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Abstract

The influence of short-range electrostatic forces on the measured local Contact Potential Differ-

ence (CPD) by means of Amplitude Modulation- and Frequency Modulation-Kelvin Probe Force

Microscopy (AM- and FM-KPFM) is discussed on the base of numeric and analytic descriptions of

both methods. The goal of this work is to help interpreting recent experimental results reporting

atomically-resolved CPD images, in particular on bulk insulating samples. The discussion is carried

out on the base of spectroscopic curves. The expression of the bias-dependent electrostatic force

derives from a previous work and is estimated between a tip with simple geometry and the (001)

facet of a perfect alkali halide single crystal. The force, with a short-range character, scales as a

second-order polynomial function of the bias voltage. It is stated that the linear term is responsible

for the occurrence of the atomic-scale CPD contrast, while the quadratic one, involving the sample

polarisation, accounts for the detected signal by the KPFM methods. Nevertheless, analytic and

numeric approaches stress the influence of the linear term on the measured CPD which intrinsically

hinders the possibility to perform quantitative CPD measurements, but also makes the measured

“pseudo-CPD” strongly deviating from the surface potential. Hence, in the short-range regime,

AM- or FM-KPFM measurements neither reflect the CPD nor the local surface potential, but

rather an effective value which is convoluted by the geometric parameters of the tip, the so-called

local CPD. It is also stated that the local CPD measured by means of AM- or FM-KPFM differs

when sub-nanometer vibration amplitudes of the cantilever are used. Otherwise, AM- and FM-

KPFM measurements should be almost similar. At last, the influence of long-range, capacitive,

electrostatic forces is discussed in conjunction with the short-range ones. This allows us to draw

conclusions regarding the distance dependence of the local CPD which then exhibits a resonant

behavior as a function of the tip-surface separation. This phenomenon is expected to play a role

in the KPFM imaging process.
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I. INTRODUCTION

Kelvin Probe Force Microscopy (KPFM) is a scanning probe method1 which is based

on the detection and the dynamic compensation of the electrostatic forces occurring be-

tween a nano-tip and a sample when they are electrically connected. These forces stem

from intrinsic work function differences between the tip and the sample surface2,3, capaci-

tive contributions, as well as from trapped charges at the tip apex and/or the surface upon

preparation procedures4. The KPFM method actually provides access to the contact poten-

tial difference (CPD)5, i.e. the work function of the sample referenced to the work function

of the tip: qVcpd = ∆φ = φtip − φsample, q being the elementary electrical charge.

The technique is based on the regular noncontact-Atomic Force Microscopy (nc-AFM)

operating mode, which is strongly sensitive to electrostatic forces. Two KPFM-based tech-

niques provide facilities to map the spatial variations of the CPD on the nanometer scale,

namely Amplitude Modulation-KPFM (AM-KPFM, refs.[6,7]) or Frequency Modulation-

KPFM (FM-KPFM, ref.[8]). The connection between KPFM and nc-AFM has brought a

complimentary information to the usual topography and more controversial dissipation (so-

called damping) channels, and has already been used to map the chemical identity of surface

atoms9. KPFM early proved its ability to map the spatial variations of the CPD on the

nanometer scale with a resolution of few mV6,10,11. Different groups reported atomically-

resolved CPD images, some including even the influence of atomic adsorbates8,9,12,13,14,15.

More recently, the CPD atomic-scale contrast was reported on metallic and ionic thin films

on InSb16, on oxides17,18 and on ionic bulk insulating surfaces19. The former results suggest

that, very close to the surface, the CPD rather has a local character20. Among the former

references however, despite the consistency between the lateral periodicity of the local CPD

images and the surface lattice constant, the values rarely fit to the CPD values reported

by other experimental methods or with the theoretical predictions8,12,14. For instance, on

the complex Si(111)5
√

3× 5
√

3-Sb surface, Okamoto et al. concluded that the CPD images

mainly reflect the electrostatic force distribution on the surface rather than the work func-

tions distribution9,15. It has also been mentioned that the measured CPD was dependent on

the tip-surface distance15,16,21. Thus, a cross-talk between the topography and CPD images

is very likely, as soon as the topography feedback circuit is engaged.

These results make the interpretation of the CPD atomic-scale contrast difficult to explain
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and the measurements ultimately questionable. Besides, the CPD being intrinsically a

macroscopic property of the tip-surface system, there is currently an intense debate dealing

with the apparent contradiction between CPD and local CPD measurements, which actually

raises the questions of the origin and the reliability of atomic-scale resolution in KPFM16,18,19.

The difficulty for interpreting the experimental results stems from the lack of theoreti-

cal description for the short-range electrostatic forces which are intricately involved in the

atomic-scale contrast and the way these forces are processed by the KPFM control electron-

ics. In order to address these questions, we first have focussed on the CPD atomic-scale

contrast reported experimentally on the KBr(001) insulating surface19. In this preliminary

work, an analytic model for the short-range electrostatic interaction between a biased tip

and the KBr surface was developed.

