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Abstract

Particle filters algorithms approximate a sequence of distributions by
a sequence of empirical measures generated by a population of simu-
lated particles. In the context of Hidden Markov Models (HMM), they
provide approximations of the distribution of optimal filters associated
to these models. Given a set of observations, the asymptotic behaviour
of particle filters, as the number of particles tends to infinity, has been
studied: a central limit theorem holds with an asymptotic variance de-
pending on the fixed set of observations. In this paper we establish,
under general assumptions on the hidden Markov model, the tightness
of the sequence of asymptotic variances when considered as functions
of the random observations as the number of observations tends to in-
finity. We discuss our assumptions on examples and provide numerical
simulations. The case of the Kalman filter is treated separately.

Key Words: Hidden Markov Model, Particle filter, Central Limit Theorem,
Asymptotic variance, Tightness, Kalman model, Sequential Monte-Carlo

Short title: Asymptotic variances in particle filters approximation.

1 Introduction

Hidden Markov models (or state-space models) form a class of stochastic
models which are used in numerous fields of applications. In these models, a
discrete time process (Yn, n ≥ 0) – the signal – is observed while the process
of interest (Xn, n ≥ 0) – the state process – is not observed. The standard
assumptions for the joint-process (Xn, Yn)n≥0 are that (Xn) is a Markov
chain, that, given (Xn, n ≥ 0) the random variables (Yn) are conditionally
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independent and the conditional distribution of Yi only depends on the cor-
responding state variable Xi. (For general references, see e.g. Künsch (2001)
or Cappé et al. (2005)).
Nonlinear filtering is concerned with the estimation of Xk or the predic-
tion of Xk+1 given the observations (Y0, . . . , Yk) := Y0:k. For this, one
has to compute the conditional distributions πk|k:0 = L(Xk|Yk, . . . , Y0) or
ηk+1|k:0 = L(Xk+1|Yk, . . . , Y0) which are derived recursively by a sequence
of measure-valued operators depending on the observations

πk|k:0 = ΨYk
(πk−1|k−1:0) and ηk+1|k:0 = ΦYk

(ηk|k−1:0)

(for more details, see e.g. Del Moral (2004) or Del Moral and Jacod (2001a)).
Unfortunately, except for very few models, such as the Kalman filter or some
other models (for instance, those presented in Chaleyat-Maurel and Genon-
Catalot (2006)), these recursions rapidly lead to intractable computations
and exact formulae are out of reach. Moreover, the standard Monte-Carlo
methods fail to provide good approximations of these distributions (see e.g.
the introduction in Van Handel (2008)). This justifies the huge popularity of
sequential Monte-Carlo methods which are generally the only possible com-
puting approach to solve these problems (see Doucet et al. (2001) or Robert
and Casella (2004)). Sequential Monte-Carlo methods (or particle filters, or
Interacting Particle Systems) are iterative algorithms based on simulated
“particles” which provide approximations of the conditional distributions in-
volved in prediction and filtering.
Denoting by πN

k|k:0 (resp. ηN
k+1|k:0) the particle filter approximations of πk|k:0

(resp. ηk+1|k:0) based on N particles, several recent contributions have been
concerned with the evaluation of errors between the approximate and the
exact filter as N grows to infinity, for a given (fixed) set of data (Yk, . . . , Y0)
(see e.g. Douc et al. (2005)). In particular, for the bootstrap particle filter,
Del Moral and Jacod (2001a) prove that, for a wide class of real-valued func-
tions f ,

√
N(πN

k|k:0(f)−πk|k:0(f)) (resp.
√

N(ηN
k+1|k:0(f)− ηk+1|k:0(f))) con-

verges in distribution to N (0,Γk|k:0(f)) (resp. N (0,∆k+1|k:0(f))). Central
limit theorems for an exhaustive class of sequential Monte-Carlo methods
are also proved in Chopin (2004).
To our knowledge, still little attention has been paid to the time behaviour
(with respect to k) of the approximations. Recently, Van Handel (2008) has
studied a uniform time average consistency of Monte-Carlo particle filters.
In this paper, we are concerned with the tightness of the asymptotic vari-
ances Γk|k:0(f) , ∆k+1|k:0(f) in the central limit theorem for the bootstrap
particle filter, when considered as random variables functions of Y0, . . . , Yk as
k → ∞. This is an important issue since these asymptotic variances measure
the accuracy of the numerical method and provide confidence intervals. In
Chopin (2004), for the case of the bootstrap filter, the asymptotic variance
Γk|k:0(f) is proved to be bounded from above by a constant, under stringent
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assumptions on the conditional distribution of Yi given Xi and on the tran-
sition densities of the unobserved Markov chain. In Del Moral and Jacod
(2001b) the asymptotic variance Γk|k:0(f) is proved to be tight (in k) in the
case of the Kalman filter. The proof is based on explicit computations which
are possible in this model. Below, we consider a general model and prove
the tightness of both Γk|k:0(f) and ∆k+1|k:0(f) for f a bounded function un-
der a set of assumptions which are milder than those in Chopin (2004) but
which do not include the Kalman filter. In general, authors concentrate on
filtering rather than on prediction as filtering in more important for appli-
cations. However, from the theoretical point of view, we stress the fact that
prediction is simpler to study. First we prove the tightness of the asymptotic
variances ∆k+1|k:0(f) obtained in the central limit theorem for prediction,
and then we are able to deduce the analogous result for Γk|k:0(f). For the
transition kernel of the Markov chain, we rely on a strong assumption, which
mainly holds when the state space of the hidden chain is compact (Assump-
tion (A)). Nevertheless, such an assumption is of common use in this kind
of studies (see e.g. Oudjane and Rubenthaler (2005) , Atar and Zeitouni
(1997), Douc et al. (2005)). In the sense of Douc et al. (2005), it means that
the whole state space of the hidden chain is “small” (see Douc et al. (2005)).
On the other hand, our assumptions on the conditional distributions of Yi

given Xi are very weak ((B1)-(B2)). The Kalman filter model which does
not satisfy our assumption (A2) is treated separately.
The paper is organized as follows. In Section 2, we present our notations and
assumptions, and give the formulae for Γk|k:0(f) and ∆k+1|k:0(f) and some
preliminary propositions in order to obtain formulae as simple as possible for
the asymptotic variances. Section 3 is devoted to the proof of the tightness
of ∆k+1|k:0(f) from which we deduce the tightness of Γk|k:0(f). In Section
5, we look at the Kalman filter model as in Del Moral and Jacod (2001b)
and propose simplifications for the computation of ∆k+1|k:0(f) and for prov-
ing its tightness. Moreover, we illustrate our assumptions on examples and
provide some numerical simulation results.

