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Abstract — A unified approach is presented for the synthesis of continuous-time
fractional orthogonal bases including Laguerre-like, Kautz-like and the Generalized-
Orthogonal-Basis-like (GOB-like) bases. They extend the definitions of their rational
counterpart to fractional differentiation orders. Modes can either be chosen to be
real or by pairs complex conjugate. Completeness of fractional Laguerre-like basis
is demonstrated.
Keywords — Fractional calculus, fractional derivative, dynamical system, orthog-
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1 Introduction and mathematical background

1.1 Context and motivation

Over the last fifteen years, identification and control of linear stable dynamic systems
using orthogonal functions have widely been used; see for instance [1, 2, 3, 4] and all
references therein. The most popular orthogonal functions used in control engineering
are: Laguerre functions, having a single real pole; Kautz functions, having two complex
conjugate poles; and the Generalized Orthogonal Basis (GOB) functions which extend
the two former definitions to any number of real or complex conjugate poles.

The interest of fractional differentiation (real, complex, integer or not) is motivated by
studies on real systems such as thermal [5] and electrochemical [6] which reveal inherent
fractional differentiation behavior. The use of classical models, based on integer order
differentiation, is thus inappropriate in modeling these fractional systems. Thus, models
using fractional differentiation have been developed [7, 8, 9] .

El-Sayed [10] has proposed a direct extension of the definition of Laguerre functions by
simply allowing their differentiation orders to be real. However, Abbott [11] has proven
that Laguerre functions are divergent as soon as their differentiation order is non-integer
commenting on El-Sayed’s work.
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Recently, we have proposed an interpolation of Laguerre functions to fractional dif-
ferentiation orders keeping them convergent when differentiation orders are non-integers
[12]. To our knowledge, this fractional Laguerre-like basis is the first fractional orthogo-
nal basis ever synthesized for control engineering purposes. It is however limited to the
use of a unique mode.

The aim of this paper is to present a unified construction for all fractional orthogo-
nal bases including Laguerre-like, Kautz-like and GOB-like bases, allowing the user to
choose any number of real or complex conjugate modes. For that purpose, Gram-Schmidt
orthogonalization procedure is applied on adequate functional series leading to extend the
definition of Laguerre, Kautz and GOB bases to fractional differentiation orders.

1.2 Representation of fractional systems

Fractional mathematical models are based on fractional differential equations:

y (t) + b1Dβ1y (t) + · · · + bmB
DβmB y (t) =

a0Dα0u (t) + a1Dα1u (t) + · · · + amA
DαmA u (t)

, (1)

where differentiation orders β1, . . . , βmB
, α0, . . . , αmA

are allowed to be non-integer
positive numbers. The concept of differentiation to an arbitrary order (non-integer),

Dγ ∆
=

(
d

dt

)γ

∀γ ∈ R∗
+,

was defined in the 19th century. The main contribution to the establishment of the def-
inition is due to Riemann and Liouville. They extend differentiation by using not only
integer but also non-integer (real or complex) orders. The γ fractional order derivative of
x(t) is defined as being an integer derivative of order m = �γ� + 1 ( �.� stands for the
floor operator) of a non-integer integral of order 1 − (m − γ) [13]:

Dγx (t)
∆
=

1

Γ (m − γ)

(
d

dt

)m
t∫

0

x (τ) dτ

(t − τ)1−(m−γ)
, (2)

where t > 0, γ > 0.
A more concise algebraic tool can be used to represent fractional systems: the Laplace

transform. The Laplace transform of a γ order derivative (γ ∈ R+) of a signal x(t)
relaxed at t = 0 (i.e. all derivatives of x(t) equal 0 when t < 0) is given by [14]:

L {Dγx (t)} = sγL {x (t)} .

