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Planar graphs without adjacent cycles of length at most seven are 3-colorable

We prove that every planar graph in which no i-cycle is adjacent to a j-cycle whenever 3 ≤ i ≤ j ≤ 7 is 3-colorable and pose some related problems on the 3-colorability of planar graphs.

Introduction

In 1976, Appel and Haken proved that every planar graph is 4-colorable [START_REF] Appel | Every planar map is four colorable[END_REF][START_REF] Appel | Every planar map is four colorable[END_REF], and as early as 1959, Grötzsch [START_REF] Grötzsch | Ein dreifarbensatz für dreikreisfreie netze auf der kugel[END_REF] proved that every planar graph without 3-cycles is 3-colorable. As proved by Garey, Johnson and Stockmeyer [START_REF] Garey | Some simplified NP-complete graph problems[END_REF], the problem of deciding whether a planar graph is 3-colorable is NP-complete. Therefore, some sufficient conditions for planar graphs to be 3-colorable were stated. In 1976, Steinberg [START_REF] Steinberg | The state of the three color problem. Quo Vadis, Graph Theory?[END_REF] raised the following:

Steinberg's Conjecture '76 Every planar graph without 4-and 5-cycles is 3-colorable.

In 1969, Havel [START_REF] Havel | On a conjecture of Grünbaum[END_REF] posed the following problem:

Havel's Problem '69 Does there exist a constant C such that every planar graph with the minimum distance between triangles at least C is 3-colorable?

Havel [START_REF] Havel | On a conjecture of B.Grünbaum[END_REF][START_REF] Havel | O zbarvitelnosti rovinnych graf • u theremi barvami[END_REF] proved that if C exists, then C ≥ 2, which was improved to C ≥ 4 by Aksionov and Mel'nikov [START_REF] Aksionov | Some counterexamples associated with the Three Color Problem[END_REF] and, independently, by Steinberg (see [START_REF] Aksionov | Some counterexamples associated with the Three Color Problem[END_REF]).

These two challenging problems remain open. In 1991, Erdös suggested the following relaxation of Steinberg's conjecture: Determine the smallest value of k, if it exists, such that every planar graph without cycles of length from 4 to k is 3-colorable. Abbott and Zhou [START_REF] Abbott | On small faces in 4-critical graphs[END_REF] proved that such a k does exist, with k ≤ 11. This result was later on improved to k ≤ 10 by Borodin [START_REF] Borodin | To the paper of H.L.Abbott and B.Zhou on 4-critical planar graphs[END_REF] and to k ≤ 9 by Borodin [START_REF] Borodin | Structural properties of plane graphs without adjacent triangles and an application to 3-colorings[END_REF] and Sanders and Zhao [START_REF] Sanders | A note on the three color problem[END_REF]. The best known bound for such a k is 7, and it was proved by Borodin, Glebov, Raspaud, and Salavatipour [START_REF] Borodin | Planar graphs without cycles of length from 4 to 7 are 3-colorable[END_REF].

At the crossroad of Havel's and Steinberg's problems, Borodin and Raspaud [START_REF] Borodin | A sufficient condition for planar graph to be 3-colorable[END_REF] proved that every planar graph without 3-cycles at distance less than four and without 5-cycles is 3-colorable. (The distance here was improved to three by Borodin and Glebov [START_REF] Borodin | A sufficient condition for plane graphs to be 3-colorable[END_REF] and Xu [START_REF] Xu | A 3-color theorem on plane graph without 5-circuits[END_REF], and recently it was decreased to two by Borodin and Glebov [START_REF] Borodin | Planar graphs without 5-cycles and with minimum distance between triangles at least two are 3-colorable[END_REF].) Furthermore, Borodin and Raspaud [START_REF] Borodin | A sufficient condition for planar graph to be 3-colorable[END_REF] proposed the following conjecture:

Strong Bordeaux Conjecture '03 Every planar graph without 5-cycles and without adjacent triangles is 3 colorable.

By adjacent cycles we mean those with at least one edge in common.