2 Notations, assumptions and preliminary results

Let (Xk) be the time-homogeneous hidden Markov chain, with state space
X and transition kernel Q(x, dx′). The observed random variables (Yk) take
values in another space Y and are conditionally independent given (Xk)k≥0

with L(Yi|(Xk)k≥0) = F (Xi, dy). For 0 ≤ i ≤ k, denote by Yi:k the vector
(Yi, Yi+1 . . . Yk).
Denote by π

η0

k|k:0 = Lη0(Xk|Yk:0) (resp. η
η0

k|k−1:0 = Lη0(Xk|Yk−1:0) ) the fil-

tering distribution (resp. the predictive distribution) at step k when η0 is
the initial distribution of the chain (distribution of X0). By convention,
η

η0

0|−1:0 = η0.
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Let us now introduce our assumptions. Assumptions A concern the hid-
den chain, Assumptions B concern the conditional distribution of Yi given
Xi.

(A0) X is an interval of R. The transition operator Q admits transition
densities with respect to the Lebesgue measure on X denoted by dx′ :
Q(x, dx′) = p(x, x′)dx′. The transition densities are positive and con-
tinuous on X×X . For ϕ bounded and continuous on X , Qϕ is bounded
and continuous on X (Q is Feller).

(A1) The transition operator Q admits a stationary distribution π(dx) hav-
ing a density h with respect to dx which is continuous and positive on
X .

(A2) There exists a probability measure µ and two positive numbers ǫ− ≤ ǫ+

such that

∀x ∈ X ,∀B ∈ B(X ) ǫ−µ(B) ≤ Q(x,B) ≤ ǫ+µ(B).

Moreover, for all f continuous and positive on X , µ(f) > 0.

(B1) Y = R, the conditional distribution of Yk given Xk has density f(y|x)
with respect to a dominating measure κ(dy), and (x, y) 7−→ f(y|x) is
measurable and positive.

(B2) x 7−→ f(y|x) is continuous and bounded from above for all y κ a.e.

Under (B2), q(y) = supx∈X f(y|x) is well defined and positive. Up to
changing κ(dy) into 1

q(y)κ(dy), we can assume without loss of generality that

∀x ∈ X , f(y|x) ≤ 1. (1)

Except (A2) these assumptions are weak and standard. For instance,
(A0)-(A1) easily hold for discretized one-dimensional diffusions with con-
stant discretization step. Assumption (A2), which is the most stringent,
is nevertheless classical and is verified when X is compact. (see Atar and
Zeitouni (1997) and the chronological discussion in Douc et al. (2009)). As-
sumptions B are mild. Note that they are much weaker than the correspond-
ing ones in Chopin (2004) and the same as in Van Handel (2008). By (A0),
for ϕ non null, non negative and continuous on X , Qϕ > 0. With (B2), for
all y κ a.e., Q(f(y|.)) is positive, continuous and bounded (by 1).

Note that in (A0) we could replace X an interval of R by a convex subset
of R

d, and R by R
d in (B1).

Some more notations are needed for the sequel. Define the family of
operators : for f : X −→ R measurable and bounded, and k ≥ 0,

Lkf(x) = gk(x)Qf(x) where gk(x) := f(Yk|x). (2)
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For 0 ≤ i ≤ j, let Li,j := Li . . . Lj denote the compound operator. For η a
probability measure on X , set

ΦYk
(η)(f) =

ηLkf

ηLk1
.

Then the predictive distributions satisfy η
η0

0|−1:0 = η0 and for k ≥ 1,

η
η0

k|k−1:0f =
η

η0

k−1|k−2:0Lk−1f

η
η0

k−1|k−2:0Lk−11
= ΦYk−1

(ηη0

k−1|k−2:0)(f) (3)

By iteration,

Eη0 (f(Xk)|Y0:k−1) = η
η0

k|k−1:0
(f) = ΦYk−1

◦· · ·◦ΦY0(η0)(f) =
η0L0,k−1f

η0L0,k−11
(4)

For δx the Dirac mass at x, we have

ηδx

k|k−1:if =
δxLi,k−1f

δxLi,k−11
= ΦYk−1

◦ · · · ◦ ΦYi
(δx)f. (5)

We will simply set ηk|k−1:if(x) := ηδx

k|k−1:if . Moreover we have the relations

Eη0 (f(Xk)|Y0:k) = π
η0

k|k:0f =
η

η0

k|k−1:0(gkf)

η
η0

k|k−1:0(gk)
(6)

and η
η0

k+1|k:0(f) = π
η0

k|k:0(Qf). (7)

Note that for all y, Φy(δx)(dx′) = p(x, x′)dx′. For η0(dx) = h0(x)dx, with
h0 positive and continuous on X ,

Φy(η0)(dx′) =

∫

X dxf(y|x)h0(x)p(x, x′)
∫

X dxf(y|x)p(x, x′)
dx′,

where the denominator is positive. Hence Φy(η) has a positive and continu-
ous density when η is a Dirac mass or has a positive and continuous density.
For these reasons and assumption (A0), all denominators appearing in our
formulae are positive.