This property allows to write the fractional differential equation (1), provided all signals
u(t) and y(t) are relaxed at t = 0, in a transfer function form:

F (s)
∆
=

mA∑
i=0

ais
αi

1 +
mB∑
j=1

bjsβj

, (3)

where (ai, bj) ∈ C2, (αi, βj) ∈ R2
+, ∀i = 0, 1, . . . , mA, ∀j = 1, 2, . . . , mB .
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Definition: A transfer function F (s) is commensurate of order γ iff it can be written as

F (s) = S(sγ), where S
∆
= T

R
is a rational function with T and R two coprime polynomi-

als. �
All differentiation orders are multiples of the commensurate order, allowing to obtain a

rational transfer function. In this paper, the commensurate order is left free to vary in R∗
+.

Taking as an example F (s) defined in (3), assuming that F (s) is commensurate of order
γ, and using F (s) = S(sγ), one can write:

S (s) =
T (s)

R (s)
=

mA∑
m=0

ams
αm
γ

1 +
mB∑
m=1

bms
βm
γ

. (4)

All powers of s in (4) are integers. A sufficient condition for F (s) to be commensurate
is that all differentiation orders belong to the set of rational numbers Q. It covers a wide
range of fractional transfer functions.

The transfer function (3) is said to be of explicit form because all fractional derivatives
apply to s (as compared to implicit forms where fractional derivatives apply to (s + ξ)γ ,
∀ξ ∈ C∗, ∀γ ∈ R∗

+\N ).

1.3 Stability condition

Matignon [15, theorem 2.21 p.150] has established the stability condition of any com-
mensurate explicit fractional model. Here is a revisited version of his theorem.

Theorem: A commensurate (of order γ) transfer function F (s) = S(sγ) = T (sγ)
R(sγ)

is
BIBO stable iff

0 < γ < 2 (5)

and for every s ∈ C such that R(s) = 0

|arg (s)| > γ
π

2
. (6)

1.4 Fractional transfer functions belonging to H2(C
+)

Contrary to the rational case, stability condition does not guarantee for a fractional transfer
function to belong to H2(C

+), Hardy space of functions F (s) analytic on the open right
half-plane C+ and such that ‖F‖2

2 = 1
2π

∫ ∞
−∞ F (jω)F (jω)dω < ∞ . As demonstrated

in [16], a fractional transfer function (say (3)) belongs to H2(C
+) iff stability conditions

(5) and (6) are satisfied and the difference between denominator and numerator degrees
is greater than one half:

βmB
− αmA

>
1

2
. (7)

Condition (7) is essential when choosing fractional generating functions for the orthogo-
nal basis to be synthesized.
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1.5 Function expansion on orthogonal bases

The classical Laguerre, Kautz, and GOB functions form complete orthonormal bases in

L2[0,∞[, Lebesgue space of squared integrable functions f2 =
∞∫
0

f (t) dt < ∞, accord-

ing to the usual definition of the scalar product [17]:

〈ln, lm〉 =

∞∫
0

ln (t) lm (t) dt = δnm, (8)

which can also be computed in the frequency domain by using Plancherel’s theorem:

〈ln, lm〉 = 〈Ln, Lm〉 =
1

2π

∞∫
−∞

Ln (jω) Lm (jω)dω = δnm. (9)

Thus, any transfer function F (s) belonging to H2(C
+) can be written as a linear combi-

nation of orthogonal functions spanning H2(C
+):

F (s) =
∞∑

n=0

anLn (s). (10)

The Fourier coefficients an being convergent as n tends to infinity, (10) is usually trun-
cated to an order N . Hence, F (s) is approximated by the finite sum:

F (s) ≈ FN(s)
∆
=

N∑
n=0

anLn (s). (11)

The Fourier coefficients are computed by minimizing the least squares criterion:

J =

∞∫
0

(f(t) − fN(t))2dt, (12)

which corresponds to the L2 norm of the approximation error, according to definition (8)
of the scalar product :

J = ‖f − fN‖2
2 . (13)

