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Abstract: This paper deals with dynamic reconfiguration of DES control within the context of manufacturing 
system to answer product variability or production resources availability. More precisely, it focuses on product-
driven control (PDC) that embeds decisional and adaptation capabilities within the product. PDC can be 
defined in a static or dynamic way: in the first case, all switchable manufacturing trajectories are predefined 
and implemented in the product control while, in the second case, PDC can be seen as a non-deterministic and 
“on the fly” choice among control trajectories to fit with the manufacturing system availability and the product 
state. In this last case, PDC safety is ensured thanks to a filtering approach that enables to maintain PDC within 
a state space that satisfy functional and safety constraints whatever the control generated by the reconfiguration 
process is. This paper focuses on the definition and verification of a minimal set of constraints that ensure the 
sufficiency and the non blocking properties of the constraints. A case study illustrates the approach.

Keywords: Product driven control, Model Checking, Reconfigurable manufacturing system 

1. INTRODUCTION 

The introduction of Information Technology in manufacturing systems gives manufacturers an opportunity to promote make-
to-order business models and mass customisation of products (Da Silveira et al. 2001). Facing this wide range of customer 
needs requires manufacturing control systems to have the ability to adapt itself (or to reconfigure itself) to variable demands in 
terms of product specifications or manufacturing system changes (Koren 2005). 

As an answer to this industrial challenge, Product-Driven Control (PDC) consists in providing each product occurrence with 
information, decision and communication capabilities in order to make the product active in the scheduling and the execution 
of its manufacturing operations (McFarlane et al. 2003).  

Control strategies embedded in the product can be defined in a static way including all possible trajectories (Qiu et al. 2003) or 
in a dynamic way to adapt “on the fly” control decisions to fit with the manufacturing system and the product state. In the first 
case, the estimated scheduling is defined before implementation; this definition can be very sensible against environment 
variation (failure, unpredictable events, unavailable resources, …). In the second case, we assume that control could be non-
deterministic but limited to an ad-hoc choice between legal trajectories. Decision making is intrinsically a longer job, but the 
decision made is more robust against unpredictable events. This is compliant with our objective which is to facilitate the online 
reconfiguration of production. So, to ensure safety, it is necessary to verify that, whatever the “on the fly” control is, it is 
compliant with the functional characteristics of the product to be manufactured and with the process safety conditions. This 
verification can be done using a filtering approach (Marange et al. 2007) which enables the only decisions that satisfy a set of 
functional and safety constraints. 

This paper aims at presenting a proved definition of the constraints which are necessary to execute such a safe product-driven 
control, and gives guidelines for their implementation. Section 2 introduces the formal foundations of PDC and an overview of 
existing design techniques. Section 3 deals with the design of PDC constraints and their verification using model checking. 
The proposed approach is illustrated in section 4 using a simplified case study. Conclusions and open issues for future research 
are discussed in section 5. 

2. STATE OF THE ART 

2.1. Product-driven control 

From the process point of view, machine flexibility is the capability of machines to perform different operations. Taking into 
account functional redundancies between machines, routing flexibility is the ability of manufacturing a given set of part types 
using one or more routes through the machines (Tsubone & Horikawa, 1999). 

Therefore, product customization, machine and routing flexibility impact the manufacturing control so that its online dynamic 
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reconfiguration should make it possible to fit any process rescheduling or any customized product definition. 

According to Brennan et al. (2002), implementing a dynamic reconfiguration of control requires a configuration loop involving 
informational, decisional and operational activities for: 

– monitoring (Vogrig et al., 1987, Zamai et al., 1998), diagnosis (Toguyeni et al., 2006) or even prognosis  in order to 
produce information about the control environment and to define when and where a reconfiguration is required, 

– decision-making to define the most appropriate control policy, 
– operational execution of the reconfigured control actions to manage switching from an obsolete control strategy to a 

new targeted configuration. 

