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Abstract

The (d, 1)-total number A\J (G) of a graph G is the width of the smallest range of integers
that suffices to label the vertices and the edges of G so that no two adjacent vertices have
the same color, no two incident edges have the same color and the distance between the color
of a vertex and the color of any incident edge is at least d. This notion was introduced by
Havet and Yu in [6]. In this paper, we study the (d,1)-total number of sparse graphs and
prove that for any 0 < € < %, and any positive integer d, there exists a constant Cy. such
that for any eA-sparse graph G with maximum degree A, we have A} (G) < A + Cy...

1 Introduction

In the channel assignment problem, we need to assign frequency bands to transmitters. If two
transmitters are too close, interferences will occur if they attempt to transmit on close frequencies.
In order to avoid this situation, the channels assigned must be sufficiently far. Moreover, if two
transmitters are close but not too close, the channels assigned must still be different. This
problem is known under the L(p, g)-labelling problem of a graph G, where a L(p, ¢)-labelling
is an integer assignment L to the vertices of G such that V(u,v) € V(G)? dg(u,v) = 1 =
|L(u) — L(v)| > p and V(u,v) € V(G)?,dg(u,v) = 2 = |L(u) — L(v)| > q. In 1992, Griggs and
Yeh introduced this labelling with p = 2 and ¢ = 1 in [4]. Since, this notion has been widely
studied and gives many challenging problems. In particular, in 1995, Whittlesey, Georges and
Mauro [3| studied the L(2,1)-labelling of the incidence graph obtained from G. The incidence
graph of G is the graph obtained from G by replacing each edge by a path of length 2. The
L(2,1)-labelling of the incidence graph of G is equivalent to an assignment of integers to each
element of V(G) U E(G) such that :

1. the edge-coloring is proper, i.e. no two incident edges receive the same integer ;

2. the vertex-coloring is proper, i.e. no two adjacent vertices receive the same integer ;

3. the difference between the integer assigned to a vertex and those assigned to its incident
edges is at least 2.
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This labelling is called a (2, 1)-total labelling. It was introduced by Havet and Yu in 2002 [6, 5]
and generalized to the (d, 1)-total labelling of a graph G.

More formally, a (d, 1)-total labelling of a graph G = (V, E) is a function ¢ : VUE — N
verifying:

(i) Y(u,v) € V2 :uv € E = c(u) # c(v)
(ii) V(u,v,w) € V3 :uv € B,uw € E = c(uv) # c(uw)
(iii) Y(u,v) € VZ:uv € E = |c(u) — c(uv)| > d

The span of a (d, 1)-total labelling is the maximum difference between two assigned integers.
The (d, 1)-total number of a graph G, denoted by )\z;(G), is the minimum span of a (d, 1)-total
labelling of G. Figure 1 gives an example of a (2, 1)-total labelling with 6 colors (we use integers
belonging to an interval beginning by zero).

Figure 1: (2, 1)-total labelling of the Petersen’s graph.
Notice that the (1, 1)-total labelling is the traditional total coloring.

We recall some bounds (without proof) and a conjecture for the (d, 1)-total number:
Theorem 1 ([6]) Let G be a graph with mazimum degree A, then:

(i) NI(G)>A+d—1.
(i1) If G is A-regular, NI (G) > A +d.
(iid) Ifd > A, \L(G) > A +d.

Let x(G) (resp. X'(G)) be the chromatic number (resp. index) of G. Observe that if we color the
vertices with colors belonging to an interval I, containing x(G) colors and the edges with colors
belonging to an interval I, containing x'(G) colors, I, and I. being separated by an interval
of size d — 1, we obtain a (d,1)-total labelling of the graph. Theorem 2 is deduced from this
observation :

Theorem 2 ([6]) Let G be a graph, then

(i) Ag(G)
(i) A4 (G)

X(G)+X(G) +d -2

<
<2A+d-1

Theorem 3 ([10]) Let G be a connected graph with mazimum degree A, d > 2, then AL (G) <
A + 2d — 2 in the following cases :



(i) A>2d+1 and Mad(G) < 2
(i) A>2d+2 and Mad(G) < 3
(iii) A >2d+ 3 and Mad(G) < 22

where Mad(G) is the mazimum average degree of G, i.e. Mad(G) = max{2|E(H)|/|V(H)|,H &
G}.

Conjecture 1 ([6]) Let G be a graph with mazimum degree A, then AL (G) < min{A + 2d —
1,2A +d — 1}.