Obviously, this conjecture implies Steinberg's Conjecture. In [START_REF] Borodin | Planar graphs without triangles adjacent to cycles of length from 3 to 9 are 3-colorable[END_REF], Borodin, Glebov, Jensen and Raspaud considered the adjacency between cycles in planar graphs, where all lengths of cycles are authorized; in a sense, this kind of problems is related to Havel's problem. More specifically, they proved that every planar graph without triangles adjacent to cycles of length from 3 to 9 is 3-colorable and proposed the following conjecture: Novosibirsk 3-Color Conjecture '06 Every planar graph without 3-cycles adjacent to cycles of length 3 or 5 is 3-colorable.

Clearly, this one implies both the Strong Bordeaux Conjecture and Steinberg's Conjecture.

Many other sufficient conditions for the 3-colorability of planar graphs were proposed in which cycles with lengths from specific sets are forbidden (for example, see [START_REF] Zhang | Three-coloring planar graphs without certain small cycles[END_REF]). In this note we consider an approach based on the adjacencies of cycles. Let us start with some definitions:

GA -Graph of Non-Adjacencies

A graph of non-adjacencies is one whose vertices are labelled by integers greater than two and each integer appears at most once. Given a graph G A of nonadjacencies, we say that a graph G respects G A if no two cycles of lengths i and j are adjacent in G if the vertices labelled with i and j are adjacent in G A . Example. Let G A be the graph depicted by Figure 1. A graph G respecting G A is a graph in which there is no i-cycle adjacent to a j-cycle for 3 ≤ i ≤ j ≤ 7.

We propose the following natural general question:

Problem 1 Under which conditions of adjacencies is a planar graph 3-colorable?

Our main result in this note (proved in Section 2) is that each planar graph respecting the graph G A depicted by Figure 1 is 3-colorable.

Theorem 1 Every planar graph in which no

i-cycle is adjacent to a j-cycle whenever 3 ≤ i ≤ j ≤ 7 is 3-colorable.
Clearly, Theorem 1 is an extension of the above mentioned result by Borodin, Glebov, Raspaud, and Salavatipour [START_REF] Borodin | Planar graphs without cycles of length from 4 to 7 are 3-colorable[END_REF].

The model of non-adjacencies can be made more precise. Define a function f on the edges of G A by putting:

• f (ij) = -1 if the cycles of lengths i and j should not be adjacent in G,

• f (ij) = 0 if the cycles of lengths i and j should not be intersecting in G,

• f (ij) = k if the distance between cycles of lengths i and j in G should be greater than k (the distance between two cycles C 1 and C 2 is defined as the length of a shortest path between two vertices of C 1 and C 2 ).

Montassier, Raspaud, Wang and Wang [START_REF] Montassier | A relaxation of Havel's 3-Color Problem[END_REF] suggested a relaxation of Havel's problem and proved Theorem 2 1. Every planar graph in which the cycles of length 3, 4, 5, and 6 are at distance at least 3 from each other is 3-colorable.

Every planar graph in which the cycles of length 3, 4, and 5 are at distance at least 4 from

each other is 3-colorable.

Note that the graphs studied in Theorem 2 respect the graphs of non-adjacencies depicted by Figure 2. We conclude with some specific problems; see Figure 3.

Problem 2 Let G be a planar graph respecting G (A) depicted by Figure 3. Let f 0 be an i-face with 3 ≤ i ≤ 11. Prove that every proper 3-coloring of G[V (f 0 )] can be extended to the whole graph.

Problem 3 Let G be a planar graph respecting

G (B) (resp. G (C) , G (D) , G (E) ) depicted by Figure 3. Prove that G is 3-colorable.
The result on planar graphs respecting G (C) would imply Steinberg's Conjecture. The problem on planar graphs respecting G (D) is the Novosibirsk 3-Color Conjecture. Finally, the problem on planar graphs respecting G (E) for any finite k would provide the answer to Havel's Problem. The first attempt could be to study planar graphs respecting G (B) or subgraphs of G A in Figure 1.

Proof of Theorem 1

Our proof is based on the following coloring extension lemma: Lemma 1 Suppose G is a connected planar graph respecting G A depicted by Figure 1 and f 0 is an i-face with 3 ≤ i ≤ 11; then every proper 3-coloring of G[V (f 0 )] can be extended to the whole G. It is easy to see that Lemma 1 implies Theorem 1. Indeed, let G be a minimal counterexample to Theorem 1; clearly, G is connected. If G contains a triangle C 3 , we fix the colors of the vertices of C 3 and apply Lemma 1 to G \ int(C 3 ) and to G \ out(C 3 ). If G does not contain triangles, then G is 3-colorable by Grötzsch's Theorem [START_REF] Grötzsch | Ein dreifarbensatz für dreikreisfreie netze auf der kugel[END_REF].