In the present work, the influence of such a short-range electrostatic force on the measured

local CPD is discussed by means of a numerical implementation of the AM-KPFM and FM-

KPFM setups within our nc-AFM simulator22. The numerical results are completed with

an analytical approach providing approximated expressions of the modulated components

used by the AM- and FM-KPFM methods as a function of the DC bias voltage. The

following section reminds the AM- and FM-KPFM setups, their operational mode and their

experimental implementation, which were accurately duplicated on the numerical level. In

section III, the analytical model for the short-range electrostatic force is briefly introduced

and we stress the influence of the dynamic polarisation of the ionic crystal, which is for

a large part responsible for the occurrence of the atomic contrast. In sections IVA and

IVB, the analytic and numeric approaches are discussed in respect with the CPD atomic-

scale contrast. In section V, we extend the framework of the atomic-scale CPD contrast to

long-range electrostatic forces. This allows us to draw conclusions regarding the distance

dependence of the local CPD, which is not possible when considering uniquely short-range

electrostatic forces.

II. AM- AND FM-KPFM EXPERIMENTAL METHODS

KPFM relies on the dynamic compensation of the electrostatic forces arising between the

tip and the sample, hereafter referred to as the electrodes. For that purpose, an amplitude

modulation technique is used. The electrostatic force is triggered when modulating the bias
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voltage which is applied between the electrodes:

Vb(t) = VDC + Vmod cos(2πfmodt) (1)

When dealing with metallic electrodes and for large tip-surface distances compared to atomic

dimensions, the electrostatic part of the total force can be written as:

Fes(t) = −1

2

∂C(z)

∂z
(Vb(t) ± Vcpd)

2, (2)

C(z) being the expression of the tip-surface capacitor, influenced by the geometry of both

electrodes23,24. The ± sign depends upon the bias voltage is applied to the tip or to the sam-

ple. When applied to the tip (sample grounded), the measured DC potential is the opposite

of the CPD, hence one should write Vb(t) + Vcpd, otherwise the opposite (tip grounded). In

the following, we will assume that the tip is grounded and will write Vb(t) − Vcpd.

The above expression of the force gives three temporal components, the first one being

static, the second and third ones being amplitude-modulated at fmod and 2fmod, respectively.

The relevant component for the KPFM technique is the one modulated at fmod:

F fmod

es (t) =
∂C(z)

∂z
(VDC − Vcpd)Vmod cos(2πfmodt) (3)

This component is fed into a dual phase lock-in amplifier (LIA) which detects the amplitude

of the signal, AK , from the measurement of the in-phase and out-of-phase components X

and Y , respectively. The signal X is then injected into a proportional/integral controller,

the output of which supplies the proper DC bias voltage to minimize, or ideally cancel X

and hence AK , i.e. also F fmod

es (cf. equ.3). It is important to notice that X is supposed to

be used instead of AK in the Kelvin controller, because it can become negative and thereby

handle negative error signals, while AK not. Thus, according to equ.3, the output of the

controller is the DC bias which compensates the CPD: V
(c)
DC = +Vcpd.

The experimental implementation can be done in two ways, both of them relying on the

detection and subsequent cancellation of AK , but differing regarding the signal that carries

the modulation. In FM-KPFM, the modulation is performed at a few kHz and detected in

the frequency shift signal (∆f) provided by the phase-locked-loop25 (PLL). In AM-KPFM,

the modulation frequency matches the second flexural eigenmode of the cantilever7,26, with

typical frequency27: f1 ≃ 6.24f0. The experimental setups have been depicted in fig.1. They
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are based on the well-established nc-AFM operating mode which relies on the PLL-controlled

excitation of the cantilever22,28.

Equs.2 and 3 show that the KPFM methods intricately relies on electrostatic forces

scaling quadratically with the bias voltage, otherwise no CPD contrast would be detected

by the experimental method. Besides, atomically-resolved CPD images testify that these

forces have a short-range character. However, equ.2 is improper to describe this contrast,

first because the distance dependence, i.e. the expression of the tip-surface capacitor,

has usually not a short-range character and second because this expression derives from

a classical electrostatic approach between continuous-like metallic bodies and hence does

not take into account atomic fluctuations of the surface potential of the insulating sam-

ple. Another fundamental aspect of the problem stems from the influence of the technique

onto the measured CPD. In our previous work19 as well as in the work by Krok et al.16,

there are strong evidences that short-range electrostatic forces scale not only quadrati-

cally, but also linearly with the applied bias voltage. Assuming a linear term in equ.2:

Fes = C2(Vb(t) − Vcpd)
2 + C1(Vb(t) − Vcpd), then the modulated component of the force is

modified consistently: F fmod

es = [C1 + 2C2(VDC − Vcpd)]Vmod cos(2πfmodt). The compensated

CPD becomes: V
(c)
DC = Vcpd − C1/(2C2), which fakes its physical content. The physics that

it carries now differs from the actual CPD and depends on the coefficients C1 and C2. Ob-

viously, this remains true when other power laws of the bias are to be considered in the

expression of the electrostatic force.