Finally, the best known upper bound for general graphs is due to Esperet and Havet [2] who
proved :

Theorem 4 Let G be a graph with mazimum degree A, then AL (G) < A+ O(log A).

In [7], Molloy and Reed proved that the total chromatic number of any graph with maximum
degree A is at most A plus an absolute constant. Moreover, in [9], they gave a simpler proof
of this result for sparse graphs. In this paper, we generalize their approach to the (d, 1)-total
number of sparse graphs.

A vertex v is called a-sparse iff |[E(N(v))| < (%) — a/A. An a-sparse graph is a graph in
which all the vertices are a-sparse.

Our main result is the following :

Theorem 5 For any 0 < € < %, and any positive integer d, there exists a constant Cyq. such
that for any eA-sparse graph G with mazimum degree A, we have )\dT(G) <A+ Cgpe.

The proof of Theorem 5 is based on a probabilistic approach due to Molloy and Reed. It uses
intensively concentration inequalities as well as Lovéasz Local Lemma. Moreover, we conjecture:

Conjecture 2 For any positive integer d, there ezists a constant Cy, such that for any graph G
with mazimum degree A, we have \}(G) < A + Cy.

In Section 2, we present the procedure used to prove Theorem 5. In Section 3, we analyse this
procedure. In the following, we will need some probabilistic tools (see Appendix A and [9] for
more details).

2 Proof of Theorem 5

Since A} (G) < 2A 4+ d — 1, if we prove that for some Ag(d,¢) and some C ., any eA-sparse
graph G of maximum degree A > A verifies A} (G) < A+ Cy., then Theorem 5 will be proved.

Let ¢ be a full or partial coloring of G. Any edge e = uv such that |¢(u) — ¢(e)| < d or/and
lp(v) — ¢(e)| < d is called a reject edge. The graph R induced by the reject edges is called the
reject graph. It will be convenient for us to consider the reject degree of a vertex v, which is the
number of edges e = uv such that |¢(u) — ¢(e)| < d. Observe that degr(v) is at most the reject
degree of v plus 2d — 1.



2.1 Sketch of Proof
To prove Theorem 5, we apply the following steps :

Step 1. First, we will color the edges by Vizing’s Theorem using the colors {1,..., A}.

Step 2. Then we will use the Naive Coloring Procedure to color the vertices with colors {1,..., A+
2d — 1}. This procedure creates reject edges. However, we can prove that after the proce-
dure, the maximum degree of the reject graph R is a constant Dy, which does not depend
on A.

Step 3. Finally, we erase the color of the vertices of R and recolor these vertices greedily with the
colors {A+3d—2,...,A+3d -1+ Dy.}. Taking Cq. = Dg. + 3d — 2, this proves that
)\g(G) <A+ Cge.

We now present the Naive Coloring Procedure.

2.2 The Naive Coloring Procedure

For each vertex v, we maintain two lists of colors : L, and F),. L, is the set of colors which
do not appear in the neighborhood of v. Initially, L, = {1,..., A + 2d — 1}. After iteration I
(specified later), F, will be a set of forbidden colors. Until iteration I, F;, = ().

During the Naive Coloring procedure, we will perform i* (specified later) iterations of the
following procedure :

Step 1. Assign to each uncolored vertex v a color choosen uniformly at random in L,.
Step 2. Uncolor any vertex which receives the same color as a neighbor in this iteration.
Step 3. Iteration i < I. Let v be a vertex having more than T' (specified later) neighbors u
which are assigned a color ¢(u) such that |c(uv) — ¢(u)| < d in this iteration. For any
v, we uncolor all such neighbors.
Iteration ¢ > I.
(a) Uncolor any vertex v which receives a color from F, in this iteration.
(b) Let v be a vertex having more than one neighbor u which is assigned a color such
that |c(uv) — ¢(u)| < d in this iteration. For any v, we uncolor all such neighbor.
(c) Let v be a vertex having at least one neighbor u such that |c(uv) — c¢(u)| < d in
this iteration. For any v, we place {c(vw) —d+1,...,c(vw),...,c(vw) +d — 1}
in F,, for every w € N(v).
Step 4. For any vertex v which retained its color ¢, we remove ¢ from L, for any u € N(v).

After i* iterations of this procedure, we have have a partial coloring of G. We then complete
this coloring in order to obtain a reject graph R with a bounded maximum degree which does
not depend on A (Section 4.3).

3 Analysis of the procedure

3.1 The first iteration

Let ¢ = 525. In this subsection, we prove that:

Claim 1 The first iteration produces a partial coloring with bounded reject degree for which every
verter has at least gA repeated colors in its neighborhood.