G (E) G (D) G (C) G (B) G (A)
So, it suffices to prove Lemma 1. Note that our proof of Lemma 1 is built on the following result by Borodin, Glebov, Raspaud, and Salavatipour [START_REF] Borodin | Planar graphs without cycles of length from 4 to 7 are 3-colorable[END_REF]:

Theorem 3 Every proper 3-coloring of the vertices of any face of length 8 to 11 in a connected planar graph without cycles of length 4 to 7 can be extended to a proper 3-coloring of the whole graph.

Let G = (V (G), E(G), F (G)) be a plane graph, where V (G), E(G) and F (G) denote the sets of vertices, edges and faces of G, respectively. The neighbour set and the degree of a vertex v are denoted by N (v) and d(v), respectively. Let f be a face of G. We use b(f ), V (f ) to denote the boundary of f , the set of vertices on b(f ), respectively. A k-vertex (resp. ≥ k-vertex, ≤ k-vertex) is a vertex of degree k (resp. ≥ k, ≤ k). The same notation is used for faces and cycles: k-face, ≥ k-face, ≤ k-faces are faces of length k, ≥ k, ≤ k. Let C be a cycle of G. By int(C) and ext(C) denote the sets of vertices located inside and outside C, respectively. C is said to be a separating cycle if both int(C) = ∅ and ext(C) = ∅. Let c i (G) be the number of cycles of length i in G. Let C be a cycle of G, and let u and v be two vertices on C. We use C[u, v] to denote the path of C clockwisely from u to v , and let

C(u, v) = C[u, v] \ {u, v}.
By G denote the set of plane graphs that respects G A depicted in Figure 1.

Assume that G is a counterexample to Lemma 1 with: Without loss of generality, assume that the unbounded face f 0 is an i-face with

1. c(G) = c 4 (G) + c 5 (G) + c 6 (G) + c 7 (G)
3 ≤ i ≤ 11 such that a 3-coloring φ of G[V (f 0 )] cannot be extended to G. Let C 0 = b(f 0 ). All face different from f 0 are called internal. (3) f f f u v u v P u,v P u,v P v,u P v,u u v P u,v P v,u (1) (2) 
Figure 4: The paths P u,v and P v,u .
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x 1 Let G ′ be the graph obtained from G by identifying x 1 with x 4 , see Figure 5.

x 2 x 3 x 4 x 6 x 4 x 2 x 3 x 7 x 6 x 5 G G ′ f f ′ f " x 1 x 7
We will show that this identification does not create ≤ 7-cycles, except C f ′ = x 1 x 5 x 6 x 7 and C f ′′ = x 1 x 2 x 3 , which are a 4-cycle and a 3-cycle, respectively.

Suppose to the contrary that C * is a ≤ 7-cycle in G ′ created by the identification of x 1 and x 4 in G, different from C f ′ and C f ′′ .

By l(x, y) denote the distance between the vertices x and y in (V (G), E(G) \ {x 1 x 2 , x 2 x 3 , x 3 x 4 , x 4 x 5 , x 5 x 6 , x 6 x 7 , x 7 x 1 }). The cycle C * must go through at least two vertices of x 1 , . . . , x 7 (otherwise, its length cannot decrease by the identification). By Observation 1, the following table gives the length of C * going through the vertices x and y of C f : Hence, such a cycle C * cannot exist. The identification does not create ≤ 7-cycles; moreover, by the cycles adjacencies conditions, f is not adjacent to ≤ 7-cycles ; so it is for f ′ and f ". It follows that the identification does not create a ≤ 7-cycle adjacent to a ≤ 7-cycle. This implies that G ′ ∈ G.

x, y ∈ C f l(x, y) |C * | x 1 ,
We now show that x 1 and x 4 can be choosen so that the identification does not damage φ, i.e. we can choose x 1 and x 4 such that |N (x 1 ) ∩ C 0 | + |N (x 4 ) ∩ C 0 | ≤ 2 (otherwise, the pre-coloring φ in G ′ might be not proper, or not defined at all). So we can choose x 1 and x 4 such that φ is not damaged. Finally, observe that c(G ′ ) = c(G) and σ(G ′ ) < σ(G). Hence, using the minimality of G, we can extend φ to the whole graph G ′ and so to G.
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Claim 7 G contains no internal k-faces, with 4 ≤ k ≤ 6.