Below, for simplicity, when no confusion is possible, we omit the sub- or
superscript η0 in the distributions. Denote the number of interacting parti-
cles by N . The distribution of the bootstrap particle filter for the prediction
is denoted by ηN

k|k−1:0(f) and the distribution of the bootstrap particle filter

for the filter is denoted by πN
k|k:0(f). The following theorem central limit

theorem is proved in Del Moral and Jacod (2001a).
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Theorem. For f a bounded measurable function and a given sequence (Y0:k)
of observations, the following convergences in distribution hold

√
N(ηN

k|k−1:0(f) − ηk|k−1:0(f))
L−→

N→∞
N (0,∆k|k−1:0(f))

where

∆k|k−1:0(f) =

k
∑

i=0

ηi|i−1:0

(

(

Li,k−1

(

f − ηk|k−1:0f
))2
)

(ηi|i−1:0Li,k−11)2
, (8)

and √
N(πN

k|k:0(f) − πk|k:0(f))
L−→

N→∞
N (0,Γk|k:0(f))

where

Γk|k:0(f) =

k
∑

i=0

ηi|i−1:0

(

(

Li,k−1

(

gk

(

f − πk|k:0f
)))2

)

(ηk|k−1:0(gk))2(ηi|i−1:0Li,k−11)2
. (9)

Note that, in Del Moral and Jacod (2001a), the above theorem is proved
for a wider class of functions, including functions with polynomial growth.

In the sequel, we focus on the two asymptotic variances ∆k|k−1:0(f) and
Γk|k:0(f) for f bounded, when considered as functions of Y0:k. Proposition 1
gives the link between the two quantities. Recall that the initial distribution
is fixed equal to η0.

Proposition 1. For f a bounded function, and k a non negative integer,

Γk|k:0(f) = ∆k|k−1:0

(

gk

ηk|k−1:0(gk)

(

f − πk|k:0f
)

)

(10)

and

∆k+1|k:0(f) = ηk+1|k:0

(

(

f − ηk+1|k:0f
)2
)

+ Γk|k:0

(

Qf − πk|k:0Qf
)

. (11)

Proof. The first formula is immediate from (8) and (9). Using (3)-(7), we
get

∆k|k−1:0(f) =

k
∑

i=0

ηi|i−1:0

(

(

Li,k−11(.)

ηi|i−1:0Li,k−11

)2
(

ηk|k−1:if(.) − ηk|k−1:0f
)2

)

(12)

Γk|k:0(f) =

k
∑

i=0

ηi|i−1:0

(

(

Li,k−11(.)
ηi|i−1:0Li,k−11

)2
(

ηk|k−1:i(gkf)(.) − πk|k:0f
)2
)

(ηk|k−1:0(gk))2
(13)

Noting that

ηi|i−1:0 (Li,k−11) ηk|k−1:0 (gk) = ηi|i−1:0 (Li,k1) ,

6



we derive

∆k+1|k:0(f) = ηk+1|k:0

(

(

f − ηk+1|k:0f
)2
)

+∆k|k−1:0

(

gk

ηk|k−1:0(gk)

(

Qf − ηk+1|k:0f
)

)

= ηk+1|k:0

(

(

f − ηk+1|k:0f
)2
)

+ Γk|k:0

(

Qf − ηk+1|k:0f
)

.

2

Note that Chopin (2004) derives some related formulae in a slightly dif-
ferent context. Due to all the above relations, it appears that the predictive
distributions and the asymptotic variance ∆k+1|k:0(f) are simpler to study.

3 Tightness of the asymptotic variances

To stress the dependence on the observations (Yk), we introduce another
notation for ην

k|k−1:0. For ν a probability measure, A a borelian set, y0:k−1 a
set of fixed real values, let us introduce

ην,k[y0:k−1](A) =
Eν(
∏k−1

i=0 f(yi|Xi)1A(Xk))

Eν(
∏n−1

i=0 f(yi|Xi))

=
νL0,k−11A

νL0,k−11
=

νg0Qg1Q . . . gk−1Q1A

νg0Qg1Q . . . gk−1

Here, Eν denotes the expectation with respect to the distribution of the chain
(Xk) with initial distribution ν and y0:k−1 are fixed values not involved in
the expectation. To ensure that all expressions are well defined, we consider
probability measures ν equal to either Dirac masses or probabilities with
positive continuous densities on X . In the second line, we have set gi(x) =
f(yi|x) and the formula explains the backward iterations of the operators
(2) with Yk = yk.

The following proposition proves the exponential forgetting of the initial
distribution for the predictive distributions.

Proposition 2. Assume (A2) and (B1) and set ρ = 1 − ǫ2−
ǫ2+

. Then for all

non negative integer k, all probability distributions ν and ν ′ on X and all
set y0:k−1 of real values

‖ην,k[y0:k−1] − ην′,k[y0:k−1]‖TV ≤ ρk,

where ‖.‖TV denotes the total variation distance.
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Proof. The above result is generally proved for the filtering distribution
(see e.g. Atar and Zeitouni (1997), Del Moral and Guionnet (2001) and
Douc et al. (2009)). To prove it for the predictive distributions, we follow
the scheme of Douc et al. (2009). Let X̄ = X × X and denote by Q̄ the
Markov kernel on X̄ given by

Q̄((x, x′), A × A′) = Q(x,A)Q(x′, A′).

Set ḡi(x, x′) = gi(x)gi(x
′). For two probability measures ν and ν ′, notice

that

ην,k[y0:k−1](A)−ην′,k[y0:k−1](A) = Φyk−1
◦· · ·◦Φy0(ν)(1A)−Φyk−1

◦· · ·◦Φy0(ν
′)(1A)

=
Eν⊗ν′(

∏k−1
i=0 ḡi(Xi,X

′
i)1A(Xk)) − Eν′⊗ν(

∏k−1
i=0 ḡi(Xi,X

′
i)1A(Xk))

Eν(
∏k−1

i=0 gi(Xi))Eν′(
∏k−1

i=0 gi(Xi))

where (Xi) and (X ′
i) are two independent copies of the hidden Markov chain

and Eν⊗ν′ denotes the expectation with respect to the distribution of the
chain (Xi,X

′
i) with kernel Q̄ and initial distribution ν ⊗ ν ′.