4



We recall that C = A + 2d — 1 is the initial size of each color list L,. Let A, be the number
of colors ¢ such that at least two neighbors of v receive the color ¢ and all such vertices retain
their color during Step 2. Let B, be the number of neighbors of v which are uncolored at Step
3. Notice that vertices are uncolored at Step 3 regardless of what happened at Step 2. Let X,
be the event that “A, < (A”. Let Y, be the event that “B, > %A”. If no type X event occurs,
every vertex has at least (A repeated colors in its neighborhood at the end of Step 2. If no type
Y event occurs, less than %A vertices are uncolored in each neighborhood. As a consequence, if
we show that with positive probability, no type X or Y event occurs, Claim 1 will be proved.

Claim 2 Pr(X,) < e_o‘long, for a particular constant o > 0.

Proof. We first bound the expected value of A,. Let A/ be the number of colors ¢ such that
exactly two neighbors of v receive the color ¢ and are not uncolored during Step 2. Notice that
A, > Al, and thus E(A,) > E(A]). Let v and w be two non adjacent neighbors of v. The
probability that u and w are colored with ¢, while no other neighbor of v is colored with ¢, and

while no neighbor of u or w is colored with « is exactly (%)2 (1 — é)BAig > (é)2 (1 — %):m.

Since G is eA-sparse, |[E(N(v))| < (%) —eA?, which implies that there are at least ¢A? pairs of
non adjacent vertices among the neighbors of v. There are C choices for the color ¢, thus

) ) l 2 71 3A7£ 7& 3A
E(A)) > CeA (C) 1 c =7 1 C
For A > 2, we have In(1 — }) > —2 — Z, and thus (1 -1
A/C > +/3/2 and e ¢ > V/3/2, so:

> e=3e~¢. For A large enough,

Since E(A,) > E(A)), we also have E(4,) > 3¢A. Let AT, be the number of colors assigned
to at least two neighbors of v, and let Del, be the number of colors assigned to at least two
neighbors of v and not retained by at least one of them. Note that A, = AT, — Del,, and by
linearity of expectation, E(A,) = E(AT,) — E(Del,). The random variable AT, only depends
on the A colors assigned to the neighbors of v. Moreover, changing one of these colors can only
affect AT, by at most 1. Using the Simple Concentration bound, we obtain:

Pr(|AT, — E(AT,)| > t) < 2¢~ %5 (1)

The random variable Del, only depends on the nearly A? colors assigned to the vertices at
distance at most 2 from v. As previously, changing one of these colors can only affect Del, by
at most 1. Furthermore, if Del, > s, we can find at most 3s vertices, which colors certify that
Del, > s (for each color o counted by Del, > s, we take two neighbors x and y of v colored with
a and a neighbor z of x or y also colored with «). Applying Talagrand’s Inequality with ¢ = 1
and r = 3, we obtain for all £ > /Alog A

(t—GO\/m)Q 2
Pr (|Del, — E(Del,)| > t) < 4¢” TEDd) < 4¢” 355, (2)

since E(Del,) < A. Recall that E(A,) = E(AT,) — E(Del,). Let t = $log A\/E(A,). If

|A, — E(A,)| > log A\/E(A,) we have either |AT,, — E(AT,)| > t or |Del, — E(Del,)| > t. Using
(1) and (2), the probability that this happens is at most

2 2
e 35 + de” T8 < 2 1601087 A 4 g a0oC 108" A o= 1fg log” A



So, for A large enough, Pr (|Av —E(Ay)| > log A\/E(Av)) < e T log’ A,

Pr (|4, — B(4,)| > g AVE(4,)) > Pr(4, < B(4,) — log AVE(4,))

> Pr <Av < %CA - logA\/Z>
> Pr(d, <CA)
Since Pr(X,) = Pr(4, < (A), we proved that Pr(X,) < e~ To0 108" A O

Claim 3 Pr(Y,) < e 2, for a particular constant 3 > 0.

Proof. Let u be a neighbor of v. The vertex u will be uncolored in Step 3 if for some neighbor
w of u, u and T other neighbors z1,...,xp of w are each assigned a color ¢(x;) such that
le(u) — e(wu)| < d and |c(x;) — e(wz;)| < d for all 1 <14 < T. The probability that this happens

is at most
A(A-1) (201 T+1<(2d71)T
T C T!