The main hypotheses of product-driven automation consist in providing the product with information, decision and 
communication capabilities in order to make the product active in the scheduling and the execution of its manufacturing 
operations. Products and resources are then interacting to perform manufacturing operations. Based on these conceptual 
guidelines, this paper focuses on the design of a product-driven distributed control system, shown in Fig. 1, which is based on 
the cooperation between: 

– product control which controls the manufacturing routes according to a scheduled list of operations the product has to 
undergo; these controls are specific for each product occurrence in order to take into account their customization, 

– resource control which ensures correct execution of manufacturing operations and provide the product controllers with 
accurate reports. 

Requests from products / Reports from resources

Product
control

Product
control

Product Material flows

Resource
Control

Resource
Control

Resource
Control

Product/Process
Information flows

 

Fig. 1: Product-driven control architecture 

For implementation aspects, infotronics technology such as RFID tags embedded on the products enables individual 
identification of product occurrences that open a way towards the customization of control constraints for each product 
occurrence (McFarlane et al. 2003). 

2.2.  Product-driven control engineering 

The PDC definition is founded, on the one hand, on the modelling of the manufacturing system capabilities which describes 
the system topology and the manufacturing operations performed by each resource, and, on the other hand, on the modelling of 
product requirements in terms of the operations it has to undergo. Two different ways of thinking the design of PDC 
architecture can be considered.  

The first one is based on the specification of a set of switchable control policies using a graph that represents all legal product 
routings and the functional redundancies between the machines (Berruet et al. 2000, Toguyeni et al. 2006). Generations of 
such a graph can rely on synthesis techniques within the framework of Supervisory Control Theory (Qiu et al. 2003, Pétin et 
al. 2007). Then, operational PDC implements choices between the legal routes that results from the execution of a short path 
optimisation algorithm. This approach assumes that all possible manufacturing trajectories have been previously embedded in 
product-driven controllers and suffers from an exponential complexity in terms of number of control states, which naturally 
arises as the number of machines and product variability increase. 

Second way of thinking consists in defining PDC as a non deterministic evolution within a state space guarded by a set of 
constraints. In other words, it means that the control decisions are not completely predefined but are postponed when a product 
ask for a transformation by selecting, even in a non-deterministic way, a control action compliant with the set of constraints. 
Consequence is that no strong hypothesis on the reconfigured control properties can be assumed. Consequently, a filter has to 
be placed before the execution in order to dismiss the evolutions that do not comply with safety and functional constraints. 
This approach strongly depends on the constraints definition and more especially on their covering features. For the safety 
constraints, an approach has been proposed by (Marange, 2008) to specify a set of constraints for each plant elements and to 
verify, using model checking, that this set of constraints is preserved by any controller. This paper enriches this work by 
considering aspects related to product functional constraints. In this case, the constraints must be efficient enough to ensure the 
reachability of transformation control states according to given product features but they also must be permissive enough to 
ensure the existence of at least one manufacturing sequence (non-blocking constraints).  



  

 

3. PROPOSED APPROACH 

The proposed approach considers products and resources interacting in order to execute product manufacturing plans. To 
ensure safety and correctness of the execution, a set of constraints are designed and used as filtering conditions that maintain 
PDC reconfigured control in a legal state space. This section begins by giving an overview of the approach which illustrated 
with some models, then proposes a method to design and verify constraints sufficiency and non-blocking properties, and 
finally explains how these constrains can be implemented in a product driven control system. 

3.1. Overview of the approach  

In order to ensure that the functional manufacturing plan of the product is respected, a four steps approach is proposed (Fig. 2): 
– functional constraints writing; 
– verification of constraints sufficiency. This consists in the verification that the minimal set of constraints ensuring the 

proper sequencing of operations, is included in the identified set of constraints; 
– verification of constraints non-blocking to check that the constraints are not too restrictive, i.e. there is at least a way to 

achieve the product manufacturing plan; 
– implementation of the constraints which can be used “on line” to filter the only legal PDC actions. 
 

Rules design

Init
Implementation

Final

Non blocking
verification

Sufficency
verification

Rules writing

 
Fig. 2: Activities of the proposed approach 

To perform constraints verification, the following hypotheses are considered:  
– all plant evolutions are observable by the PLC, 
– functions sequence are considered only as logical constraints, and do not include time aspects,  
– the plant is considered  without failure, 
– for the trajectories choice, the cost is not yet taken in account. In future works, choice criteria will integrate costs linked 

to resource performances or to transfert time  between resources, 
– we considerer that the transfer resource is always available (as in the case of a conveyor). 

