T other neighbors x1, . . . , xT of some neighbor w of u, su
h that |c(u) − c(wu)| < d and
|c(xi) − c(wxi)| < d for all 1 ≤ i ≤ T ). Applying Talagrand's Inequality to Bv with c = T + 1and r = T + 1, we obtain for all t ≥ √

∆ log ∆

Pr (|Bv − E(Bv)| > t) < 4e
−

(t−60(T+1)
√

(T+1)E(Bv))2

8(T+1)3E(Bv) < 4e
− t2

9(T+1)3∆ .

Taking t = ζ∆
8 , we obtain Pr

(

|Bv − E(Bv)| > ζ∆
8

)

< 4e
− ζ2∆

576(T+1)3 < e
− ζ2∆

577(T+1)3 . Now, sin
e
Pr

(

|Bv − E(Bv)| >
ζ∆

8

)

≥ Pr

(

Bv > E(Bv) +
ζ∆

8

)

≥ Pr

(

Bv >
3

8
ζ∆

)

≥ Pr

(

Bv ≥ ζ∆

2

)

we have Pr(Yv) < e
− ζ2

577(T+1)3
∆. 2We now use Lovász Lo
al Lemma to prove Claim 1. Ea
h event Xv only depends on the
olors assigned to the verti
es at distan
e at most 2 from v, and ea
h event Yv depends on the
olors assigned to the verti
es at distan
e at most 3 from v. Hen
e, ea
h event is mutuallyindependent of all but at most 2∆6 other events. For ∆ su�
iently large, Pr(Xv) < 1

8∆6 and
Pr(Yv) < 1

8∆6 . Using Lovász Lo
al Lemma, this proves that with positive probability no type
X or Y event happens. Thus with positive probability, the �rst iteration produ
es a partial
oloring with bounded reje
t degree, su
h that ea
h vertex has at least ζ∆

2 repeated 
olors in itsneighborhood.
6



3.2 The next iterationsLet di =
(

1 − 1
4e

− 2
ζ

)i

∆ and fi = 4(2d−1)
ζ

∑i−1
j=I+1 Dj. Let i∗ be the smallest integer i su
h that

di ≤
√

∆. Observe that for any i ≤ i∗, we have di ≥ (1 − 1
4e

− 2
ζ )
√

∆.Claim 4 At the end of ea
h iteration 1 ≤ i ≤ i∗, with positive probability every vertex has atmost di un
olored neighbors, and ea
h list Fv has size at most fi.Proof. We prove Claim 4 by indu
tion on i. At the end of the �rst iteration, every vertexhas at least ζ∆
2 repeated 
olors in its neighborhood. So the number of un
olored verti
es in theneighborhood of any vertex is at most (1 − ζ)∆, whi
h is less than d1 =

(

1 − 1
4e

− 2
ζ

)

∆. Mor-ever, for any vertex v, the list Fv is still empty at the end of the �rst iteration, thus |Lv| ≤ 0 = f1.Suppose i > 1. By indu
tion, there are at most di−1 un
olored verti
es in ea
h neighborhoodat the beginning of iteration i, and ea
h Fv has size at most fi−1. We de�ne the random variable
Di

v as the number of un
olored neighbors of v after iteration i, and the random variable F i
v asthe size of the list Fv after iteration i. To 
omplete the indu
tion, we show that with positiveprobability, Di

v ≤ di and F i
v ≤ fi for any vertex v. Sin
e every vertex v has at least ζ∆

2 repeated
olors in its neighborhood, every list Lv has size at least ζ∆
2 . Thus, the probability that a newly
olored vertex is not un
olored during Step 2 is at least (1 − 2

ζ∆

)∆. So the probability that anewly 
olored vertex is un
olored during Step 2 is at most:
1 −

(

1 − 2

ζ∆

)∆

≤ 1 − 3

4
e−

2
ζFor i ≤ I, the probability that the newly 
olored vertex v is un
olored during Step 3 is at most:

∆

(

di−1

T

)(

2d − 1

ζ∆/2

)T+1

≤
(

2(2d − 1)