III. SHORT-RANGE ELECTROSTATIC FORCE MODEL

In ref.[19], Bocquet et al. proposed an analytical approach to the short-range electrostatic

force between a nanoscopic tip and the (001) surface of a perfect alkali halide single crystal

of KBr, i.e. not including residual net charges. The sample is several millimeters high, which

places the metallic counter-electrode far from the tip in comparison with other setups. The

two former assumptions insure that no Coulombic nor capacitive long-range electrostatic

forces act onto the tip in the process that is being discussed. The tip consists of two

embedded half-spheres with different radii. The bigger radius R stands for the mesoscopic

body of the tip (R ≃ 5 nm). The sphere with radius Ra ≪ R, which is half-embedded

within the macroscopic body, rather stands for a microscoscopic nanoasperity supposed to
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FIG. 1: Scheme of the combined nc-AFM / KPFM experimental setup which was duplicated

numerically. AM- or FM-KPFM mode is selected upon the position of the switch. The PLL-

controlled excitation scheme was detailed in ref.[22].

favor the occurrence of the atomic-scale contrast (Ra ≃ 1 Å, cf. fig.2a). With this simple

geometry, the expression of the force can be split into two major contributions:

Fes(Vb, z) = F (1)
mµ + F (2)

µ = C1(Vb(t) − Vcpd)e
−αz + [C0 + C2(Vb(t) − Vcpd)

2]e−2αz , (4)

α is a coefficient which scales with the lattice constant of the crystal, a, according to α =

2
√

2π/a. The coefficients C0, C1 and C2 are written:

C0 = − R2q2

2ǫ0a′4
A(2)e−2αRa and C2 = 2C0

(
2πχd

a′qR

)2

(5)

and:

C1 = −3R2
aqǫ̃d

a′2R
D(1)e−αRa [cos(x̃0) + cos(ỹ0)] (6)

R and Ra are the tip’s radii defined above. ǫ0, ǫ̃d and χd are the vacuum dielectric permit-

tivity, KBr effective dielectric permittivity and KBr dielectric susceptibility, respectively. In

the former reference, we had set: ǫ̃d = 4.38 and χd = 9 10−39 Fm2. A(2) and D(1) are two

numeric coefficients depending on the values of radii R and Ra in a complex manner (cf.

equs.A2 and A6 in ref.[19]). x̃0 = 2πx0/a
′ and ỹ0 = 2πy0/a

′ are the reduced coordinates of
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the position of the tip onto the KBr(001) surface. Setting x0 = y0 = 0 or x0 = y0 = a′/2

locates the tip on top of an anion or of a cation, respectively. Thus, the coefficient C1 carries

the lateral modulation of the force over the crystal surface.

F
(1)
mµ depicts the coupling between the microscopic structure of the tip apex and the

capacitor consisting of the tip, the ionic crystal and the counter-electrode. It originates

from the influence of the KBr Madelung surface potential (MSP) onto the surface charge

density that develops within the microscopic nanoasperity due to the bias voltage Vb. F
(2)
µ ,

depicts the influence of the MSP onto the mesoscopic part of the tip, independently from its

microscopic structure. The exponential distance dependence, which stems from the MSP,

shows that the force has a short-range character. F
(1)
mµ has the lateral periodicity of the

MSP (cf. coefficient C1), whereas F
(2)
µ exhibits no spatial dependence and merely acts as a

static component, which shifts the total force. Therefore the CPD atomic-scale contrast is

mainly carried by the term F
(1)
mµ. The total force is in the range of ten pico-Newtons. Let

us finally note that the quadratic bias voltage dependence of F
(2)
µ occurs if and only if the

ionic polarisation of the sample due to the influence of the tip/counter-electrode capacitor

is explicitly considered. By ionic polarisation, it is meant a net vertical displacement of the

ions from their equilibrium positions within the crystal upon their sign, which changes the

strength of the MSP29. This displacement follows the bias modulation dynamically.

The above elements allow us to draw two major conclusions: (1)- the measurement of

the local CPD by means of KPFM is partly made possible via the ionic polarisation of the

sample (required quadratic bias voltage dependence) and (2)- the occurrence of the atomic-

scale contrast, indeed consistent with the ionic positions, relies on a linear bias voltage

dependence of the short-range electrostatic force. Therefore, according to the discussion of

section II, it is expected that the compensated CPD, either measured by AM- or FM-KPFM,

does not match the actual tip-surface CPD.
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FIG. 2: a- Schemes of the three tips used for the analytic and numeric calculations, properly

scaled. The set of parameters (R,Ra) in Å are: tip1(50, 1); tip2(120, 1.5); tip3(50, 1.1). For the

analytic calculations, the sets of coefficients (A(2),D(1)) are: tip1(-2.5,-15); tip2(-1.1,-25); tip3(-

2.5,-20). b- Scheme of the vibration of the cantilever at the 1st and 2nd eigenmodes, corresponding

to instantaneous positions z0(t) and z1(t), respectively. The instantaneous tip-surface separation

is z(t) = D − z0(t) − z1(t).