 

3.2. Constraints design 

During control execution, a function can be in several states: to be executed Fite, in execution Fiie, or executed Fiex. The request 
for a function execution is noted Firq. To authorize the function execution, a filter using information contained in the product 
validates a set of constraints. These functional constraints, which can be defined as logic equations, are of two types: one is 
related to the product features and the other is related to the manufacturing resource capabilities. 

3.2.1.1. Constraints writing 

For each product, a set of constraints is defined to ensure that the good product is made. Each product is considered 
independently of each other, and execution conditions on other functions are defined for each function Fi: 

– the functions that should have been executed before Fi, condition noted Fibefore 
– the functions that cannot be executed at the same time than Fi,  condition noted Fiduring 
– the functions that cannot be executed after Fi, condition noted Fiafter 
– the function that cannot be executed on the product, noted Fiprohibited  

Each condition can be extended according to the function states. For example, Fibefore ex represents the condition Fibefore with the 
parameters Fiex. 

To ensure the respect of these precedence conditions (Allen, 1983) functional constraints are defined for each function Fi:  
–  0rq beforeexFi Fi∧ =

) 0=

ensures that prior functions needed before the execution of Fi have been executed, 
– ensures that the function included in Fi(rq during rq during ieFi Fi Fi∧ ∨ during are not executed at the same time that Fi, i.e. 

in a PLC cycle in which Fi is requested, functions included in Fiduring, should not be already in execution or requested for 
activation, 

– ensures that the functions included in Fi0after rq exFi Fi∧ = after cannot be executed after the Fi execution, 
– ensures that the functions included in Fi0=rqprohibitedFi prohibited cannot be executed. 



  

 

In addition to these precedence constraints, we have to verify that a given function (Firq) is not requested when the product is 
present on a resource (noted ppj) that does not provide this given function: 0=∧ rqj Fipp . 

Furthermore, the deactivation of function is forbidden before the end of its execution, what is represented by the constraint: 
0rq exFi Fi↓ ∧ = . 

The goal of these constraints is to ensure a correct manufacturing plan execution, but if they are not well defined, they can be 
too permissive or bring some blocking situations. So, once they are written, it is necessary to proceed to some verification. 

3.2.1.2. Sufficiency and non-blocking property verification 

Once product requirements given and resources capability built, the verification process helps the designer to identify and to 
formalise a set of necessary and sufficiency constraints. Verification of the constraints aims to ensure, on the one hand, that 
constraints are efficient enough to disable all the manufacturing plans which are incorrect, and on the other hand, that the 
constraints are not too restrictive, i.e. that it exists at least one possibility to manufacture the product. The verification of the 
sufficiency and non-blocking property is done on a system model. This model is defined in a modular way considering the 
execution environment, the control and function execution. In order to reduce the risk of state space explosion, the modelling 
tool which is used is UPPAAL timed automata (Alur & Drill 1994, Behrmann et al. 2002). 

3.2.1.3. Generic model of environment and resources  

To verify that functional constraints are correctly defined, their sufficiency and non blocking properties are verified by model 
checking (Schnoebelen et al. 1999). The system is then defined by models of the execution environment, tag reading and 
update, functions activation/deactivation control and functions execution, which are detailed below. 

The model of the environment (Fig. 3) represents the cyclical evolution of the PLC, and will synchronize the evolution of the 
different models with synchronization messages. In a product point of view, the PLC cycle is defined as follows: PLC inputs 
reading, tag reading, functions evolution to identify which are the possible functions, application of the constraints to verify if 
properties are respected, functions execution and tag and PLC outputs update. Before a new cycle is started, a verification step 
is added to verify sufficiency and non-blocking. 

