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Abstract

We prove that every planar graph in which noi-cycle is adjacent to aj-cycle whenever3 ≤

i ≤ j ≤ 7 is 3-colorable and pose some related problems on the 3-colorability of planar graphs.

1 Introduction

In 1976, Appel and Haken proved that every planar graph is 4-colorable [3, 4], and as early as
1959, Grötzsch [15] proved that every planar graph without 3-cycles is 3-colorable. As proved by
Garey, Johnson and Stockmeyer [14], the problem of decidingwhether a planar graph is 3-colorable
is NP-complete. Therefore, some sufficient conditions for planar graphs to be 3-colorable were
stated. In 1976, Steinberg [19] raised the following:

Steinberg’s Conjecture ’76 Every planar graph without 4- and 5-cycles is 3-colorable.

In 1969, Havel [16] posed the following problem:

Havel’s Problem ’69 Does there exist a constant C such that every planar graph with the minimum
distance between triangles at least C is 3-colorable?

Havel [12, 13] proved that ifC exists, thenC ≥ 2, which was improved toC ≥ 4 by Aksionov
and Mel’nikov [2] and, independently, by Steinberg (see [2]).

These two challenging problems remain open. In 1991, Erdös suggested the followingrelaxation
of Steinberg’s conjecture: Determine the smallest value ofk, if it exists, such that every planar graph
without cycles of length from 4 tok is 3-colorable. Abbott and Zhou [1] proved that such ak does
exist, withk ≤ 11. This result was later on improved tok ≤ 10 by Borodin [5] and tok ≤ 9 by
Borodin [6] and Sanders and Zhao [18]. The best known bound for such ak is 7, and it was proved
by Borodin, Glebov, Raspaud, and Salavatipour [10].

At the crossroad of Havel’s and Steinberg’s problems, Borodin and Raspaud [11] proved that
every planar graph without 3-cycles at distance less than four and without 5-cycles is 3-colorable.
(The distance here was improved to three by Borodin and Glebov [7] and Xu [21], and recently it
was decreased to two by Borodin and Glebov [8].) Furthermore, Borodin and Raspaud [11] proposed
the following conjecture:

∗A part of this research was supported by grants 06-01-00694 and 08-01-00673 of the Russian Foundation for Basic
Research.
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Strong Bordeaux Conjecture ’03 Every planar graph without 5-cycles and without adjacent tri-
angles is 3 colorable.

By adjacent cycles we mean those with at least one edge in common.

Obviously, this conjecture impliesSteinberg’s Conjecture. In [9], Borodin, Glebov, Jensen and
Raspaud considered the adjacency between cycles in planar graphs, where all lengths of cycles are
authorized; in a sense, this kind of problems is related toHavel’s problem. More specifically, they
proved that every planar graph without triangles adjacent to cycles of length from 3 to 9 is 3-colorable
and proposed the following conjecture:

Novosibirsk 3-Color Conjecture ’06 Every planar graph without 3-cycles adjacent to cycles of
length 3 or 5 is 3-colorable.

Clearly, this one implies both theStrong Bordeaux Conjecture andSteinberg’s Conjecture.

Many other sufficient conditions for the 3-colorability of planar graphs were proposed in which
cycles with lengths from specific sets are forbidden (for example, see [20]). In this note we consider
an approach based on the adjacencies of cycles. Let us start with some definitions:

GA - Graph of Non-Adjacencies A graph of non-adjacencies is one whose vertices are labelled
by integers greater than two and each integer appears at mostonce. Given a graphGA of non-
adjacencies, we say that a graphG respects GA if no two cycles of lengthsi andj are adjacent inG
if the vertices labelled withi andj are adjacent inGA.

3
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67

Figure 1: A graph of non-adjacencies.

Example. LetGA be the graph depicted by Figure 1. A graphG respectingGA is a graph in which
there is noi-cycle adjacent to aj-cycle for3 ≤ i ≤ j ≤ 7.

We propose the following natural general question:

Problem 1 Under which conditions of adjacencies is a planar graph 3-colorable?

Our main result in this note (proved in Section 2) is that eachplanar graph respecting the graph
GA depicted by Figure 1 is 3-colorable.

