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Abstract

We prove that every planar graph in which #roycle is adjacent to g-cycle wheneveB <
i < j < Tis 3-colorable and pose some related problems on the 3admlity of planar graphs.

1 Introduction

In 1976, Appel and Haken proved that every planar graph isldrable [3, 4], and as early as
1959, Grotzsch [15] proved that every planar graph witheoy@es is 3-colorable. As proved by
Garey, Johnson and Stockmeyer [14], the problem of decighmgher a planar graph is 3-colorable
is NP-complete. Therefore, some sufficient conditions flanar graphs to be 3-colorable were
stated. In 1976, Steinberg [19] raised the following:

Steinberg’'s Conjecture’76 Every planar graph without 4- and 5-cyclesis 3-colorable.
In 1969, Havel [16] posed the following problem:

Havel’sProblem’69 Doesthereexist aconstant C' such that every planar graph with the minimum
distance between triangles at least C' is 3-colorable?

Havel [12, 13] proved that i€ exists, therC' > 2, which was improved t@’ > 4 by Aksionov
and Mel'nikov [2] and, independently, by Steinberg (seg.[2]

These two challenging problems remain open. In 1991, Endggested the followingelaxation
of Seinberg’s conjecture: Determine the smallest value kfif it exists, such that every planar graph
without cycles of length from 4 té& is 3-colorable. Abbott and Zhou [1] proved that such does
exist, withk < 11. This result was later on improved to< 10 by Borodin [5] and tok < 9 by
Borodin [6] and Sanders and Zhao [18]. The best known bounsioch ak is 7, and it was proved
by Borodin, Glebov, Raspaud, and Salavatipour [10].

At the crossroad of Havel's and Steinberg’s problems, Borashd Raspaud [11] proved that
every planar graph without 3-cycles at distance less thandad without 5-cycles is 3-colorable.
(The distance here was improved to three by Borodin and @lgHcand Xu [21], and recently it
was decreased to two by Borodin and Glebov [8].) Furtherpi®oeodin and Raspaud [11] proposed
the following conjecture:

*A part of this research was supported by grants 06-01-0068408-01-00673 of the Russian Foundation for Basic
Research.



Strong Bordeaux Conjecture’03 Every planar graph without 5-cycles and without adjacent tri-
anglesis 3 colorable.

By adjacent cycles we mean those with at least one edge in coamm

Obviously, this conjecture implieSeinberg’s Conjecture. In [9], Borodin, Glebov, Jensen and
Raspaud considered the adjacency between cycles in pleagaing where all lengths of cycles are
authorized; in a sense, this kind of problems is relatelddeel’s problem. More specifically, they
proved that every planar graph without triangles adjaceaytles of length from 3 to 9 is 3-colorable
and proposed the following conjecture:

Novosibirsk 3-Color Conjecture’06 Every planar graph without 3-cycles adjacent to cycles of
length 3 or 5is 3-colorable.

Clearly, this one implies both tH&rong Bordeaux Conjecture andSteinberg’s Conjecture.

Many other sufficient conditions for the 3-colorability dfpar graphs were proposed in which
cycles with lengths from specific sets are forbidden (fomegke, see [20]). In this note we consider
an approach based on the adjacencies of cycles. Let us #fagame definitions:

GA - Graph of Non-Adjacencies A graph of non-adjacenciesis one whose vertices are labelled
by integers greater than two and each integer appears atanost Given a graplt’ 4 of non-
adjacencies, we say that a gra@hespects G 4 if no two cycles of lengths and; are adjacent iidr

if the vertices labelled withh and; are adjacent iti7 4.

Figure 1: A graph of non-adjacencies.

Example. LetG 4 be the graph depicted by Figure 1. A gra@hespecting= 4 is a graph in which
there is na-cycle adjacent to g-cycle for3 < i < j < 7.

We propose the following natural general question:
Problem 1 Under which conditions of adjacenciesis a planar graph 3-colorable?

Our main result in this note (proved in Section 2) is that galehar graph respecting the graph
G 4 depicted by Figure 1 is 3-colorable.

Theorem 1 Every planar graphinwhich noi-cycleisadjacenttoa j-cyclewhenever 3 < < j <7
is 3-colorable.

Clearly, Theorem 1 is an extension of the above mentionedtieg Borodin, Glebov, Raspaud,
and Salavatipour [10].



The model of non-adjacencies can be made more precise. Refimetionf on the edges afr 4
by putting:

e f(ij) = —1 if the cycles of lengths and; should not be adjacent i,
e f(ij) = 0 if the cycles of lengthg andj should not be intersecting @,

e f(ij) = k ifthe distance between cycles of lengitend; in G should be greater than(the
distance between two cyclés andC is defined as the length of a shortest path between two
vertices ofC, and(C5).

Montassier, Raspaud, Wang and Wang [17] suggesteldxation of Havel’s problem and proved

Theorem2 1. Every planar graph in which the cycles of length 3, 4, 5, and 6 are at distance at
least 3 from each other is 3-colorable.