Set µ̄ = µ ⊗ µ, and x̄ = (x, x′). For f̄ a measurable non negative function,
we have

ǫ2
−µ̄(f̄) ≤ Q̄(x̄, f̄) ≤ ǫ2

+µ̄(f̄).

Setting

Q̄0(x̄, f̄) = ǫ2
−µ̄(f̄) and Q̄1(x̄, f̄) = Q̄(x̄, f̄) − Q̄0(x̄, f̄),

we deduce that
0 ≤ Q̄1(x̄, f̄) ≤ ρQ̄(x̄, f̄).

Now let us compute the numerator:

Rk(ν, ν ′, A) = Eν⊗ν′(
k−1
∏

i=0

ḡi(Xi,X
′
i)1A(Xk)) − Eν′⊗ν(

k−1
∏

i=0

ḡi(Xi,X
′
i)1A(Xk))

= ν ⊗ ν ′(ḡ0Q̄ḡ1 . . . ḡk−1Q̄1A×X ) − ν ′ ⊗ ν(ḡ0Q̄ḡ1 . . . ḡk−1Q̄1A×X ).

It may be decomposed as

Rk(ν, ν ′, A) =
∑

t0:k−1∈{0,1}k

Rk(A, t0:k−1)

where

Rk(A, t0:k−1) := ν⊗ν ′(ḡ0Q̄t0 ḡ1 . . . ḡk−1Q̄tk−1
1A×X )−ν ′⊗ν(ḡ0Q̄t0 ḡ1 . . . ḡk−1Q̄tk−1

1A×X ).
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Assume that for an index i, ti = 0. Then

ν ⊗ ν ′(ḡ0Q̄t0 ḡ1 . . . ḡk−1Q̄tk−1
1A×X )

= ν ⊗ ν ′(ḡ0Q̄t0 ḡ1 . . . ḡi−1Q̄ti−1 ḡi) × ǫ2
−µ̄
(

ḡi+1 . . . ḡk−1Q̄tk−1
1A×X

)

= ν ′ ⊗ ν(ḡ0Q̄t0 ḡ1 . . . ḡi−1Q̄ti−1 ḡi) × ǫ2
−µ̄
(

ḡi+1 . . . ḡk−1Q̄tk−1
1A×X

)

= ν ′ ⊗ ν(ḡ0Q̄t0 ḡ1 . . . ḡk−1Q̄tk−1
1A×X )

= ν ⊗ ν ′(ḡ0Q̄t0 ḡ1 . . . ḡk−1Q̄tk−1
1X×A)

and Rk(A, t0:k−1) vanishes except if all ti = 1. Hence

Rk(ν, ν ′, A) = ν ⊗ ν ′(ḡ0Q̄1ḡ1 . . . ḡk−1Q̄1(1A×X − 1X×A)).

Therefore

sup
A

∣

∣Rk(ν, ν ′, A)
∣

∣ ≤ ρk
Eν⊗ν′(

k−1
∏

i=0

ḡi(Xi,X
′
i)).

The result follows.2

Remark. Applying the result of Proposition 2 with gi ≡ 1 and ν ′ = π,
we get ‖νQk−π‖TV ≤ ρk. Thus, (A1)-(A2) imply the geometric ergodicity
of (Xk).
The following propositions give upper bounds for ∆k|k−1:0(f).

Proposition 3. Assume (A0)-(A2) (B1)-(B2) For f a bounded measur-
able function and (Y0:k) a sequence of observations, the following inequalities
hold

∆k|k−1:0(f) ≤ ‖f‖2
∞

k
∑

i=0

ηi|i−1:0

(

(

Li,k−11

ηi|i−1:0Li,k−11

)2
)

ρ2(k−i) (14)

Proof. Remark that, for all ν:

ην,k[Y0:k−1] = ΦYk−1
◦ · · · ◦ ΦYi

(ην,i[Y0:i−1]).

By Proposition 2, we deduce, for ν = η0:

|ηk|k−1:i(f)(x) − η
η0

k|k−1:0(f)| ≤ ‖f‖∞‖ηδx,k−i[Yi:k−1] − ηη0,k(Y0:k−1)‖TV

≤ ‖f‖∞‖Φyk−1
◦ · · · ◦ Φyi

(δx) − Φyk−1
◦ · · · ◦ Φyi

(ηη0,i[Y0:i−1])‖TV

≤ ‖f‖∞ρk−i.

Using (12), we get the result. 2

We stress the fact that Proposition 3 only relies on the exponential stability
which may hold even if (A2) is not satisfied (see Douc et al. (2009)).

Proposition 4. Under Assumption (A2) and for f measurable and bounded,
it holds that

∆k|k−1:0(f) ≤ ‖f‖2
∞

ǫ2
+

ǫ2
−

k
∑

i=0

ηi|i−1:0

(

(

gi

ηi|i−1:0gi

)2
)

ρ2(k−i). (15)
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Proof. We remark that for any probability measure ν

ǫ−ν(gi)µ(gi+1Q . . . gk−1) ≤ νgiQgi+1Q . . . gk−1 ≤ ǫ+ν(gi)µ(gi+1Q . . . gk−1).

By (A2), since Q is Feller and the gl’s are positive continuous, µ(gi+1Q . . . gk−1)
is positive. Applying the left inequality with ν = ηi|i−1:0 and the right in-
equality with ν = δx, it comes

Li,k−11(x)

ηi|i−1:0Li,k−11
≤ ǫ+

ǫ−

gi(x)µ(gi+1Q . . . gk−1)

ηi|i−1:0(gi)µ(gi+1Q . . . gk−1)
.

Thus,

∆k|k−1:0(f) ≤ ‖f‖2
∞

ǫ2
+

ǫ2
−

k
∑

i=0

ηi|i−1:0

(

(

gi

ηi|i−1:0gi

)2
)

ρ2(k−i).

2

We state the main result under an additional assumption that will be dis-
cussed in Section 4 where we show that, under (A1), the additional assump-
tion (B3) is especially easy to check.

Theorem 1. Assume that

(B3) for some δ > 0

sup
k≥0

E
∣

∣log
(

ηk|k−1:0 (gk)
)
∣

∣

1+δ
< ∞, (16)

where E denotes the expectation with respect to the distribution of
(Yk)k≥0.