Minimizing J , when orthogonal functions are involved, leads to the computation of Fourier
coefficients by evaluating the scalar product either in the time or the frequency domain:

an = 〈f, ln〉 = 〈F,Ln〉 (14)

2 Orthonormal bases construction

2.1 Gram-Schmidt procedure

Given an arbitrary functional series {Fm}M
m=1, where Fm ∈ H2(C+) ∀m, orthonormal

functions {Gm}M
m=1 are obtained, according to the Gram-Schmidt orthogonalization pro-

cedure, as a linear combination of the generating functions Fm:

G = ∆ × F, (15)
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where ∆ is a real-valued MxM matrix,

G =
[

G1 G2 · · · GM−1 GM

]T
,

and
F =

[
F1 F2 · · · FM−1 FM

]T
.

The vector G, gathering the functional series {Gm}M
m=1, satisfies thus:〈

G, GT
〉

= I, (16)

where
〈
G, GT

〉
is a matrix of scalar products which element (i, j) is 〈Gi, Gj〉 and I de-

notes an M by M identity matrix. Using (15):〈
G, GT

〉
= ∆

〈
F, FT

〉
∆T = I, (17)

and the following quadratic form is obtained:

∆T ∆ =
〈
F, FT

〉−1
,

∆, a lower triangular matrix, is computed using the Cholesky decomposition:

∆ = Cholesky
(〈

F, FT
〉−1

)
. (18)

Orthonormal functions are then deduced from (15):

G = Cholesky
(〈

F, FT
〉−1

)
× F (19)

The remaining difficulty is to compute the matrix of scalar products
〈
F, FT

〉
for fractional

transfer functions known to be multivalued complex functions as soon as non-integer
differentiation is involved.

2.2 Scalar product of any pair of fractional explicit and commensurate transfer
functions

Assume any pair (G(s), H(s)) ∈ H2
2 (C+) of fractional explicit and commensurate trans-

fer functions. The scalar product of G and H is expressed in the frequency domain as:

〈G,H〉 =
1

2π

∞∫
−∞

G (jω) H (jω)dω. (20)

Define the following change of variable, where γ is the commensurate order:

x = ωγ ⇒ dω =
1

n
x

1
γ
−1dx. (21)

Define q and ρ respectively as integer and non-integer parts of 1
γ
. Then,

〈G,H〉 =
1

πn

∞∫
0

xq+ρ−1 A (x)

B (x)
dx. (22)

Two cases are distinguished.
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2.2.1 deg (B) ≤ deg (A) + 1
n

In this case,
〈G,H〉 = ∞, (23)

because the difference between denominator and numerator degrees in (22) is greater than
one, which yields after integration a positive power of x in the numerator and the integral
diverges.

2.2.2 deg (B) > deg (A) + 1
n

Depending on the nullity of ρ, the solution to integral (20) is different. Again, two cases
are distinguished.

a – 0 < ρ < 1. This condition means that 1
γ

is non-integer. A partial fraction expansion

is carried out on xq A(x)
B(x)

and gives:

xρ−1

[
xq A (x)

B (x)

]
=

r∑
k=1

vk∑
l=1

ak,lx
ρ−1

(x + sk)
l
. (24)

Replacing back in (22) gives:

〈G,H〉 =
1

nπ

r∑
k=1

vk∑
l=1

ak,ls
−l
k

∞∫
0

xρ−1dx(
1 + s−1

k x
)l

. (25)

Similar function was integrated in [18] and is also reported in [19, as formula 3.194,4 p.
285]. Plugging the result gives:

〈G,H〉 =

r∑
k=1

vk∑
l=1

(−1)l−1 ak,ls
ρ−l
k

(
ρ − 1
l − 1

)

n sin (ρπ)
. (26)

b – ρ = 0. This condition means that 1
γ

is integer. The following expansion is carried
out:

xq−1 A (x)