Theorem 1 Every planar graph in which no i-cycle is adjacent to a j-cycle whenever 3 ≤ i ≤ j ≤ 7
is 3-colorable.

Clearly, Theorem 1 is an extension of the above mentioned result by Borodin, Glebov, Raspaud,
and Salavatipour [10].
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The model of non-adjacencies can be made more precise. Definea functionf on the edges ofGA

by putting:

• f(ij) = −1 if the cycles of lengthsi andj should not be adjacent inG,

• f(ij) = 0 if the cycles of lengthsi andj should not be intersecting inG,

• f(ij) = k if the distance between cycles of lengthsi andj in G should be greater thank (the
distance between two cyclesC1 andC2 is defined as the length of a shortest path between two
vertices ofC1 andC2).

Montassier, Raspaud, Wang and Wang [17] suggested arelaxation of Havel’s problem and proved

Theorem 2 1. Every planar graph in which the cycles of length 3, 4, 5, and 6 are at distance at
least 3 from each other is 3-colorable.

2. Every planar graph in which the cycles of length 3, 4, and 5 are at distance at least 4 from
each other is 3-colorable.

Note that the graphs studied in Theorem 2 respect the graphs of non-adjacencies depicted by
Figure 2.
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Figure 2: SomeGA’s.

We conclude with some specific problems; see Figure 3.

Problem 2 Let G be a planar graph respecting G(A) depicted by Figure 3. Let f0 be an i-face with
3 ≤ i ≤ 11. Prove that every proper 3-coloring of G[V (f0)] can be extended to the whole graph.

Problem 3 Let G be a planar graph respecting G(B) (resp. G(C), G(D), G(E)) depicted by Figure
3. Prove that G is 3-colorable.

The result on planar graphs respectingG(C) would imply Steinberg’s Conjecture. The problem
on planar graphs respectingG(D) is theNovosibirsk 3-Color Conjecture. Finally, the problem on
planar graphs respectingG(E) for any finitek would provide the answer toHavel’s Problem. The
first attempt could be to study planar graphs respectingG(B) or subgraphs ofGA in Figure 1.

2 Proof of Theorem 1

Our proof is based on the following coloring extension lemma:

Lemma 1 Suppose G is a connected planar graph respecting GA depicted by Figure 1 and f0 is an
i-face with 3 ≤ i ≤ 11; then every proper 3-coloring of G[V (f0)] can be extended to the whole G.
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Figure 3: SomeGA’s.

It is easy to see that Lemma 1 implies Theorem 1. Indeed, letG be a minimal counterexample to
Theorem 1; clearly,G is connected. IfG contains a triangleC3, we fix the colors of the vertices of
C3 and apply Lemma 1 toG \ int(C3) and toG \ out(C3). If G does not contain triangles, thenG

is 3-colorable by Grötzsch’s Theorem [15].
So, it suffices to prove Lemma 1. Note that our proof of Lemma 1 is built on the following result

by Borodin, Glebov, Raspaud, and Salavatipour [10]:

Theorem 3 Every proper 3-coloring of the vertices of any face of length 8 to 11 in a connected
planar graph without cycles of length 4 to 7 can be extended to a proper 3-coloring of the whole
graph.

Let G = (V (G), E(G), F (G)) be a plane graph, whereV (G), E(G) andF (G) denote the sets
of vertices, edges and faces ofG, respectively. The neighbour set and the degree of a vertexv are
denoted byN(v) andd(v), respectively. Letf be a face ofG. We useb(f), V (f) to denote the
boundary off , the set of vertices onb(f), respectively. Ak-vertex (resp.≥k-vertex,≤k-vertex) is a
vertex of degreek (resp.≥ k, ≤ k). The same notation is used for faces and cycles:k-face,≥k-face,
≤k-faces are faces of lengthk, ≥ k, ≤ k. Let C be a cycle of G. Byint(C) andext(C) denote the
sets of vertices located inside and outsideC, respectively.C is said to bea separating cycle if both
int(C) 6= ∅ andext(C) 6= ∅. Let ci(G) be the number of cycles of lengthi in G. Let C be a cycle
of G, and letu andv be two vertices onC. We useC[u, v] to denote the path ofC clockwisely from
u to v , and letC(u, v) = C[u, v] \ {u, v}.