Then, for all bounded function f , the sequences of variances (∆k|k−1:0(f))
and (Γk|k:0(f)) are tight.

Proof. Using that gi ≤ 1

ηi|i−1:0

(

(

gi

ηi|i−1:0gi

)2
)

≤ 1

ηi|i−1:0gi
.

Setting Bi = − log(ηi|i−1:0gi), Lemma 1 (see the Appendix) implies that the

sequence
∑k

i=0 eBiρ2(k−i) is tight with respect to k. With Proposition 4, we
deduce that (∆k|k−1:0(f))k≥0 is tight.

Using (10) and gk ≤ 1, we obtain:

Γk|k:0(f) ≤ 1

(ηk|k−1:0gk)2
∆k|k−1:0

(

f − πk|k:0f
)

.

Since ‖f−πk|k:0f‖∞ ≤ 2‖f‖∞, the first part implies that (∆k|k−1:0

(

f − πk|k:0f
)

)
is tight. By (B3), (ηk|k−1:0(gk)) is also tight. The result follows. 2
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4 Discussion and examples

4.1 Checking of (B3)

Let us consider a hidden chain with state space X = [a, b] a compact interval
of R satisfying (A0)-(A2) (for instance a discrete sampling of a diffusion
on [a, b] with reflecting boundaries). Under (B2), r(y) = infx∈X f(y|x) is
well defined and positive. Thus, we have

r(Yk) ≤ ηk|k−1:0(gk) ≤ 1.

Therefore, the condition supk≥0 E |log (r(Yk))|1+δ < ∞ implies (B3). In
particular, when (Yk) is stationary i.e. when the initial distribution of
the chain is η0 = π the stationary distribution, the condition is simply
E |log (r(Y0))|1+δ < ∞. Let us compute r(y) in some typical examples.

Example 1. Assume that Yk = Xk + εk with εk ∼i.i.d. N (0, 1) and (Xk)
independent of (εk). The observation kernel is F (x, dy) = N (x, 1). Choosing
the dominating measure κ(dy) = 1√

2π
dy,

f(y|x) = exp

(

−(y − x)2

2

)

≥ r(y)

where

| log(r(y))| ≤ 1

2

(

(y − a)2 + (y − b)2
)

.

Example 2. Assume that Yk =
√

Xkεk with εk ∼i.i.d. N (0, 1), (Xk) inde-
pendent of (εk) and 0 < a < b. The observation kernel is F (x, dy) = N (0, x).
Note that

1√
2πb

exp

(

−y2

2a

)

≤ 1√
2πx

exp

(

− y2

2x

)

≤ 1√
2πa

.

Taking κ(dy) = 1√
2πa

dy, we get that

| log(r(y))| ≤ C +
y2

2a
.

Thus, assumption (B3) is a simple moment condition on the observations
which is evidently satisfied on these examples.

4.2 The case of a diffusion on a compact manifold

Consider the stochastic differential equation

dZt = b(Zt)dt + σ(Zt)dWt

11



with a one-dimensional observation process

Yti = g(Zti) + εi

where W is a standard Brownian motion, (εi) is an i.i.d. sequence of N (0, 1)
random variables, and b, σ are Lipschitz and g is smooth enough.

Assume that the diffusion process Z valued in a compact manifold M of
dimension m embedded in R

d. Assume that b and σ lead to a strictly elliptic
generator on M , with heat kernel Gt(x, y). We refer to Atar and Zeitouni
(1997) and Davies (1989) for the following inequality

c0e
−c1/t ≤ Gt(x, y) ≤ c2t

−m/2.

where c0, c1 and c2 are numerical constants. Assume that ti = iδ, δ >

0, i ∈ N, hence the observations are equally spaced in time. Then we
obtain the inequality for (A2) with µ a probability distribution with positive
density with respect to Lebesgue measure on M , because the transition
density of the hidden Markov chain is bounded from below by a positive
value. Due to the underlying diffusion process, other assumptions on the
chain are verified.

4.3 A toy-example

Consider two continuous densities u and v on (0, 1), a distribution π on (0, 1)
with a continuous density with respect to Lebesgue measure and a real α of
(0, 1). Define the Markov chain (Xk) by

X0 ∼ π, Xk+1 = 1Xk<αUk+1 + 1Xk≥αVk+1 (17)

where (Uk) and (Vk) are two independent sequences of i.i.d. random vari-
ables, independent of X0, with respective distributions u(x)dx and v(x)dx.
Set p(x, x′) = 1x<αu(x′)+1x≥αv(x′) the transition kernel density. The tran-
sition kernel admits an invariant distribution π(x)dx with π(x) = Au(x) +
(1 − A)v(x) and

A =

∫ α
0 v(x)dx

∫ 1
α u(x)dx +

∫ α
0 v(x)dx

.

For example, with

u(x) =

{

6x if x ∈ [0, 1
3 ]

−3x + 3 if x ∈]13 , 1]
and v(x) =

{

3x if x ∈ [0, 2
3 ]

−6x + 6 if x ∈]23 , 1]

the transition kernel Q of the chain (Xk) satisfies (A2) (see Figure 1) with
µ(dx) = 4(x ∧ 1 − x)dx and ǫ− = 1

4 , ǫ+ = 3
2 :

∀x ∈ X ,∀B ∈ B(X ) ǫ−µ(B) ≤ Q(x,B) ≤ ǫ+µ(B).

12



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure 1: Densities involved in the toy-example. Functions u (solid), v (big-
dash dot) and dµ

dx (dash dot).

In Figure 1, the graph of u is plotted in solid line, the graph of v is plotted
in bigdash dotted line, and the density of µ is plotted in dash dotted line.
For this example, the transition density, p(x, x′) is not bounded from below
by a positive constant. This shows that (A2) is strictly weaker than the
assumption of Theorem 5 in Chopin (2004). Although Assumption (A0) is
not verified on this example, the proof of the tightness still holds. Indeed, all
the denominators involved in the computations of the upper bounds are well-
defined and positive. Assumption (A1) is clearly verified and the stationary
distribution can be explicitely computed, and the bounds in (A2) too.