B (x)
=

r∑
k=2

ck

(x + s1) (x + sk)
+

r∑
k=1

vk∑
l=2

bk,l

(x + sk)
l
, (27)

where s1 is an arbitrary chosen pole. Plugging (27) in (22) and computing the integral
yields the following result:

〈G,H〉 =
r∑

k=2

ck (ln (sk) − ln (s1))

nπ (sk − s1)
+

r∑
k=1

vk∑
l=2

bk,ls
1−l
k

nπ (l − 1)
, (28)

completing the computations of the scalar product of any fractional explicit and commen-
surate transfer functions.
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2.3 Choosing fractional generating functions

The method described above allows to orthogonalize any series of generating functions
provided they are not collinear according to the scalar product (9). However, to extend
the definition of classical bases (Laguerre, Kautz, and BOG) to fractional differentiation
orders, it is necessary to choose adequate generating functions. Hence, each generating
function will introduce either a real or a complex mode. If a generating function intro-
duces a complex mode, then the next generating function must introduce its conjugate
so as to obtain a real-valued impulse response. Special care must be taken for the first
generating function which must satisfy stability condition and belong to H2(C+). Once
these functions chosen, (19) is applied in order to obtain the orthonormal basis functions.

If the first mode is chosen to be real, the first generating function is set to:

Fm0(s) =
1

(sγ + λm0)
m0

. (29)

However, if a complex mode λm0 is chosen, then, its conjugate λm0 must be chosen
afterwards. The first two generating functions are then set to:

F ′
m0

(s) =
1

(sγ + λm0)
m0

F ′′
m0

(s) =
1(

sγ + λm0

)m0

. (30)

For Fm0(s), F ′
m0

(s), and F ′′
m0

(s) to be stable, according to §1.3, the following conditions
must be satisfied:

| arg(−λm0)| > γ
π

2
and γ ∈]0, 2[. (31)

Moreover, for Fm0(s), F ′
m0

(s), and F ′′
m0

(s) to belong to H2(C+), according to §1.4, the
difference between denominator and numerator degrees must be greater than 1

2
. Conse-

quently, m0 is the smallest integer satisfying the aforementioned condition:

m0 =

⌊
1

2γ

⌋
+ 1. (32)

Generating functions F ′
m0

(s) and F ′′
m0

(s), having complex impulse responses, are not
adapted to represent real-valued impulse response systems. Therefore, they are replaced
by two new generating functions F̃ ′

m0
and F̃ ′′

m0
which are linear combinations of F ′

m0
and

F ′′
m0

: [
F̃ ′

m0
(s)

F̃ ′′
m0

(s)

]
=

[
c0 c1

c′0 c′1

] [
F ′

m0
(s)

F ′′
m0

(s)

]
, (33)

where c0, c1, c
′
0 and c′1 are non null complex numbers chosen so that F̃ ′

m0
(s) and F̃ ′′

m0
(s)



MALTI, AOUN, LEVRON, AND OUSTALOUP

have real-valued impulse responses, which yields: c0 = c1 and c′0 = c′1. Consequently,

F̃ ′
m0

(s) =

m0∑
k=0

βks
γk

((
sγ + λm0

)
(sγ + λm0)

)m0

F̃ ′′
m0

(s) =

m0∑
k=0

β′
ks

γk

((
sγ + λm0

)
(sγ + λm0)

)m0

, (34)

where

βk = 2

(
m0

k

) (
Re (c0) Re

(
λm0−k

m0

)
+ Im (c0) Im

(
λm0−k

m0

))

β′
k = 2

(
m0

k

) (
Re (c′0) Re

(
λm0−k

m0

)
+ Im (c′0) Im

(
λm0−k

m0

)) . (35)

Then, the generating functions of index m > m0 are defined recursively based on the
definition of the preceding function, noted Φm−1(s), where:

Φm−1 =

{
Fm−1, if λm−1 is real
F̃ ′

m−1 or F̃ ′′
m−1, if λm−1 is complex

. (36)

Hence, if a real mode λm is introduced , the generating function is set to:

Fm(s) =
1

sγ + λm

Φm−1(s). (37)

Otherwise, if two complex conjugate modes λm and λm are chosen, the two generating
functions having real-valued impulse responses are:

[
F̃ ′

m(s)

F̃ ′′
m(s)

]
=

[
c0 c0

c′0 c′0

] [ 1
sγ+λm

1
sγ+λm

]
Φm−1(s), (38)

yielding:

F̃ ′
m(s) =

β1s
γ + β0

(sγ + λm)
(
sγ + λm

)Φm−1(s)

F̃ ′′
m(s) =

β′
1s

γ + β′
0

(sγ + λm)
(
sγ + λm

)Φm−1(s)

, (39)

where

β1 = 2Re (c0) and β0 = Re (c0) Re (λm) + Im (c0) Im (λm)

β′
1 = 2Re (c′0) and β′

0 = Re (c′0) Re (λm) + Im (c′0) Im (λm)
, (40)

and the complex parameters c0 and c′0 are chosen so that c0 �= dc′0,∀d ∈ R∗
+.

Taking into account (31) and (32), Fm(s), F ′
m(s) and F ′′

m(s) belong to H2(C+) iff :

| arg(−λm)| > γ
π

2
(41)
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It is interesting to point out that, in the special case where all the modes λm are chosen
to be alike, Laguerre-like generating functions are obtained as illustrated in [12]:

Fm(s) =
1

(sγ + λ)m , m ≥ m0 =

⌊
1

2γ

⌋
+ 1. (42)

In the special case where all pairs of complex conjugate modes are chosen to be alike,
the fractional Kautz-like generating functions are obtained as illustrated in [20].

3 Completeness

To date, completeness of fractional Laguerre-like basis is proven. Completeness of frac-
tional Kautz-like basis is announced in a conjecture and completeness of fractional GOB-
like basis is yet to be proven.

3.1 Completeness of Fractional Laguerre-like basis

Theorem: Define Fm(s) as in (42) with λ ∈ R+. Then, the linear space spanned by the
series {Fm}m=m0,m0+1,...,∞, where m0 = � 1

2γ
� + 1 and m ∈ N+, is dense in H2(C+). �

Proof: Let

w(s) =
1

sγ + λ

w is a bijective conformal mapping from C+ to a finite modulus open domain Ω bounded
by a Jordan curve Γ. Γ is a finite union of circle arcs.

Let G(s) = (sγ+λ)m0F (s) where m0 = � 1
2γ
�+1. Let E(Ω) be the space of all functions

analytical on Ω and continuous on Ω = Ω∪Γ. Then, G◦w−1 ∈ E(Ω). Moreover, applying
Runge − Walsh theorem [17, p.7 theorem 1.3.4], G ◦ w−1 can always be approximated
by a polynomial P (z):
∀z ∈ Ω,∀ε > 0,∃ P (z), such that ‖G ◦ ω−1 − P (z)‖ ≤ ε.

Setting P (z) =
N∑

n=0

an(z)n , N ∈ N, and substituting z by w(s) yields:

∀s ∈ C+ : |G(s) −
N∑

n=0

an(w(s))n| ≤ ε

|(sγ + λ)m0F (s) −
N∑

n=0

an(w(s))n| ≤ ε

Since λ > 0 and �(s) ≥ 0 (convergence domain of Laplace transform), then (sγ +
λ)m0 �= 0 and:

|F (s) − (sγ + λ)−m0

N∑
n=0

an(w(s))n| ≤ ε|(sγ + λ)−m0|
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|F (s) −
N∑

n=0

an(w(s))n+m0| ≤ ε|w(s)m0|

Moreover, wm ∈ H2(C+) (m ∈ N) iff m ≥ m0. Thus, ∀n ∈ N, wn+m0 ∈ H2(C+).
Furthermore, since F ∈ H2(C+),