ζ∆

)T+1
1

T !
≤ 1

4
e−

2
ζObserve that for I su�
iently large in terms of ζ and d, we have

fi =
4(2d − 1)∆

ζ

i−1
∑

j=I+1

(

1 − 1

4
e−

2
ζ

)j

≤ 4(2d − 1)∆

ζ
× 4e

2
ζ

(

1 − 1

4
e−

2
ζ

)I+1

<
ζ∆

16
e−

2
ζ .Thus, for i > I, the probability that the vertex v is un
olored during Step 3(a) is at most:

|Fv|
|Lv|

≤ 2

ζ∆
fi−1 <

1

8
e−

2
ζ

And the probability that v is un
olored during Step 3(b) is at most:
∆di−1

(

2(2d − 1)

ζ∆

)2

≤
(

1 − 1

4
e−

2
ζ

)I (
2(2d − 1)

ζ

)2

≤ 1

8
e−

2
ζCombining these results, the probability that a newly 
olored vertex is un
olored during Step 2or Step 3 is at most 1 − 3

4e
− 2

ζ + 1
4e

− 2
ζ = 1 − 1

2e
− 2

ζ . As a 
onsequen
e,
E(Di

v) ≤
(

1 − 1

2
e−

2
ζ

)

di−1

7



Let X i
v be the event that Di

v >
(

1 − 1
4e

− 2
ζ

)

di−1. We de�ne the random variable NF i
v as thenumber of 
olors added to Fv during iteration i. Let Y i

v be the event that NF i
v > 4(2d−1)

ζ
di−1.Using Lovász Lo
al Lemma, we prove that with positive probability none of the type X or Yevents o

urs.Claim 5 Pr(X i

v) < e−δ log2 di−1 , for a parti
ular 
onstant δ > 0.Proof. Let v be a vertex of G. Let A be the number of neighbors of v that are un
olored duringStep 2. For i ≤ I we de�ne B as the number of neighbors of v that are un
olored during Step3. For i > I we de�ne C (resp. D) as the number of neighbors of v that are un
olored duringStep 3.(a) (resp. 3.(b)). Using the Simple Con
entration Bound on A, Talagrand's Inequalityon B and D, and Cherno� Bound on C, 
ombined with E(Di
v) ≤ (1 − 1

2e
− 2

ζ )di−1, we prove thefollowing inequalities:
Pr

(

|A − E(A)| >
1

2
log di−1

√

E(A + B)

)

< 2e−
e
−

2
ζ

64 log2 di−1 (3)
Pr

(

|B − E(B)| >
1

2
log di−1

√

E(A + B)

)

< 4e
− e

−

2
ζ

64(T+1)3
log2 di−1 (4)

Pr

(

|A − E(A)| >
1

3
log di−1

√

E(A + C + D)

)

< 2e−
e
−

2
ζ

144 log2 di−1 (5)
Pr

(

|C − E(C)| >
1

3
log di−1

√

E(A + C + D)

)

< 2e−
1

144 log2 di−1 (6)
Pr

(

|D − E(D)| >
1

3
log di−1

√

E(A + C + D)

)

< 2e−
e
−

2
ζ

1152 log2 di−1 (7)The proof of these results is very 
lose from the proofs of Claims 2 and 3. Combining (3), (4),(5), (6) and (7), we obtain for T and ∆ large enough :
Pr(Xi

v) < e
− e

−

2
ζ

65(T+1)3
log2 di−1

2Claim 6 Pr(Y i
v ) < e−γdi−1, for a parti
ular 
onstant γ > 0.Proof. The probability that a neighbor u of v is assigned a 
olor c(u) su
h that |c(u)−c(uv)| < dis 2d−1

|Lu|
≤ 2(2d−1)

ζ∆ . Thus E(NFv) ≤ 2(2d−1)
ζ∆ di−1. Applying Talagrand's Inequality to the randomvariable NFv with c = (2d − 1)2 and r = 1, we obtain :

Pr (|NFv − E(NFv)| > t) < 4e
− ζt2

16(2d−1)5di−1for any t > log di−1

√

di−1. Taking t = 2d−1
ζ

di−1, we obtain :
Pr

(

NFv >
4(2d − 1)

ζ
di−1

)

≤ Pr

(

|NFv − E(NFv)| >
2d − 1

ζ
di−1

)