5 The Gaussian case

In the context of the one-dimensional Kalman filter model, Assumptions
(A0)-(A1) (B1)-(B2) hold but not (A2). On the other hand, we are able
to study the expression (12) of ∆k|k−1:0(f) by explicit computations. In
Del Moral and Jacod (2001b), (13) is proved to be tight by direct compu-
tations too. We do the analogous calculus for (12) which is simpler. Recall
the model: the hidden Markov chain is a Gaussian AR(1) process

X0 ∼ N (0, σ2
s)

Xk+1 = aXk + βUk+1

13



where (Uk) is a sequence of N (0, 1) independent random variables, indepen-
dent of X0. The observations are given by

Yk = bXk + β′Vk

where (Vk) is a sequence of N (0, 1) independent random variables, indepen-

dent of (Xk). We assume that |a| < 1 and σ2
s = β2

1−a2 . Hence, the process
(Xk, Yk) is stationary.

5.1 Preliminary computations

Denote by ηm,σ2 the Gaussian distribution N (m,σ2) and by φm,σ2 its den-
sity. Due to the identity

1

σ2
(x − m)2 +

1

v2
(x − u)2 =

(

1

σ2
+

1

v2

)

(

x −
m
σ2 + u

v2

1
σ2 + 1

v2

)2

−
(

m
σ2 + u

v2

)2

1
σ2 + 1

v2

+

(

m2

σ2
+

u2

v2

)

,

we get

ηm,σ2(φu,v2) =
1

√

2π (σ2 + v2)
exp

(

− (m − u)2

2(v2 + σ2)

)

. (18)

The prediction operator Lk is given by Lk(x, .) = 1
bφYk

b
, β′2

b2

(x)N (ax, β2).

To compute (12), following Del Moral and Jacod (2001b) we search the
compound operator Li,j = Li . . . Lj in the following form:

Li,j(x, .) = ui,jφvi,j ,wi,j
(x)N (θi,jx + γi,j, δi,j).

After some technical computations, the parameters are recursively given by:

ui,i =
1

b
, vi,i =

Yi

b
, wi,i =

β′2

b2
, θi,i = a, γi,i = 0, δi,i = β2.

For i < j

θi,j =
awi+1,jθi+1,j

β2+wi+1,j
, γi,j = γi+1,j + θi+1,j

(

β2vi+1,j

β2+wi+1,j

)

,

δi,j = δi+1,j + θ2
i+1,j

(

β2wi+1,j

β2+wi+1,j

)

, vi,j =
Yi
b

(β2+wi+1,j)+aβ′2

b2
vi+1,j

(β2+wi+1,j)+
β′2

b2
a2

,

wi,j = β′2

b2
β2+wi+1,j

(β2+wi+1,j)+
β′2

b2
a2

,

ui,j =
ui+1,j

√

2π
(

(β2 + wi+1,j) + β′2

b2
a2
)

exp

(

−1

2

(vi+1,j − aYi

b )2

(β2 + wi+1,j) + β′2

b2
a2

)

.

14



It appears that the recursion for wi,j is driven by an autonomous algorithm,
which has a unique fixed point w defined as the solution of

w =
β′2

b2

β2 + w

(β2 + w) + β′2

b2
a2

.

The downward recursions for all parameters can be solved by elementary
but extremely cumbersome computations. Since we just want to illustrate
the way tightness is obtained for (12), we do not proceed to the exact com-
putations. Instead, we introduce a stabilized operator

Lk(x, .) =
1

b
φYk

b
,w

(x)N (ax, β2)

and compute the compound operator Li,j = Li . . . Lj . We denote by ∆k|k−1:0(f)
the stabilized asymptotic variance, i.e. (12) computed with Lk(., .) instead
of the exact Lk.

5.2 Solving recursions for the stabilized operators

Define
Li,j(x, .) = ui,jφvi,j ,w(x)N (θi,jx + γi,j, δi,j) (19)

and set

α =
w

β2 + w
, τ =

β2 + w

β2 + w + β′2

b2
a2

. (20)

The recursions are as follows:

θi,j = aαθi+1,j, γi,j = γi+1,j + (1 − α)θi+1,jvi+1,j ,

δi,j = δi+1,j + β2αθ2
i+1,j , vi,j = τ

Yi

b
+ aαvi+1,j)

where the initial values are as previously, except that wi,i = w. Now the
recursions are easily solved. We get:

θi,j = a(aα)j−i, δi,j = β2(1 + a

j−i−1
∑

l=0

(aα)2l+1), (21)

γi,j = (1−α)a

j−i−1
∑

l=0

(aα)lvj−l,j, vi,j =
τ

b

(

j−i
∑

l=1

(aα)j−i−lYj−l

)

+(aα)j−i Yj

b
.

We finally obtain closed formulae for γi,j and ui,j . By (12) we must compute

fi,k−1(x) =
Li,k−11(x)

ηi|i−1:0Li,k−11
=

u0,i−1φv0,i−1,w(x)

u0,i−1ηi|i−1:0(φvi,k ,w)

15



Hence the term u0,i−1 is compensated. Then, we obtain ηi|i−1:0 = N (m0,i−1, s
2
0,i−1)

with

m0,i−1 = γ0,i−1 + θ0,i−1
σ2

sv0,i−1

σ2
s + v0,i−1

and s2
0,i−1 = δ0,i−1 + θ2

0,i−1

σ2
sw

σ2
s + w

.

Finally

f2
i,k−1(x) =

(

1 +
s2
0,i−1

w

)

exp

(

−(x − vi,k−1)
2

w

)

exp

(

(m0,i−1 − vi,k−1)
2

s2
0,i−1 + w

)

.

(22)
Now we study

(

ηk|k−1:if(x) − ηk|k−1:0f
)2

.