IV. ANALYTIC AND NUMERIC APPROACHES

A. AM-KPFM

1. Analytic approach

In ref.[19], a self-consistent approximated expression of the vibration amplitude of the

second flexural eigenmode of the cantilever was proposed. Let z1(t) be the instantaneous

deflection of this mode (cf. fig.2b) and A1 its vibration amplitude. It is ruled by the

nonlinear equation of motion:

z̈1(t) +
ω1

Q1
ż1(t) + ω2

1z1(t) =
Fext

m1
+

Fes(Vb, z)

m1
, (7)

where Q1, ω1 = 2πf1 and m1 are the quality factor, the resonance pulsation and the effective

mass of the mode, respectively. Fext stands for the actuation force of the fundamental flexural

mode of the cantilever (resonance frequency f0). The resonance amplitude of this mode is

A0. Owing to the large difference between f0 and f1, Fext does not influence z1(t). Let

z0(t) be the instantaneous position of the fundamental mode. Thus, the instantaneous tip-

surface separation to be considered for Fes(Vb, z) is: z(t) = D − z0(t) − z1(t), D being the

separation between the surface and the equilibrium position of the cantilever at rest (cf.
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fig.2b). Owing to the exponential distance-dependence of Fes(Vb, z), the second mode is

not actuated harmonically, but rather stepwise-like upon z(t). This makes the structure

of the actuation of the second mode rather complex, but nevertheless enough to permit

the development of the steady state, which merely stems from the large value of Q1 (a few

thousands).

When linearizing equ.7 with respect to z1(t) and assuming it as harmonic, an approximate

expression for A1 can be derived (cf. ref.[19] for details):

A1 = l0

√
(l3 − l2)2 + l21
l21 + l22 − l23

(8)

Except l0, coefficients l1, l2 and l3 are reported in the appendix. l0 is written:

l0 =
C1a0

m1
e−αzminVmod + 2

C2b0

m1
e−2αzmin(VDC − Vcpd)Vmod (9)

zmin = D−A0 stands for the minimum tip-surface separation, i.e. at the lower turning point

of the tip when neglecting A1 with respect to A0, which is practically always correct (see

below). a0 and b0 are the the zero-order Fourier coefficients of the functions exp{−αA0[1 −
cos(2πf0t)]} and exp{−2αA0[1− cos(2πf0t)]} that occur in the expression of the force when

expanding z(t). The nth Fourier coefficients are: an = 2 exp(−αA0)I(n, αA0) and bn =

2 exp(−2αA0)I(n, 2αA0), I being the modified function of Bessel of the first kind19. Hence,

the condition on the bias to nullify A1, i.e. the modulated component at fmod in AM-KPFM,

is simply l0 = 0, which yields:

V
(c)
DC = Vcpd −

C1

2C2

a0

b0

e+αzmin (10)

The above expression shows that the compensated CPD has the lateral periodicity of the

MSP (coefficient C1). However, it also depends on the tip parameters R and Ra. This

result shows that the experimental measurements of the local CPD by AM-KPFM neither

reflects the actual tip-surface CPD, nor the value of the local surface potential, but rather

an effective value that is convoluted by the tip geometry. This originates from the linear

bias dependence in the expression of the force, as stated before. Nevertheless, the lateral

periodicity of the MSP is preserved in the CPD contrast, which makes CPD differential

measurements among atomic sites reliable.
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Equ.10 shows that, above an anion, the compensated CPD becomes more and more neg-

ative as the tip-surface separation is increased30. This rather surprising behavior stems from

the faster distance dependence of F
(2)
µ compared to F

(1)
mµ, as discussed in ref.[19]. Therefore,

the distance dependence of the compensated local CPD depends much on the tip geometry.

Obviously, this behavior cannot stand for any tip-surface separation owing to the exponen-

tial decay of the short-range electrostatic force which triggers the motion of the cantilever’s

2nd eigenmode and hereby, the detection of the local CPD. If the force is too weak, no

CPD can be detected anymore. However, within a narrow range of tip-surface separations,

typically a few angströms, it might be detectable.

Nevertheless, the above discussion is not complete because it is insufficient to consider

the short-range electrostatic force as the main triggering source of the cantilever since it is

known that long-range capacitive forces always occur on the experimental level. In section V,

the distance dependence of the local CPD is discussed in more detail within the framework

of short- and long-range electrostatic interactions.

2. Numeric approach

The numerical implementation of the AM-KPFM setup has been performed within the

code of the nc-AFM simulator. In particular, although the resonance frequency of the second

flexural mode is in the MHz range (f1 = 6.24f0 = 6.24× 150 kHz ≃ 940 kHz), we have kept

the sampling frequency standing for the analog parts of the electronics constant, namely

fs2
= 400 MHz (cf. ref.[22] for details). This is still sufficient to integrate the differential

equation of motion of the mode with an error kept low enough. The implementation sticks to

the experimental setup shown in fig.1. We have used a simple first-order, high-pass filter with

a 200 kHz cutoff frequency. The dual-phase LIA has a 10 kHz bandwidth. The numerical

implementation is similar to the one used in the nc-AFM simulator for monitoring the phase

lag between the excitation and the cantilever’s response. It provides AK = 2
√

X2 + Y 2,

which in the case of the AM-KPFM matches A1, the vibration amplitude of the second

eigenmode. The Kelvin controller has a 2.5 kHz bandwidth. It is a standard proportional

and integral controller, the implementation of which is similar to the distance and amplitude

controllers. In the present work, we merely have focussed at A1 vs. VDC curves, so-called

spectroscopic curves. Therefore, the measurements are performed at a single (x, y) position

11



and the Kelvin controller is not engaged. The determination of the influence of the Kelvin

controller to the measured local CPD will be addressed in a future work.