For T large enough, (2d — 1)7/T! < (/4, and thus E(B,) < %. The random variable B, only
depends on the nearly A? colors assigned to the vertices at distance at most 3 from v. Changing
one of these colors can affect B, by at most T'+ 1. Moreover, if B, > s there is a set of at most
(T + 1)s vertices which colors certify that B, > s (for each uncolored neighbor u of v, take u
and T other neighbors z1,...,z7 of some neighbor w of u, such that |c(u) — ¢(wu)| < d and
le(x;) — c(wz;)| < d for all 1 < i < T). Applying Talagrand’s Inequality to B, with ¢ =T + 1
and r =T + 1, we obtain for all t > /Alog A

(1—60(r+1) /TF BB, ) 2
Pr(|B, —E(B,)| >1t) <4de 8(T+1)3E(By) < de 9T+HIA,

__ A __ A
Taking ¢ = 52, we obtain Pr (|Bv _E(B,)| > %) < 4 TP < ¢ ST, Now, since

Pr (|Bv —E(B,)| > %) > Pr (BU > E(B,) + %)
3
> Pr <B7j > g(A)
> Pr <Bv > %>
2
N
we have Pr(Y,) < e 57T+, O

We now use Lovasz Local Lemma to prove Claim 1. Each event X, only depends on the
colors assigned to the vertices at distance at most 2 from v, and each event Y, depends on the
colors assigned to the vertices at distance at most 3 from v. Hence, each event is mutually
independent of all but at most 2A% other events. For A sufficiently large, Pr(X,) < ﬁ and
Pr(Y,) < &%' Using Lovész Local Lemma, this proves that with positive probability no type
X or Y event happens. Thus with positive probability, the first iteration produces a partial
coloring with bounded reject degree, such that each vertex has at least % repeated colors in its
neighborhood.



3.2 The next iterations

Let d; = (1 — %e_f) A and f; = 4(2?1) E] —741 Dj. Let i* be the smallest integer 7 such that

d; < v/A. Observe that for any i < i*, we have d; > (1-— Ze_f)\/z.

Claim 4 At the end of each iteration 1 < i < i*, with positive probability every vertex has at
most d; uncolored neighbors, and each list F, has size at most f;.

Proof. We prove Claim 4 by induction on i. At the end of the first iteration, every vertex
has at least % repeated colors in its neighborhood. So the number of uncolored vertices in the

2
neighborhood of any vertex is at most (1 — ¢)A, which is less than d; = (1 - %e_f) A. Mor-
ever, for any vertex v, the list F), is still empty at the end of the first iteration, thus |L,| < 0 = fi.

Suppose ¢ > 1. By induction, there are at most d;_; uncolored vertices in each neighborhood
at the beginning of iteration 7, and each F, has size at most f;_1. We define the random variable
D! as the number of uncolored neighbors of v after iteration 4, and the random variable F! as
the size of the list [, after iteration ¢. To complete the mductlon we show that with positive

probability, D! < d; and F! < f; for any vertex v. Since every vertex v has at least % repeated
colors in its neighborhood, every list L, has size at least %. Thus, the probability that a newly

A
colored vertex is not uncolored during Step 2 is at least (1 — CLA) . So the probability that a
newly colored vertex is uncolored during Step 2 is at most:

1—(1 2A<13*%
(A) =TT g°

For ¢ < I, the probability that the newly colored vertex v is uncolored during Step 3 is at most:

A(dil) (2d-1)T“ - <2(2d—1)>T“ L1
T CA/2 CA T = 4

Observe that for I sufficiently large in terms of ¢ and d, we have

o

i—1

42d —1)A < 1 2\’ 42d-1)A s 1 2\
fi: C—Z (]_—Ze C) < 7€ X 4e< 1—16 <
j=I+1
(A -2
DT

Thus, for ¢ > I, the probability that the vertex v is uncolored during Step 3(a) is at most:

| 1
LSl <5

J‘rlM

And the probability that v is uncolored during Step 3(b) is at most:

o (2 < (1) (2 <

Combining these results, the probability that a newly colored vertex is uncolored during Step 2

Ao
o

or Step 3 is at most 1 — e C+ g le —¢ = =1- §€ ~¢. As a consequence,
. 1 2
E(Df}) < (1 — 56 C) di_q

7



. . 2 .
Let X be the event that D} > (1 - le_?) di—1. We define the random variable NF} as the

4
number of colors added to F; during iteration i. Let Yvi be the event that NV Flf > Mdi_l.

Using Lovész Local Lemma, we prove that with positive probability none of the type X or Y
events occurs.