< 4e
−

di−1

2ζ(2d−1)3

2The variable X i
v only depends on the 
olors assigned to the verti
es at distan
e at most 3 from

v during iteration i, while the variable Y i
v depends on the 
olors assigned to the verti
es at distan
eat most 2 from v during iteration i. Thus, ea
h type X or Y event is mutually independantfrom all but at most 2d6

i−1 other events. Using Claims 5 and 6, we have Pr(X i
v) < 1

8d6
i−1

and
Pr(Y i

v ) < 1
8d6

i−1
for ∆ large enough (re
all that a

ording to our 
hoi
e of i∗ we always have

di ≥ (1 − 1
4e

− 2
ζ )
√

∆). Lovász Lo
al Lemma 
ompletes the indu
tion. 28



3.3 The �nal phaseAt this point, we have a partial 
oloring su
h that:
• ea
h vertex v has at most √∆ un
olored neighbors;
• the reje
t degree of ea
h vertex is at most IT + 1;
• ea
h vertex has a list of at least ζ∆

2 available 
olors.It will be more 
onvenient to use lists of equal sizes. So we arbitrarily delete 
olors from ea
hlist, so that for every un
olored vertex v, we have |Lv| = ζ∆
2 . For ea
h un
olored vertex, we
hoose a subset of 
olors from Lv whi
h will be 
andidates for v and we prove that with positiveprobability, there exists a 
andidate for ea
h un
olored vertex, su
h that we 
an 
omplete ourpartial 
oloring of G.A 
andidate a for v is said to be good if:Condition 1 for every neighbor u of v, a is not 
andidate for u;Condition 2 for every neighbor u of v, and every neighbor w of u, there is no 
andidate

b of w su
h that |c(uv) − a| < d and |c(uw) − b| < d.If we �nd a good 
andidate for every un
olored vertex, Condition 1 ensures that the vertex
oloring obtained is proper, and Condition 2 ensures that no reje
t degree in
reases by more thanone.Claim 7 There exists a set of 
andidates Sv for ea
h un
olored vertex v, su
h that ea
h set
ontains at least one good 
andidate.Proof. For ea
h un
olored vertex v, we 
hoose a random permutation of Lv, and take the�rst twenty 
olors of the list as set of 
andidates for v. Let Cv be the event that none of the
andidates for v is a good 
andidate. Ea
h event Cv depends from at most ∆4 other events. Wenow show that Pr(Cv) < 1
4∆4 . Lovasz Lo
al Lemma will 
omplete the proof.Let v be an un
olored vertex of G. We de�ne:

Bad1 = {c ∈ Lv : c is 
andidate for some neighbor of v}
Bad2 = {c ∈ Lv : 
hoosing c for v violates Condition 2}
Bad = Bad1 ∪ Bad2Let D be the event that |Bad| ≤ 60(2d − 1)2

√
∆. A 
andidate for v is good if and only if itdoes not belong to Bad. Observe that :

Pr(Cv|D) ≤
( |Bad|

|Lv|

)20

≤
(

60(2d − 1)2
√

∆
ζ∆
2

)20

≤ 12020(2d − 1)40

ζ20∆10So for ∆ su�
iently large, Pr(Cv|D) < 1
8∆4 .Ea
h vertex has at most √∆ un
olored neighbors, thus |Bad1| ≤ 20

√
∆ ≤ 20(2d − 1)2

√
∆.We now show that with very high probability, the size of Bad2 is at most 40(2d − 1)2

√
∆. A
olor c belongs to Bad2 if for some neighbor u of v su
h that |c(uv)− c| < d, there is a neighbor

w of u and a 
andidate a for w su
h that |c(uw) − a| < d. Thus we obtain:
Pr(c ∈ Bad2) ≤ (2d − 1) × 20