At each time step, the code integrates the differential equation for the second flexural

mode (equ.7) in parallel to the equation of motion for the fundamental flexural eigenmode,

which has the same form. The PLL-excitation scheme ensures that the latter mode is

continuously actuated at its resonance frequency which shifts as the tip is brought closer to

the surface. According to equ.4, the two equations of motion are nonlinear and coupled via

the instantaneous separation between the tip and the surface z(t) defined before.

In order to focus on the origin of the local CPD, no additional forces like long-range Van

der Waals or electrostatic ones, or short-range chemical ones, have been included in the

simulations. Hence, the cantilever dynamics is merely influenced by the electrostatic short-

range force field. The force field is implemented as a 2D lookup table with the z variations

sampled every 2 pm and bias voltage variations every 10 mV, the boundary values being

adjustable upon needs. The sequence of simulation of an AM-KPFM spectroscopic curve is

the following: the cantilever steady state is calculated at a tip-surface separation for which

the interaction is zero and with VDC = 0 V. The PLL and amplitude controller are then

engaged and their parameters set optimally22. Then, the approach is performed down to an

arbitrary value of zmin. During the approach, the second mode undergoes a frequency shift

owing to the influence of the nonlinear interaction, like the first one. But it is important

to ensure the on-resonance excitation of this eigenmode too. This requires to tune precisely

the modulation frequency of the bias to recover the on-resonance excitation. Finally, the A1

vs. VDC spectroscopic curve is acquired by continuously sweeping the DC part of the bias,

first from 0 down to negative values and then upwards.

3. Results and discussion

Analytic and numeric curves are reported in fig.3. The set of parameters used to perform

the calculations are consistent with the experimental conditions reported in19: fundamental

eigenmode: f0 = 150 kHz, k0 = 30 N/m and Q0 = 30000; second eigenmode: f1 = 936 kHz,

k1 = 1168 N/m, Q1 = 8000. The modulation amplitude of the bias is Vmod = 3 V. The

oscillation amplitude of the fundamental eigenmode is A0 = 4 nm (8 nm peak to peak). The

curves have been computed for the three tips defined in fig.2a at zmin = 3 Å , on top of an
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Tip 1 Tip 3

AM-KPFM Analytic -1.6 -2.95

Numeric -2.6 -6.5

FM-KPFM Analytic -1.3 -2.4

Numeric -2.3 -5.3

TABLE I: Comparison between analytic and numeric values of the local CPD (in volts) for tips 1

and 3 upon the KPFM method. The values have been estimated for zmin = 3 Å above an anion of

the KBr(001) facet. For this separation, the MSP is -440 mV. The CPD of the tip-surface system

has been arbitrarily set to Vcpd = 0 V.

anion of the KBr surface. At similar height, the MSP of the (001) KBr facet is -440 mV. The

choice of that value of zmin stems from the exponential decay of the electrostatic short-range

force. One has to be close enough to the surface to get a force able to trigger the mode. For

that distance, the force yields -52 pN, -35 pN and -46 pN with tips 1, 2 and 3, respectively.

This is also why we have set a relatively large value for the bias modulation, although

this value can be significantly lowered experimentally owing to longer-range electrostatic

forces. For the sake of clarity we have set the CPD of the tip-surface system equal to zero,

Vcpd = 0 V. The DC part of the bias is swept from -5 V to +5 V within 30 s. The values of

the local CPDs are reported in table I.

Analytic and numeric curves give qualitatively similar trends, both pointing out the

strong influence of the tip geometry on the measured local CPD. Although the asperity

radius between tips 1 and 3 merely differ by 10% (Ra = 1 and 1.1 Å, respectively), their

relative local CPDs are shifted by several volts (1.5 V with the analytic approach and about

3 V for the numeric approach). This stems from the term F
(2)
µ which, in the case of tip 3,

is decreased because the mesoscopic part of the tip is 10 pm farther away from the surface

than for tip 1. Therefore the influence of the MSP, which decays exponentially fast, onto

the tip is weaker. The strength of F
(2)
µ being governed by the coefficient C2, the above

argumentation can be interpreted as if C2 was strongly lowered between tip 1 and tip 3

(given a value of zmin). According to equ.10, this must result in a consistent change of the

local CPD. Regarding tip 2, the effect is stronger even as the asperity is bigger than for the

two former tips. Furthermore, the mesoscopic part of the tip being bigger, the tip-surface
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capacitor is larger, which strengthens the influence of the term F
(1)
mµ, i.e. coefficient C1 in

equ.10. The influence of tip’s radii R and Ra on the measured local CPD is discussed in

more detail in section V.

A straightforward consequence is that the measured local CPDs neither match the CPD

of the tip-surface system (0 volt), nor they are comparable to the MSP at similar distance.

The values are systematically much over-estimated (absolute values). This was predicted

by the analytical approach and is indeed confirmed numerically. Thus, it is an effect to be

considered for interpreting the experiments.