The distributions ηδx

k|k−1:i and ηk|k−1:0 are Gaussian with variances respec-

tively given by δi,k−1 and s2
0,k−1. By (21), these variances belong to a compact

interval [k1, k2] ⊂ (0,+∞). By Lemma 2 of the Appendix, we have

|ηk|k−1:if(x) − ηk|k−1:0f | ≤ KZi,k (23)

with

Zi,k = |θi,k−1x−θ0,k−1
σ2

sv0,k−1

σ2
s + w

+γi,k−1−γ0,k−1|+|δi,k−1−δ0,k−1−
σ2

swθ2
0,k−1

σ2
s + w

|,
(24)

and K is a constant depending on ‖f‖∞ and k1, k2.
Notice that:

γi,k−1 − γ0,k−1 = (1 − α)a

(

k−i−1
∑

l=0

(aα)l vk−1−l,k−1 −
k−1
∑

l=0

(aα)l vk−1−l,k−1

)

= (1 − α)(aα)k−1−i
k−1
∑

l=k−1−i

(aα)l−(k−1−i)vk−1−l,k−1

and

δi,k−1 − δ0,k−1 = β2a

(

k−i−1
∑

l=0

(aα)2l+1 −
k−1
∑

l=0

(aα)2l+1

)

= β2a

k−1
∑

l=k−i

(aα)2l+1 ≍ (aα)2(k−i)

In addition, the quantity

(

1 +
s2
0,i−1

w

)

is uniformly bounded. We have

∆k|k−1:0(f) =

k
∑

i=0

∆i,k

16



with
∆i,k = ηi|i−1,0(f

2
i,k−1(.)(ηk|k−1,if(.) − ηk|k−1,0f)2).

Now we use (18) and (22)-(24) and the above computations to get

∆k|k−1:0(f) ≤ M

k
∑

i=0

αieBi,kAi,k

where M is a constant depending on ‖f‖∞ and Ai,k, Bi,k are random vari-
ables depending on the observations Y0:k through vi,j and γi,j. Due to the
stationarity, one can see that

sup
i≤j

E|vi,j|2 < ∞ and sup
i≤j

E|γi,j|2 < ∞

where the expectation is taken with respect to the Yk random variables.
This allows to prove supi≤k E(A2

i,k +B2
i,k) < ∞. We conclude the proof with

Lemma 1 (see appendix). Analogously, we prove the tightness of Γk|k:0(f).

6 Numerical simulations

6.1 Simulations based on the toy-example

We consider the example of 4.3. Consider the observations Yk = Xk + εk

where (εk)k is a sequence of i.i.d. N (0, 0.22) random variables. In figure
2, we have plotted in plain line, with square marks, a trajectory of the
hidden Markov chain, in longdashed line, with diamond marks, the noisy
observations. We have plotted in dashed line, with plus marks, the result of
the bootstrap particle filter associated to these observations, with N = 500
particles and f(x) = x. We observe that the result of the particle filter is
close to the hidden chain, uniformly in time.

6.2 Simulations based on a Gaussian AR(1) model

Consider the observations given by

Yi = Xi + εi.

where (εi) is a sequence of i.i.d. N (0, 0.52) random variables and Xi =
aXi−1 + βUi, a = 0.5, β = 0.5 . Figure 3 presents in plain line with
square marks a trajectory of the hidden chain, in longdashed line, with
diamond marks, the observations. We have plotted in dashed line, with plus
marks, the result of the particle filter with N = 500 particles and f(x) = x.
We also observe that the result of the particle filter is close to the hidden
chain, uniformly in time.

17



0 5 10 15 20 25 30 35 40 45 50
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2: Toy-example (α = 0.4). Hidden Markov chain (plain, square
marks). Observations (longdashed line, diamond marks). Particle filter
(dashed line, plus marks)
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Figure 3: Kalman model. Hidden Markov chain (plain, square marks). Ob-
servations (longdashed line, diamond marks). Particle filter (dashed line,
plus marks)
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8 Appendix

8.1 Bootstrap particle filter

The aim is to build a sequence of measures (ηN
k|k−1:0)k, where N is the

number of interacting particles, so that ηN
k|k−1:0f is a good approximation

of ηk|k−1:0f for f bounded. We assume that the distribution of X0 is known
and we set it as η0 = η0|−1:0. We assume that we are able to simulate random
variables under η0 and under Q(x, dx′).

Step 0: Simulate (Xj
0)1≤j≤N i.i.d. with distribution η0 and compute ηN

0|−1:0 =
1
N

∑N
j=1 δ

Xj
0
.

Step 1-a: Simulate X ′j
0 i.i.d. with distribution πN

0|0:0 =
∑N

j=1
g0(X

j
0)

PN
j=1 g0(X

j
0)

δ
Xj

0
.

Step 1-b: Simulate N random variables (Xj
1)j independantly with X

j
1 ∼ Q(X ′j

0, dx).

Set ηN
1|0:0 = 1

N

∑N
i=1 δ

Xj
1
.
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Step k-a: (updating) Suppose that ηN
k|k−1:0 is known. Simulate (Xj

k)1≤j≤N i.i.d.

with distribution ηN
k|k−1:0 and simulate X ′j

k i.i.d.with distribution πN
k|k:0 =

∑N
j=1

gk(Xj
k
)

PN
j=1 gk(Xj

k
)
δ
Xj

k

.

Step k-b: (prediction) Simulate XN
k+1 independantly with XN

k+1 ∼ Q(X ′j
k, dx).

Set ηN
k+1|k:0 = 1

N

∑N
j=1 δ

Xj
k+1

.

8.2 Tightness lemma

The following lemma is proved (with δ = 1) in Del Moral and Jacod (2001b).

Lemma 1. (Tightness lemma) Let α ∈ (0, 1) and consider two sequences
(Ai,k)1≤i≤k and (Bi,k)1≤i≤k of non negative random variables such that

sup
i,k

E(Ai,k) + sup
i,k

E(B1+δ
i,k ) = K < ∞ (25)

then the sequence

Υk =

k
∑

i=1

αk−iAi,ke
Bi,k (26)

is tight.