j∞∫
−j∞

|F (s) −
N∑

n=0

an(w(s))n+m0|2ds ≤

ε2
j∞∫

−j∞
|w(s)|2m0ds

Consequently, ∀F (s) ∈ H2(C+),∀ε > 0,∃ P (w(s)) =
N∑

n=0

an(w(s))n+m0 such that

||F (s) −
N∑

n=0

an(w(s))n+m0||2 ≤ ε

Thus the series {wm}m≥m0 is dense in H2(C+) which completes the proof. �

Consequently, the orthogonal functions {Gm}m=m0,m0+1,...,∞, linear combinations of
{Fm}m=m0,m0+1,...,∞, are dense in H2(C+) too. Therefore,

∀H(s) ∈ H2(C+) : H(s) =
∞∑

m=0

amGm (s). (43)

Moreover, all results announced in §1.5 are valid for the Laguerre-like fractional orthog-
onal basis which can hence be used to model any finite energy system.

3.2 Completeness of Fractional Kautz-like basis

Conjecture: Define F̃ ′
m0

(s) and F̃ ′′
m0

(s), for m0 = � 1
2γ
� + 1, ∀γ ∈]0, 2[, as in (34) and

F̃ ′
m(s) and F̃ ′′

m(s) for m > m0 as in and (39) with λm0 = λm0+1 = λm0+2 = . . . = λ and
| arg(−λ)| > γ π

2
. Then, the linear space spanned by the series {F̃ ′

m, F̃ ′′
m}m=m0,m0+1...,∞ is

dense in H2(C+). �

The proof of this conjecture would permit to model any finite energy system using
fractional Kautz-like basis.

3.3 Completeness of Fractional GOB-like basis

To date, no result can be announced concerning the completeness of fractional GOB-like
basis. However, it is interesting to point out that the classical GOB, which can also be
obtained by orthogonalizing Fm,F̃ ′

m, and F̃ ′′
m when γ = 1 and m0 = 1, is dense in H2(C+)

iff [21]:
∞∑

m=1

Re (λm)

1 + |λm|2
= ∞ for γ = 1. (44)

An extended condition needs undoubtedly to be found for the completeness of the frac-
tional GOB-like basis for any γ ∈]0, 2[.
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4 System identification using the synthesized orthogonal bases

The fractional orthogonal bases are now used in a system identification context based on
fixed denominator models. The procedure is described below.

– First, differentiation order γ and all the modes are fixed either using an a priori
knowledge on system’s behavior or a rough estimation of a fractional ARX model
[22]. The knowledge of these parameters allows then to fix all the generating func-
tions Fm based on (29), (34), (37) and (39).

– Next, orthogonalization procedure described in §2.1 is applied on the aforemen-
tioned generating functions.

– Finally, Fourier coefficients of the orthogonal basis are computed, using a least
squares method.

The identified model H(s) is expressed as the sum of Fourier coefficients multiplied by
the orthonormal functions:

H(s) =
M∑

m=m0

gmGm(s) = gT G(s), (45)

where
g = [gm0 , gm0+1, . . . , gM ]T ,

and
G(s) = [Gm0(s), Gm0+1(s), . . . , GM(s)]T .

The truncation order M is fixed so as to obtain a satisfactory approximation and can be
increased if the identified model is not satisfactory.

Assume u(t), y(t), t ∈ [0, T ] input and output data issued from linear finite-energy sys-
tem. Then the identification procedure consists of computing optimal coefficient vector g
by minimizing the least squares error:

J =
1

T

T∫
0

(ε(t))2 dt, (46)

where

ε(t) =
M∑

m=m0

gmuGm(t) − y(t) (47)

The filtered outputs uGm(t) and uG(t) are defined respectively as:

uGm(t) = Gm(t) ⊗ u(t) (⊗ being the convolution product)

uG(t) =
[
uGm0

(t), uGm0+1(t), · · · , uGM
(t)

]
.