The above elements must not hide the quantitative discrepancies between analytic and

numeric curves. First, the analytic approach lacks in providing a value of the local CPD

similar to the numerical one and second, the curvature of the curves at large bias differs

between the two approaches. Regarding the numeric approach, the differential equations

are integrated consistently without approximations. Therefore, we believe that the numeric

local CPDs are somewhat reliable. On the contrary, the analytic approach relies on nu-

merous assumptions, some of which being strong (harmonic behavior of the mode). This

is why it is possible to derive a simple expression for V
(c)
DC wherein all the assumptions are

actually gathered within coefficients a0 and b0, i.e. the zero-order Fourier components of

the short-range electrostatic force. When tuning them by only few percents, the value of

V
(c)
DC is significantly modified. Furthermore, due to the linearization procedure, the analytic

solution for A1 is basically valid for a small force, i.e. in a small region around the CPD

value. Therefore, the curvature of the numerical curves is likely connected to the substan-

tial increase of the electrostatic force which modifies the excitation, and consequently the

dynamics, of the second eigenmode.

B. FM-KPFM

1. Analytic approach

In FM-KPFM, the bias voltage modulates the electrostatic force and thus, the oscillation

of the cantilever is frequency-modulated at f ′

0 + fmod and f ′

0 + 2fmod, as shown in the work

by Zerweck et al.25. f ′

0 is the resonance frequency of the cantilever close to the surface, i.e.

shifted from its natural value f0 due to the influence of other forces like Van der Waals and
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FIG. 3: Analytic and numeric A1 vs. VDC spectroscopic curves computed in AM-KPFM mode at

zmin = 3 Å with the three tips defined in fig.2. The values of the local CPD for tips 1 and 3 are

given in table I.

chemical short-range ones, but also the DC part of the electrostatic force. This means that,

for a given value of zmin, the frequency shift supplied by the PLL is not constant anymore,

but modulated at fmod and 2fmod. It is reminded that in FM-KPFM, fmod is of about

1 kHz and hereby far from any resonance of the cantilever. Therefore, it is also very low

compared to f ′

0 and f0. In order to derive an analytic expression for ∆f , we use the formula

introduced by Giessibl31. When applied to FM-KPFM, this approximated expression of

∆f is very good because, owing to the range of the electrostatic force, the perturbation of

the harmonic motion of the first eigenmode of the cantilever is weak (particularly the one

due to the AC part), but also because the control electronics is designed to maintain the

harmonic motion of the cantilever. We then perform the calculation of ∆f by using this

formalism coupled to the following quasi-static approximation: because fmod ≪ f0, it is

assumed that the AC part of the electrostatic force is constant during one oscillation cycle

of the cantilever. In ref.[16], Krok et al. have used a similar approach with a different

expression for the electrostatic force, however scaling similarly with Vb. Hence:
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∆f = f0

2k0A0

e−αzmin {[
C1(VDC − Vcpd)a1 + b1e

−αzmin [C0 + C2(
V 2

mod

2
+ (VDC − Vcpd)

2)]
]
+

[C1a1 + 2(VDC − Vcpd)C2b1e
−αzmin)]Vmod cos(2πfmodt)+

[C2b1e
−αzmin ]

V 2

mod

2
cos(4πfmodt)

}
(11)

a1 and b1 are now the f0-Fourier components (first components) of the exponential functions

discussed above. The first term in equ.11 is static and gives, for Vmod = 0, the parabolic

spectroscopic response at each point over the surface. The other terms describe the dynamic

∆f variations occurring when scanning the surface. Considering the case of spectroscopic

curves, the maximum of the ∆f vs. VDC curve is reached when:

V
(c)
DC =

∂∆f

∂VDC

∣∣∣∣
Vmod=0

= 0 → V
(c)
DC = Vcpd −

C1

2C2

a1

b1
e+αzmin (12)

Hence, the value of the compensated CPD in FM-KPFM is almost similar to the one mea-

sured in AM-KPFM. The difference stems from the ratios a0/b0 and a1/b1. Expressions 10

and 12 show that the compensated CPD in AM-KPFM is sensitive to the averaged value of

the electrostatic force (0-order Fourier component of the force), whereas it is sensitive to its

Fourier component at the vibration frequency of the fundamental eigenmode in FM-KPFM.

To some extend, this illustrates the long-standing idea that AM-KPFM is sensitive to the

electrostatic force and that FM-KPFM rather to its gradient32. Coefficients an and bn only

depend on the vibration amplitude of the fundamental eigenmode, A0. However, for n = 0

and 1, they weakly depend on it as soon as A0 is larger than a few nanometers. With

A0 = 4 nm, one has a0 = 0.1155, a1 = 0.1080 and b0 = 0.0724, b1 = 0.0766. Hence FM- and

AM-KPFM will not provide similar values for the local CPD, but they will neither differ

significantly.

2. Numeric approach

The numeric implementation of the FM-KPFM setup is easier than the AM-KPFM one

as the modulated signal is provided by the PLL without further processing. However, the

sequence of the calculation of the spectroscopy curve slightly differs from the AM-KPFM

one. The first part of the calculation is similar. When the approach is complete, we set
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Vmod = 0, consistently with what is done during the experiments. Then, the DC part of the

bias is swept. Similar sets of parameters have been used.