2. Every planar graph in which the cycles of length 3, 4, and 5 are at distance at least 4 from
each other is 3-colorable.

Note that the graphs studied in Theorem 2 respect the grdphsneadjacencies depicted by
Figure 2.

Figure 2: Somé& 4's.

We conclude with some specific problems; see Figure 3.

Problem 2 Let GG be a planar graph respecting G 4) depicted by Figure 3. Let f, be an i-face with
3 < i < 11. Provethat every proper 3-coloring of G[V (fy)] can be extended to the whole graph.

Problem 3 Let G be a planar graph respecting G () (resp. G(cy, G(py, G(r)) depicted by Figure
3. Provethat G is 3-colorable.

The result on planar graphs respecti#g:) would imply Seinberg’s Conjecture. The problem
on planar graphs respectiidg p) is the Novosibirsk 3-Color Conjecture. Finally, the problem on
planar graphs respectirtg ) for any finitek would provide the answer tdavel’s Problem. The
first attempt could be to study planar graphs respeciipg or subgraphs ofr 4 in Figure 1.

2 Proof of Theorem 1
Our proofis based on the following coloring extension lemma

Lemma 1 Suppose G isa connected planar graph respecting GG 4 depicted by Figure 1 and fj isan
i-facewith 3 < ¢ < 11; then every proper 3-coloring of G[V (fo)] can be extended to the whole G.
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Figure 3: Somé&r 4's.

Itis easy to see that Lemma 1 implies Theorem 1. Indeed; ls a minimal counterexample to
Theorem 1; clearly(7 is connected. Ity contains a triangl€’s, we fix the colors of the vertices of
C5 and apply Lemma 1 t67 \ int(Cs3) and toG \ out(Cs). If G does not contain triangles, théh
is 3-colorable by Grotzsch’s Theorem [15].

So, it suffices to prove Lemma 1. Note that our proof of Lemmskuilt on the following result
by Borodin, Glebov, Raspaud, and Salavatipour [10]:

Theorem 3 Every proper 3-coloring of the vertices of any face of length 8 to 11 in a connected
planar graph without cycles of length 4 to 7 can be extended to a proper 3-coloring of the whole
graph.

LetG = (V(G), E(G), F(G)) be a plane graph, wheté(G), E(G) andF(G) denote the sets
of vertices, edges and faces@f respectively. The neighbour set and the degree of a verter
denoted byN (v) andd(v), respectively. Letf be a face ofG. We useb(f), V(f) to denote the
boundary off, the set of vertices ob( f), respectively. Ak-vertex (resp= k-vertex,<k-vertex) is a
vertex of degreé (resp.> k, < k). The same notation is used for faces and cydiefsice,= k-face,
<k-faces are faces of length > k, < k. LetC be a cycle of G. Bynt(C) andext(C) denote the
sets of vertices located inside and outsidleespectivelyC' is said to bea separating cycle if both
int(C) # 0 andext(C) # 0. Letc;(G) be the number of cycles of lengthin G. Let C' be a cycle
of G, and letu andv be two vertices o. We useC[u, v] to denote the path @' clockwisely from
utov, and letC(u,v) = Clu,v] \ {u,v}.

By G denote the set of plane graphs that respéctdepicted in Figure 1.

Assume that: is a counterexample to Lemma 1 with:
1. ¢(G) = c4(G) + ¢5(G) + ¢c6(G) + ¢7(G) as small as possible, and
2. 0(G) = |V(G)| + |E(G)| minimum under the previous condition.

Without loss of generality, assume that the unbounded fat®ani-face with3 < i < 11 such
that a 3-coloringp of G[V (fy)] cannot be extended @. Let Cy = b(fy). All face different from
fo are callednternal.



Claim 1 G is2-connected; hence, the boundary of every faceisa cycle.

Pr oof

Observe first that, by the minimality @f, there is no cut-vertex iV (f,). Now assume thaB is a
pendant block with the cut-vertexc V(G)\ V (fo). We first extend) to G \ (B \ v), then we color

B with 3 colors by the minimality o€+ or Grétzsch’s Theorem, permute the colors if necessary, and
finally get an extension af to G. i

Claim 2 Vv € int(Cy),d(v) > 3.

Proof
Letv be a=2-vertex withv € int(Cy). We can first exteng to G \ v and then colop. a

Claim 3 G containsno separating k-cycleswith 3 < k < 11.

Proof
Let C be a separating cycle of length from 3 to 11. By the minimadityz, we can extend to
G\ int(C). Then we extend the 3-coloring 6V (C)] to G \ out(C) using the minimality of7. O

Claim 4 G[V(fy)] isachordless cycle.

Proof
Let uv be a chord of’y. Then by the minimality of7, we can extend to G \ uwv and so toG. O

Claim5 |fo| # 4,5,6,7.