Claim 5 Pr(X}) < e=0l8’divy | for ¢ particular constant § > 0.

Proof. Let v be a vertex of G. Let A be the number of neighbors of v that are uncolored during
Step 2. For ¢ < I we define B as the number of neighbors of v that are uncolored during Step
3. For ¢ > I we define C' (resp. D) as the number of neighbors of v that are uncolored during
Step 3.(a) (resp. 3.(b)). Using the Simple Concentration Bound on A, Talagrand’s Inequality

on B and D, and Chernoff Bound on C, combined with E(D?) < (1 — %ef%)di_l, we prove the
following inequalities:

2

1 T

Pr ('A —E(4)| > ) logd;—1v/E(A+ B)) < 2e” s log? di (3)

1 _;%B.IOgQ di—1

Pr |B — E(B)l > E log di—1 E(A + B) < de 64(T+1) (4)
1 2

r (14~ BA)| > g1 VE(AT O+ D) ) < 26 o .
1 1

Pr (lC —E(0)] > Jlogdi 1/E(A+C + D)) < 9e— i log? di ©)
_2

Pr <|D —E(D)| > élog di-1vVEA+C+ D)> < D¢~ rex log® dia (7)

The proof of these results is very close from the proofs of Claims 2 and 3. Combining (3), (4),
(5), (6) and (7), we obtain for 7" and A large enough :

2

. e ¢ 2 5
Pr(X!) < ¢ w03 %8 di-1

Claim 6 Pr(Y}) < e -1 for a particular constant y > 0.

Proof. The probability that a neighbor u of v is assigned a color ¢(u) such that |c(u)—c(uv)| < d

is 2&:‘1 < 2(2;21). Thus E(NF,) < %di,l. Applying Talagrand’s Inequality to the random

variable NF, with ¢ = (2d — 1)? and r = 1, we obtain :

ot
Pr(|NF, — E(NF,)| > t) < 4¢ 10Ga- 0%,
for any ¢t > logd;_1 \/E Taking t = MT_ldi—l, we obtain :

di—1

wdil) <Pr (lNFv —E(NF,)| > Qdc_ 1dil) < 4e 2@d-D?

¢

Pr <NFU >

O

The variable X! only depends on the colors assigned to the vertices at distance at most 3 from

v during iteration i, while the variable Y,/ depends on the colors assigned to the vertices at distance
at most 2 from v during iteration i. Thus, each type X or Y event is mutually independant

from all but at most 2d? ; other events. Using Claims 5 and 6, we have Pr(X}) < 3 d% and
i—1
Pr(Y}) < 3 d% for A large enough (recall that according to our choice of i* we always have
i—1
2
d; > (1 — e ¢)V/A). Lovész Local Lemma completes the induction. O



3.3 The final phase

At this point, we have a partial coloring such that:

e cach vertex v has at most v/A uncolored neighbors:
e the reject degree of each vertex is at most I7T + 1;
e cach vertex has a list of at least % available colors.

It will be more convenient to use lists of equal sizes. So we arbitrarily delete colors from each
list, so that for every uncolored vertex v, we have |L,| = %. For each uncolored vertex, we
choose a subset of colors from L, which will be candidates for v and we prove that with positive
probability, there exists a candidate for each uncolored vertex, such that we can complete our

partial coloring of G.

A candidate a for v is said to be good if:

Condition 1 for every neighbor u of v, a is not candidate for u;
Condition 2 for every neighbor v of v, and every neighbor w of u, there is no candidate
b of w such that |c(uv) — a| < d and |c(uw) — b| < d.

If we find a good candidate for every uncolored vertex, Condition 1 ensures that the vertex
coloring obtained is proper, and Condition 2 ensures that no reject degree increases by more than
one.

Claim 7 There exists a set of candidates S, for each uncolored vertex v, such that each set
contains at least one good candidate.

Proof. For each uncolored vertex v, we choose a random permutation of L,, and take the
first twenty colors of the list as set of candidates for v. Let C) be the event that none of the
candidates for v is a good candidate. Each event C, depends from at most A* other events. We
now show that Pr(C,) < ﬁ. Lovasz Local Lemma will complete the proof.