3. Results and discussion

Analytic and numeric ∆f vs. VDC spectroscopic curves are reported in fig.4. For that set

of simulations, we have used fmod = 2.5 kHz. The values of the local CPDs are reported in

table I. As stated in the former section, the analytic values of the CPD slightly differ from

those deduced by AM-KPFM. Similar trends are observed for the numerical results. The

qualitative behavior between analytic and numeric curves is also similar, the measured local

CPD with tip 2 being much shifted compared to the one measured with tips 1 and 3. Again,

the local CPD’s neither reflect the CPD of the tip-surface system, nor the MSP at similar

separation.

Finally, we would like to point out the following issue. Although the analytic variations of

∆f exhibit a quadratic dependence with VDC , readily visible in equ.11, it is impossible to fit

the numerical variations with a quadratic polynom of VDC to a good accuracy (cf. fig.4). So

far, this behavior remains not understood. Although numerous attempts, including careful

investigations of the influence of the PLL, we did not manage to identify the origin of this

effect. It is obviously possible to fit the ∆f variations with a better accuracy when using

higher-order polynoms, but this does not answer the question of the origin of such power

laws, which do not stem from the expression of the electrostatic force.

V. OVERALL GEOMETRICAL INFLUENCE OF THE TIP TO THE LOCAL

CPD: CONNEXION WITH LONG-RANGE ELECTROSTATIC FORCES

A. Influence of the tip apex structure

The above elements have demonstrated that the compensated local CPD was strongly

sensitive to the tip’s apex geometry (radii R and Ra). In order to assess how strong this

dependence is, we have used equ.12 (FM-KPFM case) to plot the variations of the local

CPD vs. R and Ra at constant height (cf. fig.5a). This is only made possible analytically,

although the analytic method is less accurate than the numeric one. The parameters are
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FIG. 4: Analytic and numeric ∆f vs. VDC spectroscopic curves computed in FM-KPFM mode

at zmin = 3 Å with the three tips defined in fig.2. The values of the local CPD for tips 1 and 3

are given in table I. For these tips, quadratic fits have been performed (continuous red and blue

curves, respectively), which do not fit the numerical variations to a good accuracy (cf. text).

identical to those given before, in particular zmin = 3 Å on top of an anion. The mesoscopic

radius R is varied from 3 to 15 nm and Ra from 1 to 1.6 Å. It is not allowed to make Ra

bigger owing to the main assumption of the model Ra ≪ R. Despite the rather narrow

range of Ra, the local CPD is strongly decreased from -1.3 V (cf. also table I) down to

-9 V as Ra gets bigger. It is not possible to provide a tractable expression of the local CPD

with Ra owing to its complex and implicit dependencies (coefficients D1 and A2). However,

some keys for understanding this behavior have been given in section IVA. On the opposite,

the CPD does not exhibit a noticeable dependence with R, meaning that the nano-asperity

plays a key role in the occurrence of the high-resolution imaging in KPFM.
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B. Influence of long-range capacitive forces

So far, we have been concerned about the influence of the electrostatic force stemming

from the mesoscopic/microscopic structure of the tip on the measured local CPD, without

taking into account long-range capacitive forces. Nevertheless, on the experimental level,

these forces are always present. Furthermore equs.10 and 12 exhibit a surprising expo-

nential dependence of the local CPD with the tip-surface separation, which should lead to

a divergence/saturation of the measurement when attempting to perform it far from the

surface.

In order to extend the present framework, the influence of a long-range capacitive force

on the measured local CPD has been assessed. We stick to the geometry defined before:

the counter-electrode, the bulk dielectric and the tip on top of it, but we consider an ad-

ditional macroscopic metallic electrode placed a few microns above the tip33, hence several

millimeters away from the counter-electrode. The electrode itself has millimetric dimensions

and is at the same potential than the tip, Vb. It depicts, to some extend, the cantilever

and the tip holder when mounted in the microscope. With such a configuration, since the

MSP decays exponentially with the tip-surface separation, it does not influence this elec-

trode. Therefore, on the electrostatic level, the “mesoscopic/microscopic” problem and the

“macroscopic” problem are rather decoupled, which is equivalent to include an additional

long-range component to the total electrostatic force. Hence, equ.4 is modified into:

Fes(Vb, z) = F (1)
mµ + F (2)

µ + FM , (13)

To derive an approximate expression of FM , let’s consider (1)-a planar capacitor with surface

S and a distance between electrodes zM corresponding to several millimeters and (2)-that the

dielectric sample fills entirely the vacuum between the electrodes. The condition 1 actually

implies to neglect z, which is of the order of a few angströms, with respect to zM each time

it is necessary. Then, we get:

FM(Vb, z) ≃ − C ′

2

(zM + z)2
(Vb(t) − Vcpd)

2, (14)

with C ′

2 = ǫ0ǫ̃
2
dS/2. A quick estimate for S = 1 mm2, zM = 5 mm (C ′

2 = 8.5 10−5 pN.m2.V−2)

and Vb = 1 V yields FM ≃ −3 pN.