 
Fig. 3: Model of the execution environment 

When a product is present on a resource, information contained in the tag is read (Fig. 4a) to update functions state on each 
resource (requested, in execution …), then the control is executed, and finally the tag is updated (Fig. 4b) to trace the execution 
of functions. Reading and update can be done during each PLC cycle to ensure control consistency. 

  
a) Model of tag reading b) Model of tag update 

Fig. 4: Generic models of tag reading and update  

As no assumption on the implemented control can be made, functions can be activated or deactivated during the period 
between the reception of messages function_evolution and constraint_application (Fig. 5). 

 



  

 

Fig. 5: Generic model of function Fi activation/deactivation  

Before functions execution, the function evolution phase tests functions activation/deactivation using the constraints set. For 
that, when the message constraint_application is received, the guard representing the constraint must be false; if not, the 
variable errori is updated to “true” (Fig. 6), and then forbid the function execution. 

 
Fig. 6: Generic model of constraints 

Functions can be of two types: shape processing or transport function. Shape processing function (Fig. 7) is modelled by a 3 
states automaton: {Not executed, In execution, Executed}. The automaton goes from Not executed to In execution when the 
activation is made (Firq=1), if a product is present on the resource (ppi=1) and if all constraints are met (errori=0). The 
function is executed when the time function_time passes. With transitions crossing, function state values are updated. 

 
Fig. 7: Generic model of shape processing function (Fi) 

Transport function is represented with a 3 states automaton: {Not executed, Left from Start position, At End position}, 
transitions crossing is made according to time values (Fig. 8).  

 
Fig. 8: Generic model of transport function (Fi) 

3.2.1.4. Verification of constraints sufficiency 

Once functional constraints are defined, the constraints sufficiency has to be verified, to ensure that all the evolutions which do 
not bring a correct product will be filtered. 

To verify constraints sufficiency, an observer, including an error state representing the paths that do not respect constraints, is 
designed for each constraint. If constraints are sufficient, then the property “regardless the way defined by the control, the error 
state is not reachable”, is always true. 

If it is simple to express the property to be checked, main difficulties remain in the definition of the observer that is prone to 
mistakes on the part of the expert (bad definition, forgetting elements ...) and in the risk of state explosion in model definition 
and in verification calculation. This fact justifies our observer modularity (i.e. one observer for each constraint). 

 

3.2.1.5. Verification of constraints non blocking property 

The last step of constraints design is to verify that they are not too restrictive to achieve the process plan. To verify the non-
blocking control, the process plan is modelled with a finished product state. The verification of the non-blocking property of 
constraints consists then in finding at least one path reaching to the finished product state. 



  

 

3.3. Control implementation 

The set of specified and verified constraints can be implemented within a filtering supervisor that enable or disable the PDC 
actions according to the expected manufacturing of a product for any reconfigured control. 

In this way, the control is implemented in resources, information on product state (functions executed, in execution …) and 
functional constraints are embedded in the product. The verification of constraints respect is made during control execution 
(Fig. 9):  

– the resource detects product presence, 
– the resource read the tag on the product: information on product state and functional constraints, 
– the resource proposes a function to execute, 
– if the constraints are respected, the function is executed and the product is updated, 
– otherwise, the function execution is filtered and another function is proposed. 

Product Pi:Product Resource Ri:Resource

Product detection   Tag reading   

Product state Return  

Rules Return  

Fj execution  

Rules application on 
{Fi}1..n to find possible Fj  

Tag update : ^Send  

 
Fig. 9: Interaction scenario with on line control verification 

This approach is interesting in the case of flexible or reconfigurable systems. As the control is not completely defined a priori, 
the execution of a function is not linked to a specific resource, thus some flexibility in the execution of the process plans is 
possible. However, the constraints do not ensure that the product will eventually be manufactured. 

4. EXAMPLE: CONDITIONING SYSTEM 

The considered conditioning system allows granules packaging, with or without label. It is composed of 4 partially redundant 
resources (R1 to R4) allowing 4 functions (Fig. 10): F1 represents the bottle closing; F2 represents the label collage, F3 and F4 
represent the distribution of types A and B granules. These functions are completed by 4 transport functions. The variable ppi 
represents the product presence on the resource Ri. 