Figure 1 :

 1 Figure 1: A graph of non-adjacencies.

Figure 2 :

 2 Figure 2: Some G A 's.

Figure 3 :

 3 Figure 3: Some G A 's.

  as small as possible, and 2. σ(G) = |V (G)| + |E(G)| minimum under the previous condition.

Figure 5 :

 5 Figure 5: The identification of x 1 with x 4 .

Observation 2

 2 If u is an inner vertex, then |N (u) ∩ C 0 | ≤ 1.ProofLet u be an inner vertex; then |N (u) ∩ C 0 | ≤ 2 by the cycles adjacencies conditions. Suppose that|N (u) ∩ C 0 | = 2 and assume that N (u) ∩ C 0 = {x, y}. Then C 0 [u, v] ∪ vxu or C 0 [v, u] ∪ uxv is a separating ≤ 11-cycle since d(u) ≥ 3 and u has a neighbor not in C 0 , a contradiction. 2 Hence, if |C 0 ∩ C f | ≤ 3, we can choose x 1 and x 4 such that |N (x 1 ) ∩ C 0 | + |N (x 4 ) ∩ C 0 | ≤ 2.Since C 0 has no chord and |f 0 | = 7, it follows that |C 0 ∩ C f | ≤ 5 by the previous observation.Consider the case|C 0 ∩ C f | = 5; now C 0 ∩ C f is a set of consecutive vertices on C 0 . Assume that C 0 ∩ C f = {x 1 , x 4 , x 5 , x 6 , x 7 }; then C 0 [x 1 , x 4 ] ∪ x 1 x 2 x 3 x 4 is a separating ≤ 11-cycle, a contradiction. Now consider the case |C 0 ∩ C f | = 4. Again, C 0 ∩ C f is a set of consecutive vertices on C 0 . Assume that C 0 ∩ C f = {x 1 , x 2 , x 6 , x7 }; then by the cycles adjacencies conditions, x 4 has no neighbor on C 0 . Hence |N (x 1 ) ∩ C 0 | + |N (x 4 ) ∩ C 0 | ≤ 2.

The proof of Claim 7 is similar to that of Claim 6 but easier and is left to the reader. This completes the proof of Theorem 1.

* A part of this research was supported by grants 06-01-00694 and 08-01-00673 of the Russian Foundation for Basic Research.

Claim 1 G is 2-connected; hence, the boundary of every face is a cycle.

Proof

Observe first that, by the minimality of G, there is no cut-vertex in V (f 0 ). Now assume that B is a pendant block with the cut-vertex v ∈ V (G) \ V (f 0 ). We first extend φ to G \ (B \ v), then we color B with 3 colors by the minimality of G or Grötzsch's Theorem, permute the colors if necessary, and finally get an extension of φ to G.
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Proof

Let v be a ≤ 2-vertex with v ∈ int(C 0 ). We can first extend φ to G \ v and then color v. 2

Claim 3 G contains no separating k-cycles with 3 ≤ k ≤ 11.

Proof

Let C be a separating cycle of length from 3 to 11. By the minimality of G, we can extend φ to

Proof

Let uv be a chord of C 0 . Then by the minimality of G, we can extend φ to G \ uv and so to G. 2

Proof 

Proof

Let f = x 1 x 2 x 3 x 4 x 5 x 6 x 7 be an internal 7-face and 4). It may happen that P u,v or/and P v,u does not exist.

By the cycles adjacencies conditions or by Claim 3, we are sure that:

• In Case [START_REF] Abbott | On small faces in 4-critical graphs[END_REF] depicted by Figure 4, the path P u,v (resp. P v,u ) has at least 8 vertices (resp. 8 vertices) since there is no 7-cycle adjacent to ≤ 7-cycles.

• In Case (2) depicted by Figure 4, the path P u,v (resp. P v,u ) has at least 8 vertices (resp. 11 vertices) since otherwise

) is a separating ≤ 11-cycle.

• In Case (3) depicted by Figure 4, the path P u,v (resp. P v,u ) has at least 9 vertices (resp. 10 vertices) since otherwise

) is a separating ≤ 11-cycle.