Let v be an uncolored vertex of G. We define:

Bady = {c € L, : c is candidate for some neighbor of v}
Bady = {c € L, : choosing ¢ for v violates Condition 2}
Bad = Bad; U Bads

Let D be the event that |Bad| < 60(2d — 1)2v/A. A candidate for v is good if and only if it
does not belong to Bad. Observe that :

20
|Bad|\*° _ [60(2d —1)2VA 120%0(2d — 1)%0
Pr(C,|D) < < | < % < C20A10

So for A sufficiently large, Pr(C,|D) < 8%.
Each vertex has at most v/A uncolored neighbors, thus |Bad;| < 20v/A < 20(2d — 1)?V/A.

We now show that with very high probability, the size of Bady is at most 40(2d — 1)2V/A. A
color ¢ belongs to Bads if for some neighbor u of v such that |c(uv) — ¢| < d, there is a neighbor
w of u and a candidate a for w such that |c(uw) — a| < d. Thus we obtain:

2d—1 _ 40(2d — 1)2
P € Bady) < (2d — 1) x 20V A x <
r(c ady) < ( ) % < C\/Z




CA  40(2d —1)? )
X —E <20(2d — 1)°VA

The random variable |Badsy| only depends on at most A? permutations of color lists of
uncolored vertices at distance at most 2 from v. Moreover, exchanging two members of one
of the permutations can affect |Badsy| by at most 2d — 1. If |Bads| > s, we can certify this by
giving, for each color o € Bads, a neighbor u of v such that |c(uv) — a| < d, as well as a neighbor
w of u having a candidate a such that |c(uw) — a| < d. Recall that a is a candidate for w if it
belongs to the first twenty positions of the permutation of L,,. So we only need to give s choices
of candidates to certify that |Bady| > s. We apply McDiarmid’s Inequality to X = |Bads| with

n=0m=A?c=2d—1,r=1,and t = 10(2d — 1)>VA :

100(2d—1)4A

Pr (\X —E(X)| > 10(2d — 1)>VA + 60(2d — 1) E(X)) < de” S@d-DPER)

Since E(X) < 20(2d — 1)2V/A, this implies for A sufficiently large:
Pr (|Bad2| > 40(2d — 1)2\/5) 4-3VE

So for A large enough, Pr (ﬁ) &%' We can express the probability of C, as Pr(C,) =
Pr(C,|D)Pr(D) + Pr(C,|D)Pr(D). And so,

Pr(C,) < Pr(C,|D) +Pr(D) < IAG

O

We obtain a coloring of G with maximum reject degree at most I7T + 2. So the reject graph
R obtained has maximum degree at most IT 4 2d + 1. We uncolor the vertices of R and recolor
them greedily with the colors {A +3d —2,...,A+ IT + 5d}. This final coloring is a (d, 1)-total
labelling of G. Since I and T are independant of A, we proved that A\I(G) < A + Cy..

Remark 1 By looking carefully at each inequality during the procedure, we can replace A+ Cq .
by A + C.dlogd, where C; is a constant that does not depend on d.

4 Further work

Theorem 5 can be transformed into a randomized algorithm, using a powerful technique intro-
duced by Beck [1] and extended to a wide range of applications of the symmetric form of the
Local Lemma by Molloy and Reed [8].
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A Probalistic tools

Simple Concentration Bound. Let X be a random wvariable determined by n independent trials
Ti,...,T, and satisfying:

1. Changing the outcome of any one trial can affect X by at most c.

Then,
t2
Pr(|X —E(X)| >t) <2e 22

Talagrand’s Inequality. Let X be a non-negative random variable, not identically 0, which is deter-
mined by n independent trials Ty, ...,T,, and satisfying the following for some c¢,r > 0 :

1. Changing the outcome of any one trial can affect X by at most c.
2. For any s, if X > s then there is a set of at most rs trials whose outcomes certify that X > s.

Then for any 0 < t < E(X),

t2
Pr <|X —E(X)| > t+ 600\/TE(X)> < 4o TEED

McDiarmid’s Inequality. Let X be a non-negative random variable, not identically 0, which is deter-
mined by n indenpendent trials Ty, ..., T, and m independent permutations I1y,... I, and satisfying
the following for some c¢,r >0 :

1. Changing the outcome of any trial can affect X by at most c.
2. Interchanging two elements in any one permutation can affect X by at most c.
3. For any s, if X > s then there is a set of at most rs choices whose outcomes certify that X > s.

Then for any 0 <t < E(X),
+2
Pr <|X —E(X)| > t+60c rE(X)) < d¢” FEE®

Lovéasz Local Lemma. Consider a set £ of (typically bad) events such that for each A € €

1. Pr(A) <p<1, and
2. A is mutually independent of a set of all but at most d of the other events.

If 4pd < 1 then with positive probability, none of the events in £ occur.
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