Proof

Let Cy = zyxo...25 With 4 < k < 7. Let G’ be the graph obtained fro by adding8 — &
2-vertices on the edge x2. Then observe tha{ G’') < ¢(G) andG’ € G. By choosing some good
colors to the added vertices, we can extend the coloringeobttier face ofs’ to the whole graph
G’ by the minimality ofG. This yields a proper 3-coloring @¥, a contradiction. ]

Now we show thati contains no internat-faces withd < k£ < 7. Due to Claim 3 and the cycles
adjacencies conditions, evefycycle with4 < k < 7 bounds a face. This will show thét contains
no k-cycles with4d < k < 7. Finally, Theorem 3 will complete the proof of Lemma 1.

Claim 6 G containsno internal 7-faces.

Proof
Let f = xyzoa324050627 DE @n internal 7-face andy = b(f).

Observation 1 Let u, v two vertices of V(f). Let P, , bea path linking « and v such that P, , N
V(f) = {u, v} and Cy(u,v) € int(P,, U Cylv,u]). Let P, ,, bea path linking « and v such that
P, . NV(f)={u,v}and C¢(v,u) € int(P,,, UCslu,v]) (See Figure4). It may happenthat P, ,,
or/and P, ,, does not exist.

By the cycles adjacencies conditions or by Claim 3, we are sure that:

e In Case (1) depicted by Figure 4, the path P, , (resp. P, ) has at least 8 vertices (resp. 8
vertices) since there is no 7-cycle adjacent to <7-cycles.

e In Case (2) depicted by Figure 4, the path P, , (resp. P, ) hasat least 8 vertices (resp. 11
vertices) since otherwise P, , U C'¢[v, u] (resp. C¢[u,v] U P,,) isa separating <11-cycle.

e In Case (3) depicted by Figure 4, the path P, , (resp. P, ) hasat least 9 vertices (resp. 10
vertices) since otherwise P, , U C¢[v, u] (resp. C¢[u,v] U P,,) isa separating <11-cycle.
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Figure 5: The identification of; with z4.

Let G’ be the graph obtained frodi by identifyingx; with x4, see Figure 5.

We will show that this identification does not cre&at@-cycles, excepCy = zixs52677 and
Cyr = z12973, Which are a 4-cycle and a 3-cycle, respectively.

Suppose to the contrary th@t is a<7-cycle inG’ created by the identification af, andx, in
G, different fromCy andC/..

By I(x,y) denote the distance between the vertices and y in
(V(GQ), E(G) \ {z122, T2x3, X324, T4T5, T5T6, TeX7, T721}). The cycleC* must go through at
least two vertices of, ..., z7 (otherwise, its length cannot decrease by the identifioqtidy
Observation 1, the following table gives the lengthCtf going through the vertices andy of C:
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Hence, such a cyclé* cannot exist. The identification does not createcycles; moreover, by
the cycles adjacencies conditiorfsis not adjacent t&7-cycles ; so it is forf’ and f”. It follows
that the identification does not creaté acycle adjacent to &7-cycle. This implies that’’ € G.

We now show that; andz,4 can be choosen so that the identification does not damage we
can choose; andxz, suchthatN(x1) N Cy| + |N(z4) N Cp| < 2 (otherwise, the pre-coloring in
G’ might be not proper, or not defined at all).

Observation 2 If u isaninner vertex, then | N (u) N Cy| < 1.

Proof
Letu be an inner vertex; theldV (u) N Cy| < 2 by the cycles adjacencies conditions. Suppose that
|N(u) N Cp| = 2 and assume thad¥ (u) N Cy = {z,y}. ThenCy[u, v] U vzu or Colv, u] Uuav is a
separating*11-cycle sinced(u) > 3 andu has a neighbor not ify, a contradiction.
O
Hence, if[Co N C¢| < 3, we can choose; andxz, such thatN (z1) N Co| + [N (xa) N Co| < 2.

SinceCy has no chord anf¥fy| # 7, it follows that|Cy N C| < 5 by the previous observation.
Consider the casgy N C¢| = 5; now Cy N C is a set of consecutive vertices 6. Assume
that Co N Cy = {z1, 24, 75,76, 27}; then Colz1, z4] U z1202324 iS @ separating11-cycle, a
contradiction.
Now consider the casg’y N Cy| = 4. Again, Cy, N Cy is a set of consecutive vertices on
Cy. Assume thaty N Cy = {z1, z2, z, x7 }; then by the cycles adjacencies conditianshas no
neighbor onCy. Hence| N (z1) N Cy| + |N(x4) N Co| < 2.

So we can choose; andz4 such tha is not damaged. Finally, observe théa6’) = ¢(G) and
o(G") < o(G). Hence, using the minimality @, we can extend to the whole grapld:’ and so to
G.

O

Claim 7 G containsno internal k-faces, with4 < k& < 6.



The proof of Claim 7 is similar to that of Claim 6 but easier amteft to the reader.

This completes the proof of Theorem 1.
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