By G denote the set of plane graphs that respectsGA depicted in Figure 1.

Assume thatG is a counterexample to Lemma 1 with:

1. c(G) = c4(G) + c5(G) + c6(G) + c7(G) as small as possible, and

2. σ(G) = |V (G)| + |E(G)| minimum under the previous condition.

Without loss of generality, assume that the unbounded facef0 is ani-face with3 ≤ i ≤ 11 such
that a 3-coloringφ of G[V (f0)] cannot be extended toG. Let C0 = b(f0). All face different from
f0 are calledinternal.
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Claim 1 G is 2-connected; hence, the boundary of every face is a cycle.

Proof
Observe first that, by the minimality ofG, there is no cut-vertex inV (f0). Now assume thatB is a
pendant block with the cut-vertexv ∈ V (G)\V (f0). We first extendφ to G\ (B \ v), then we color
B with 3 colors by the minimality ofG or Grötzsch’s Theorem, permute the colors if necessary, and
finally get an extension ofφ to G. 2

Claim 2 ∀v ∈ int(C0), d(v) ≥ 3.

Proof
Let v be a≤2-vertex withv ∈ int(C0). We can first extendφ to G \ v and then colorv. 2

Claim 3 G contains no separating k-cycles with 3 ≤ k ≤ 11.

Proof
Let C be a separating cycle of length from 3 to 11. By the minimalityof G, we can extendφ to
G \ int(C). Then we extend the 3-coloring ofG[V (C)] to G \ out(C) using the minimality ofG. 2

Claim 4 G[V (f0)] is a chordless cycle.

Proof
Let uv be a chord ofC0. Then by the minimality ofG, we can extendφ to G \ uv and so toG. 2

Claim 5 |f0| 6= 4, 5, 6, 7.

Proof
Let C0 = x1x2 . . . xk with 4 ≤ k ≤ 7. Let G′ be the graph obtained fromG by adding8 − k

2-vertices on the edgex1x2. Then observe thatc(G′) < c(G) andG′ ∈ G. By choosing some good
colors to the added vertices, we can extend the coloring of the outer face ofG′ to the whole graph
G′ by the minimality ofG. This yields a proper 3-coloring ofG, a contradiction. 2

Now we show thatG contains no internalk-faces with4 ≤ k ≤ 7. Due to Claim 3 and the cycles
adjacencies conditions, everyk-cycle with4 ≤ k ≤ 7 bounds a face. This will show thatG contains
nok-cycles with4 ≤ k ≤ 7. Finally, Theorem 3 will complete the proof of Lemma 1.

Claim 6 G contains no internal 7-faces.

Proof
Let f = x1x2x3x4x5x6x7 be an internal 7-face andCf = b(f).

Observation 1 Let u, v two vertices of V (f). Let Pu,v be a path linking u and v such that Pu,v ∩
V (f) = {u, v} and Cf (u, v) ∈ int(Pu,v ∪ Cf [v, u]). Let Pv,u be a path linking u and v such that
Pv,u ∩ V (f) = {u, v} and Cf (v, u) ∈ int(Pv,u ∪Cf [u, v]) (see Figure 4). It may happen that Pu,v

or/and Pv,u does not exist.
By the cycles adjacencies conditions or by Claim 3, we are sure that:

• In Case (1) depicted by Figure 4, the path Pu,v (resp. Pv,u) has at least 8 vertices (resp. 8
vertices) since there is no 7-cycle adjacent to ≤7-cycles.

• In Case (2) depicted by Figure 4, the path Pu,v (resp. Pv,u) has at least 8 vertices (resp. 11
vertices) since otherwise Pu,v ∪ Cf [v, u] (resp. Cf [u, v] ∪ Pv,u) is a separating ≤11-cycle.

• In Case (3) depicted by Figure 4, the path Pu,v (resp. Pv,u) has at least 9 vertices (resp. 10
vertices) since otherwise Pu,v ∪ Cf [v, u] (resp. Cf [u, v] ∪ Pv,u) is a separating ≤11-cycle.
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Figure 4: The pathsPu,v andPv,u.
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Figure 5: The identification ofx1 with x4.