From functions location on the resources, 8 resources constraints are defined: 
– Resource (R1) :  and  1 3 0rqpp F∧ = 1 4 0rqpp F∧ =

– Resource (R2) :  and  2 1 0rqpp F∧ = 2 2 0rqpp F∧ =

– Resource (R3) :  and  3 2 0rqpp F∧ = 3 4 0rqpp F∧ =

– Resource (R4) :  and  4 1 0rqpp F∧ = 4 3 0rqpp F∧ =
 

Resource R1 
 

Functions: 
F1, F2 

Resource R2 
 

Functions: 
F3, F4 

Resource R3 
 

Functions: 
F1, F3 

Resource R4 
 

Functions: 
F2, F4 

F5 : moving from R1 to R2 

F7 : moving from R4 to R3 

F8 : 
moving 

from 
R3 to R1 

F6 : 
moving 

from 
R2 to R4 

 
Fig. 10: Overview of the conditioning system 

Table 1 describes the 10 various products that can be manufactured. According to the product type, a set of conditions is 
defined. For example, considering product P9, these conditions imply constraints on function execution (Table 2). 
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Table 1: Product types 
Name Composition Label Name Composition Label

P1
A and B (without 
particular order) Yes P6

A and B (without 
particular order) No

P2 A Yes P7 A N
P3 B Yes P8 B N
P4 A then B Yes P9 A then B No
P5 B then A Yes P10 B then A No  
Table 2: Conditions on product P9 manufacturing 

Function Fi Fibefore Fiduring Fiafter

F1 F3 ∧ F4 (1) F2 (2) F3 ∨ F4 (3)
F2 Forbidden (4) Forbidden Forbidden
F3 ∅ F4 ∨ F1(5) ∅

F4 F3 (6) F3 (7) ∅  

According to these conditions, 9 constraints are then defined:  
- Condition 1: 0)( 431 =∧∧ exexrq FFF  

- Condition 2:  0)( 221 =∨∧ ierqrq FFF

- Condition 3: 013 =∧ exrq FF  and 014 =∧ exrq FF  

- Condition 4:  02 =rqF

- Condition 5:  3 4 1 4 1(( ) ( )) 0rq rq rq ie ieF F F F F∧ ∨ ∨ ∨ =

- Condition 6: 0)( 34 =∧ exrq FF  

- Condition 7:  4 3 3( )rq rq ieF F F∧ ∨ = 0

In the first step of approach, the sufficiency of functional constraints is verified. The constraint 0)( 431 =∧∧ exexrq FFF  ensures 
that the function F1 is activated only if the functions F3 and F4 have been executed. To verify this property, the observer (Fig. 
11) describes the possible ways and the forbidden error state. Using UPPAAL model checking software, the following 
propriety is verified:  

[] ( _ . )not observer efficiency errorΑ  

 
Fig. 11: Sufficiency observer  

In the second step, a logical process plan (which does not specify executing resources) is defined to verify that at least a way 
exists to manufacture the product (Fig. 12). We define the following propriety: ( . _E processplan produit fini)<>  which is 
verified using UPPAAL. 

 
Fig. 12: Process plan 



  

 

5. CONCLUSION AND PERSPECTIVES 

There is a growing interest in models, methods and tools that facilitate the D.E.S. reconfigurable control. This paper focuses on 
the safety issues of such reconfigurable system in the case of product-driven control. Main proposal consists in a filtering 
approach that enables to maintain PDC within a state space that satisfy functional (with regard to the product goals) and safety 
(with regards to the process operations) constraints without assuming any PDC properties (i.e. whatever the control generated 
by the reconfiguration process is). Presented results refer to the constraints design and verification phase as shown on figure 2. 
Further work needs to be developed for implementation issues. Moreover, if the writing and verification of functional filter 
constraints has been illustrated on a simplified case-study, experiments on industrial-scale case-studies emphasize the effort 
that still must be employed to make the proposed engineering framework effective in practice. In future works, some 
hypotheses must be lifted. For example, temporal issues will be included in constraint definition, as the use of cost will be used 
during trajectory choice.  
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