Proof. Choose γ > 1 such that αγ < 1. Set Ωj,k = ∩k−j
i=1 {|Bi,k| ≤ (k −

i) log γ} for 1 ≤ j ≤ k. Set also ǫj =
∑

i≥j
1

i1+δ . Then

P(Ωc
j,k) ≤

K

(log γ)1+δ

k−j
∑

i=1

1

(k − i)1+δ
≤ Kǫj.

On Ωj,k we have

k
∑

i=1

αiAi,ke
Bi,k =

k−j
∑

i=1

αk−iAi,ke
Bi,k +

k
∑

i=k−j+1

αk−iAi,ke
Bi,k

≤
k−j
∑

i=1

(γα)k−iAi,k +

k
∑

i=k−j+1

αk−iAi,ke
Bi,k

Finally, we get for 1 ≤ j ≤ k

P(Υk > M) ≤ Kǫj +
K

M
+

k
∑

i=k−j+1

P(Ai,ke
Bi,k >

M

2j
)

With our assumption, the sequence (Ai,ke
Bi,k)1≤i≤k is tight. For ǫ > 0 we

first choose j then M , hence the result.
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8.3 Inequality between Gaussian distributions

Lemma 2. Let f a measurable function and C > 0 such that ∀x ∈ R, |f(x)| ≤
C. Then for m,m′ ∈ R and σ, σ′ ∈ [ǫ, 1

ǫ ] there is a constant K > 0 where K

only depends on C and ε, such that

∣

∣N (m,σ2)(f) −N (m′, σ′2)(f)
∣

∣ ≤ K
(

|m − m′| + |σ2 − σ′2|
)

.

We start with the case σ = σ′:

|
∫

R

f(x)(φm,σ2(x) − φm′,σ2)dx|

≤ C

∫

R

∣

∣

∣

∣

1√
2πσ

(exp(−1

2
(
x − m

σ
)2) − exp(−1

2
(
x − m′

σ
)2))

∣

∣

∣

∣

dx.

With the changing of variables x = σz

∫

R

∣

∣

∣

∣

1√
2πσ

(exp(−1

2
(
x − m

σ
)2) − exp(−1

2
(
x − m′

σ
)2))

∣

∣

∣

∣

dx

=

∫ m
σ

+ t
2

−∞

1√
2π

(

exp(−1

2
(x − m

σ
)2) − exp(−1

2
(x − m

σ
− t)2)

)

dx

+

∫ +∞

m
σ

+ t
2

1√
2π

(

exp(−1

2
(x − m

σ
− t)2) − exp(−1

2
(x − m

σ
)2)

)

dx

where t = m′

σ − m
σ and we assumed m′ > m. With m and σ fixed, we

consider the former quantity as a function of t: let g(t) = g1(t) + g2(t),
where g1(t) = G1(t,

m
σ + t

2), with G1 is defined by

G1(t, y) =

∫ y

−∞

1√
2π

(

exp(−1

2
(x − m

σ
)2) − exp(−1

2
(x − m

σ
− t)2)

)

dx.

and with similar notations g2(t) = G2(t,
m
σ + t

2 ). Then:

∂G1

∂y
(t,

m

σ
+

t

2
) =

∂G2

∂y
(t,

m

σ
+

t

2
) = 0

and

g′1(t) =
∂G1

∂t
(t,

m

σ
+

t

2
) +

1

2

∂G1

∂y
(t,

m

σ
+

t

2
).

Differentiating the two members, it comes

|g′(t)| ≤
∫

R

1√
2π

|x − m

σ
− t| exp(−1

2
(x − m

σ
− t)2)dx

≤
∫

R

|x| 1√
2π

exp(−1

2
x2)dx
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where the last inequality holds for t ∈ [0, m′−m
σ ]. By applying the mean value

theorem to g on [0, m′−m
σ ] we have

|g(
m′ − m

σ
) − g(0)| ≤

(
∫

R

|x| 1√
2π

exp(−1

2
x2)dx

)

|m
′ − m

σ
|

and then
|N (m,σ2)(f) −N (m′, σ2)(f)| ≤ Kǫ|m − m′|.

Analogous computations work when m = m′. With s = 1
σ et s′ = 1

σ′ , we
have:

∣

∣

∣

∣

∫

R

f(x)
1√
2π

(

s exp(−1

2
s2(x − m)2) − s′ exp(−1

2
s′2(x − m)2)

)

dx

∣

∣

∣

∣

≤ C

∫

R

1√
2π

∣

∣

∣

∣

(

s exp(−1

2
s2(x − m)2) − s′ exp(−1

2
s′2(x − m)2)

)
∣

∣

∣

∣

dx

≤ C

∫

R

1√
2π

∣

∣

∣

∣

(

s exp(−1

2
s2x2) − st exp(−1

2
s2t2x2)

)
∣

∣

∣

∣

dx

with t = s′

s , assuming s′ > s. The sign changes occur at:

x = ±
√

2 log t

s2(t2 − 1)
.

Thus, we have

∫

R

1√
2π

∣

∣

∣

∣

(

s exp(−1

2
s2x2) − st exp(−1

2
s2t2x2)

)∣

∣

∣

∣

dx

≤
∫ −

q

2 log t

s2(t2−1)

−∞

1√
2π

(

s exp(−1

2
s2x2) − st exp(−1

2
s2t2x2)

)

dx

+

∫ +
q

2 log t

s2(t2−1)

−
q

2 log t

s2(t2−1)

1√
2π

(

st exp(−1

2
s2t2x2) − s exp(−1

2
s2x2)−

)

dx

+

∫ +∞

+
q

2 log t

s2(t2−1)

1√
2π

(

s exp(−1

2
s2x2) − st exp(−1

2
s2t2x2)

)

dx.

Proceeding as above, we derive:

∣

∣N (m,σ2)(f) −N (m,σ′2)(f)
∣

∣ ≤ Kǫ|σ2 − σ′2|

remarking that σ, σ2 ∈ [ǫ, 1
ǫ ] and | 1σ − 1

σ′ | ≤ Cǫ|σ2 − σ′2|.
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