Let G′ be the graph obtained fromG by identifyingx1 with x4, see Figure 5.
We will show that this identification does not create≤7-cycles, exceptCf ′ = x1x5x6x7 and

Cf ′′ = x1x2x3, which are a 4-cycle and a 3-cycle, respectively.
Suppose to the contrary thatC∗ is a≤7-cycle inG′ created by the identification ofx1 andx4 in

G, different fromCf ′ andCf ′′ .
By l(x, y) denote the distance between the verticesx and y in

(V (G), E(G) \ {x1x2, x2x3, x3x4, x4x5, x5x6, x6x7, x7x1}). The cycleC∗ must go through at
least two vertices ofx1, . . . , x7 (otherwise, its length cannot decrease by the identification). By
Observation 1, the following table gives the length ofC∗ going through the verticesx andy of Cf :
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x, y ∈ Cf l(x, y) |C∗|
x1, x2 7 8
x1, x3 7 8
x1, x4 8 8
x1, x5 8 9
x1, x6 7 9
x1, x7 7 8
x2, x3 7 8
x2, x4 7 8
x2, x5 8 10
x2, x6 8 11
x2, x7 7 9
x3, x4 7 8
x3, x5 7 9
x3, x6 8 11
x3, x7 8 10
x4, x5 7 8
x4, x6 7 9
x4, x7 8 9
x5, x6 7 8
x5, x7 7 9
x6, x7 7 8

Hence, such a cycleC∗ cannot exist. The identification does not create≤7-cycles; moreover, by
the cycles adjacencies conditions,f is not adjacent to≤7-cycles ; so it is forf ′ andf”. It follows
that the identification does not create a≤7-cycle adjacent to a≤7-cycle. This implies thatG′ ∈ G.

We now show thatx1 andx4 can be choosen so that the identification does not damageφ, i.e. we
can choosex1 andx4 such that|N(x1)∩C0|+ |N(x4)∩C0| ≤ 2 (otherwise, the pre-coloringφ in
G′ might be not proper, or not defined at all).

Observation 2 If u is an inner vertex, then |N(u) ∩ C0| ≤ 1.

Proof
Let u be an inner vertex; then|N(u) ∩ C0| ≤ 2 by the cycles adjacencies conditions. Suppose that
|N(u) ∩C0| = 2 and assume thatN(u)∩ C0 = {x, y}. ThenC0[u, v]∪ vxu or C0[v, u] ∪ uxv is a
separating≤11-cycle sinced(u) ≥ 3 andu has a neighbor not inC0, a contradiction.

2

Hence, if|C0 ∩Cf | ≤ 3, we can choosex1 andx4 such that|N(x1)∩C0|+ |N(x4)∩C0| ≤ 2.

SinceC0 has no chord and|f0| 6= 7, it follows that|C0 ∩ Cf | ≤ 5 by the previous observation.
Consider the case|C0 ∩ Cf | = 5; now C0 ∩ Cf is a set of consecutive vertices onC0. Assume

that C0 ∩ Cf = {x1, x4, x5, x6, x7}; then C0[x1, x4] ∪ x1x2x3x4 is a separating≤11-cycle, a
contradiction.

Now consider the case|C0 ∩ Cf | = 4. Again, C0 ∩ Cf is a set of consecutive vertices on
C0. Assume thatC0 ∩ Cf = {x1, x2, x6, x7}; then by the cycles adjacencies conditions,x4 has no
neighbor onC0. Hence|N(x1) ∩ C0| + |N(x4) ∩ C0| ≤ 2.

So we can choosex1 andx4 such thatφ is not damaged. Finally, observe thatc(G′) = c(G) and
σ(G′) < σ(G). Hence, using the minimality ofG, we can extendφ to the whole graphG′ and so to
G.

2

Claim 7 G contains no internal k-faces, with 4 ≤ k ≤ 6.
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The proof of Claim 7 is similar to that of Claim 6 but easier andis left to the reader.

This completes the proof of Theorem 1.
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