The optimum values of Fourier coefficients are given by the least squares formula:

ĝ =

⎡
⎣

T∫
0

(
uG(t)T uG(t)

)
dt

⎤
⎦
−1 T∫

0

uG(t)T y (t) dt, (48)
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or after a numerical discretization, by defining Y as a column vector of system’s outputs
and X as a regression matrix which columns are filtered outputs, (48) can be approximated
by:

ĝ = (XTX)−1XTY. (49)

5 Examples

5.1 Example 1 – Orthogonalization of a set of functions

The objective is to synthesize an orthogonal basis with the following parameters: the
commensurate order γ is set to 1.5 and the eigenvalues to 1, 2, and 2 ± i. The first two
generating functions are obtained using respectively (29) and (37):

F1(s) =
1

s1.5 + 1
(50)

F2(s) =
1

s1.5 + 2
× 1

s1.5 + 1
. (51)

The next two generating functions are obtained using (39) with c0 = 1 and c′0 = i:

F3(s) =
2s1.5 + 2

s3 + 4s1.5 + 5
× 1

s1.5 + 2
× 1

s1.5 + 1
(52)

F4(s) =
−1

s3 + 4s1.5 + 5
× 1

s1.5 + 2
× 1

s1.5 + 1
(53)

The functions of the orthonormal basis are computed by applying formula (19):

G1(s) =
1.14

s1.5 + 1
(54)

G2(s) =
1.53s1.5 − 0.11

s3 + 3.00s1.5 + 2.00
(55)

G3(s) =
0.38s4.5 − 0.60s3 + 1.58s1.5 − 2.45

s6 + 7.00s4.5 + 19.00s3 + 23.00s1.5 + 10.00
(56)

G4(s) =
1.52s4.5 + 3.00s3 + 3.13s1.5 + 2.15

s6 + 7.00s4.5 + 19.00s3 + 23.00s1.5 + 10.00
. (57)

Their impulse responses are plotted in figure (1).

5.2 Example 2 – Application in system identification context

To illustrate the use of Fractional GOB-like functions in system identification, the pro-
posed procedure will be applied to identify a real industrial system, the nature of which
cannot be divulged due to confidentiality reasons. System’s input and output signals are
plotted on figure (2). In addition to these signals, frequency domain analysis showed that
differentiation orders can be set to multiples of 0.6, and that 3 modes can be fixed at 0.6
and 4.1e±j0.112π. Consequently, one Laguerre-like and two Kautz-like generating func-
tions are fixed. Applying orthogonalization procedure yields the following orthonormal
functions:

G1(s) =
0.78

s0.6 + 0.60
(58)
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Figure 1: Impulse responses of the orthogonal functions (54), (55), (56), and (57)
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Figure 2: Input and output identification data
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Figure 3: Output of the optimal model and contribution of each function of the basis.

G2(s) =
0.70s1.2 − 8.83s0.6 − 16.09

s1.8 + 8.40s1.2 + 21.49s0.6 + 10.09
(59)

G3(s) =
0.22s1.2 − 24.82s0.6 + 24.49

s1.8 + 8.40s1.2 + 21.49s0.6 + 10.09
(60)

Then, Fourier coefficients are computed by minimizing least squares criterion (46), which
gives the following identified model:

Ĥ(s) = 0.1138G1(s) + 0.0647G2(s) − 0.0002G3(s) (61)

Contribution of each vector of the basis in model’s output is plotted in figure (3). Due
to the weak contribution of G3, it is omitted and the number of the orthogonal functions
is reduced to 2 in the final model. As shown on validation data of figure (4), the identified
model gives satisfactory results.

6 Conclusion

A unified procedure is presented in this paper for the synthesis of fractional orthogonal
bases. The rational Laguerre, Kautz and GOB functions are interpolated to fractional
differentiation orders. Fractional Laguerre basis is proven to be dense in H2(C

+). The
obtained Fractional GOB-like functions was successfully used in the context of system
identification with fixed denominator models.
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