19



For the FM-KPFM case, when applying Giessibl’s formalism, an analytical expression

for the frequency shift connected to FM can be derived. When applying a similar procedure

than the one used to derive equ.12 to the frequency shift resulting from the total force

(equ.13), the expression of the compensated CPD now becomes:

V
(c)
DC = Vcpd −

C1a1e
−αzmin

2C2b1e−2αzmin + 4πC ′

2A0/z3
M

(15)

It is reminded that A0 is the vibration amplitude of the first cantilever eigenmode. The graph

of V
(c)
DC vs. zmin is reported in fig.5b for tips 1, 2 and 3. The diverging behavior predicted

by equs.10 and 12 has disappeared because the term carrying the exponential decay in the

denominator (deriving from F
(2)
µ ) is now compensated by the long-range one. Therefore, the

decaying exponential in the numerator (deriving from F
(1)
mµ) nullifies the local CPD far from

the surface. This behavior is more likely to be measured and intricately originates from

long-range electrostatic, macroscopic, interactions. The shape of the curve looks like the

resonance curve of a harmonic oscillator. Hence, there is an optimum tip-surface separation

for which, the strength of the KPFM contrast will be enhanced, although the measured

value will not be correlated to the MSP. Upon the tip geometry, the maximum of the curve

occurs at various tip-surface separations. In particular, the discrepancies between tips 1

and 2 suggest that it is more likely to achieve a stabler KPFM imaging regime with tips

including a not too big mesoscopic apex. Let us notice that such a behavior is expected to

stand also for the AM-KPFM case owing to the analogy between equs.10 and 12.

At last, we are aware that the predicted variations of the compensated local CPD are

very large. This is the consequence of the power laws occurring in the expression of the

short-range electrostatic force, themselves deriving from the raw geometry of the tip. That

large variations will never be measured on the experimental level owing to realistic tip shapes

which differ significantly from the one of our model. Nevertheless, we still believe that the

reported variations are qualitatively relevant.

VI. CONCLUSION

The influence of short-range electrostatic forces on the measured local CPD by means of

AM- and FM-KPFM methods has been discussed. The sample is a bulk alkali halide single

crystal. This work relies on numeric and analytic descriptions of both KPFM modes. The
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FIG. 5: a- Evolution of the compensated local CPD as a function of tip’s radii R and Ra computed

from equ.12, i.e. for the FM-KPFM case. A strong Ra dependence is noticed. b- Compensated local

CPD vs. tip-surface separation computed from equ.15 for tips 1 (black), 2 (dark grey) and 3 (light

grey). The diverging behavior initially predicted when only considering short-range electrostatic

forces is now disappeared. Instead, a resonant behavior is observed.

analytic expression for the short-range electrostatic force is derived from a previous work and

exhibits a short-range distance dependance and a linear as well as quadratic dependence of

the bias voltage. The linear term is responsible for the atomic-scale CPD contrast, while the

quadratic one accounts for the detected signal by the KPFM methods. The latter term stems

from the dynamic polarisation of the ions of the crystal. Analytic and numeric approaches

stress the influence of the linear term on the measured compensated CPD which makes it

deviating not only from the actual value of the CPD, but also from the surface potential.

Hence, in the short-range regime, the AM- or FM-KPFM compensated local CPD neither

reflects the tip-surface CPD nor the local surface potential, but rather an effective value

which is convoluted by the geometry of the tip. Nevertheless, it is shown that the lateral

periodicity of the signal is preserved, which makes the AM- or FM-KPFM methods indeed

sensitive to atomic scale changes of the surface potential, as demonstrated experimentally,

although quantitative numbers are unlikely derivable.

It has also been found that the local CPD detected by means of AM- or FM-KPFM

is expected to differ. This stems from the detection methods which are not performed at

similar frequencies, hence selecting different Fourier components of the modulated force for

the signal processing. However, when using large amplitudes like those regularly used in

beam-deflection based nc-AFM (a few nm), this effect is expected to be weak.
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Finally, the influence of long-range, capacitive, electrostatic forces has been addressed in

conjunction with the short-range ones. The local CPD then exhibits kind of a resonance

peak as a function of the tip-surface separation. The position of the peak depends on the tip

geometry, but is expected to occur at a few angströms above the surface. The occurrence of

a resonance phenomenon illustrates the idea that there is an optimum tip-surface separation

for achieving a large vertical KPFM contrast, although this contrast is not correlated to the

surface potential.
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Appendix

Out of ref.19, the coefficients l0, l1, l2 and l3 can be written:

l0 =
C1a0

m1
e−αzminVmod + 2

C2b0

m1
e−2αzmin(VDC − Vcpd)Vmod (16)

l1 =
ω2

1

Q1
(17)

l2 = −2αC0

m1
b0e

−2αzmin−αC1

m1
a0e

−αzmin(VDC−Vcpd)−
2αC2

m1
b0e

−2αzmin

[
(VDC − Vcpd)

2 +
V 2

mod

2

]

(18)

l3 = −2αC2

m1
b0e

−2αzmin
V 2

mod

4
(19)
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