√
∆ × 2d − 1

ζ∆
2

≤ 40(2d − 1)2

ζ
√

∆9



E(|Bad2|) ≤
ζ∆

2
× 40(2d − 1)2

ζ
√

∆
≤ 20(2d − 1)2

√
∆

The random variable |Bad2| only depends on at most ∆2 permutations of 
olor lists ofun
olored verti
es at distan
e at most 2 from v. Moreover, ex
hanging two members of oneof the permutations 
an a�e
t |Bad2| by at most 2d − 1. If |Bad2| ≥ s, we 
an 
ertify this bygiving, for ea
h 
olor α ∈ Bad2, a neighbor u of v su
h that |c(uv)−α| < d, as well as a neighbor
w of u having a 
andidate a su
h that |c(uw) − a| < d. Re
all that a is a 
andidate for w if itbelongs to the �rst twenty positions of the permutation of Lw. So we only need to give s 
hoi
esof 
andidates to 
ertify that |Bad2| ≥ s. We apply M
Diarmid's Inequality to X = |Bad2| with
n = 0, m = ∆2, c = 2d − 1, r = 1, and t = 10(2d − 1)2

√
∆ :

Pr

(

|X − E(X)| > 10(2d − 1)2
√

∆ + 60(2d − 1)
√

E(X)
)

< 4e
− 100(2d−1)4∆

8(2d−1)2E(X)

Sin
e E(X) ≤ 20(2d − 1)2
√

∆, this implies for ∆ su�
iently large:
Pr

(

|Bad2| > 40(2d − 1)2
√

∆
)

< 4e−
5
8

√
∆

So for ∆ large enough, Pr
(

D
)

< 1
8∆4 . We 
an express the probability of Cv as Pr(Cv) =

Pr(Cv|D)Pr(D) + Pr(Cv|D)Pr(D). And so,
Pr(Cv) ≤ Pr(Cv|D) + Pr(D) <

1

4∆4

2We obtain a 
oloring of G with maximum reje
t degree at most IT + 2. So the reje
t graph
R obtained has maximum degree at most IT + 2d + 1. We un
olor the verti
es of R and re
olorthem greedily with the 
olors {∆ + 3d− 2, . . . , ∆ + IT + 5d}. This �nal 
oloring is a (d, 1)-totallabelling of G. Sin
e I and T are independant of ∆, we proved that λT

d (G) ≤ ∆ + Cd,ε.Remark 1 By looking 
arefully at ea
h inequality during the pro
edure, we 
an repla
e ∆ + Cd,εby ∆ + Cεd log d, where Cε is a 
onstant that does not depend on d.
4 Further workTheorem 5 
an be transformed into a randomized algorithm, using a powerful te
hnique intro-du
ed by Be
k [1℄ and extended to a wide range of appli
ations of the symmetri
 form of theLo
al Lemma by Molloy and Reed [8℄.
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A Probalisti
 toolsSimple Con
entration Bound. Let X be a random variable determined by n independent trials
T1, . . . , Tn and satisfying:1. Changing the out
ome of any one trial 
an a�e
t X by at most c.Then,

Pr(|X − E(X)| > t) ≤ 2e−
t2

2c2n

Talagrand's Inequality. Let X be a non-negative random variable, not identi
ally 0, whi
h is deter-mined by n independent trials T1, . . . , Tn, and satisfying the following for some c, r > 0 :1. Changing the out
ome of any one trial 
an a�e
t X by at most c.2. For any s, if X ≥ s then there is a set of at most rs trials whose out
omes 
ertify that X ≥ s.Then for any 0 ≤ t ≤ E(X),
Pr

(

|X − E(X)| > t + 60c
√

rE(X)
)

≤ 4e
− t2

8c2rE(X)

M
Diarmid's Inequality. Let X be a non-negative random variable, not identi
ally 0, whi
h is deter-mined by n indenpendent trials T1, . . . , Tn and m independent permutations Π1, . . . , Πm and satisfyingthe following for some c, r > 0 :1. Changing the out
ome of any trial 
an a�e
t X by at most c.2. Inter
hanging two elements in any one permutation 
an a�e
t X by at most c.3. For any s, if X ≥ s then there is a set of at most rs 
hoi
es whose out
omes 
ertify that X ≥ s.Then for any 0 ≤ t ≤ E(X),
Pr

(

|X − E(X)| > t + 60c
√

rE(X)
)

≤ 4e
− t2

8c2rE(X)

Lovász Lo
al Lemma. Consider a set E of (typi
ally bad) events su
h that for ea
h A ∈ E1. Pr(A) ≤ p < 1, and2. A is mutually independent of a set of all but at most d of the other events.If 4pd ≤ 1 then with positive probability, none of the events in E o

ur.
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