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Abstract: Applications on inference of biological networks have raised a
strong interest on the problem of graph estimation in high-dimensional
Gaussian graphical model. To handle this problem, we propose a two-stage
procedure which first builds a family of candidate graphs from the data and
then selects one graph among this family according to a dedicated criterion.
This estimation procedure is shown to be consistent in a high-dimensional
setting and its risk is controlled by a non-asymptotic oracle-like inequality.
A nice behavior on numerical experiments corroborates these theoretical
results.

The procedure is implemented in the R-package GGMselect available
online.
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1. Introduction

We consider the problem of graph estimation in Gaussian graphical models. The
graph of a random vector (X1, . . . , Xp) represents the conditional dependences
between the variables X1, . . . , Xp. More precisely, assume that (X1, . . . , Xp) is
a centered Gaussian vector with covariance matrix Σ. Then, the law PΣ of
(X1, . . . , Xp) is a graphical model according to a graph G, if for any nodes a
and b that are not neighbours in G, the variables Xa and Xb are independent
conditionally on the remaining variables. There exists a unique graph GΣ which
is minimal for the inclusion and such that PΣ is a graphical model according
to GΣ. Our aim is to estimate this graph from a n-sample of PΣ. We will pay
a special attention to the case where n < p. In what follows, we shall always
assume that Σ is non-singular.

The problem of graph estimation in Gaussian graphical model when the sam-
ple size n is smaller (or much smaller) than the number p of variables is moti-
vated by applications in post-genomic and is a current active field of research in
statistics. Biotechnological developments in proteomics or transcriptomics en-
able to produce a huge amount of data. One of the challenges for the statistician
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is to infer from these data the regulation network of a family of genes (or pro-
teins). The task is difficult due to the very high-dimensional nature of the data
and the small sample size. For example, microarrays measure the expression
levels of a few thousand genes and the sample size n is no more than a few
tens. The Gaussian graphical modeling has been proposed as a tool to handle
this issue, see e.g. the papers of Kishino and Waddell [14], Dobra et al [7], Wu
and Ye [24]. The gene expression levels are modeled by a Gaussian law PΣ and
the regulation network of the genes is then depicted by the graph GΣ of the
conditional dependences.

Many estimation procedures have been proposed recently to perform graph
estimation in Gaussian graphical model when n < p. A first class of procedures is
based on multiple testing on empirical partial covariance. Actually, if GΣ denotes
the (minimal) graph of the law PΣ, there is an edge in GΣ between a and b, if and
only if the conditional covariance of Xa and Xb given all the other variables is
non-zero. When n < p, the empirical version of the latter conditional covariance
cannot be computed, so several papers suggest to use instead the empirical
conditional covariance of Xa and Xb given {Xs, s ∈ S} for some subsets S of
{1, . . . , p} \ {a, b} with cardinality less than n− 2. A multiple testing procedure
is then applied to detect if the conditional covariance cov(Xa, Xb|Xs, s ∈ S)
is non-zero. Wille and Bühlmann [23] restrict to the sets S of cardinality less
than one, Castelo and Roverato consider the sets S with cardinality at most q
(for some fixed q) and Spirtes et al. [20] (see also Kalisch and Bühlmann [13])
propose a procedure which avoid an exhaustive search over all S. A second class
of procedures relies on the fact that the entries Ωa,b of the inverse covariance
matrix Ω = Σ−1 are non-zero if and only if there is an edge between a and b in
GΣ. Several papers then suggest to perform a sparse estimation of Ω in order
to estimate the graph GΣ, see Huang et al. [12], Yuan and Lin [25], Banerjee
et al. [1], Friedman et al. [10], and Fan et al. [9]. They propose to maximise
the log-likelihood of Ω under l1 constraints to enforce sparsity and they design
optimisation algorithms to perform this maximisation. Finally, a third class of
procedures uses the fact that the coefficients θa,b of the regression of Xa on
{Xb, b 6= a} are non-zeros if and only if there is an edge between a and b in GΣ.
Meinshausen and Bühlmann [17] or Rocha et al. [18] perform regressions with l1

constraints, whereas Giraud [11] (see also Verzelen [21]) proposes an exhaustive
search to obtain a sparse estimate of the matrix θ and then detect the graph
GΣ.

In this paper, we propose a new estimation scheme which combines the good
properties of these different procedures. Actually, the procedures based on the
empirical covariance or on l1 regularisation share some nice computational prop-
erties and they can handle several hundred of variables X1, . . . , Xp. Nevertheless,
the theoretical results assessing their statistical accuracy are either of asymp-
totic nature or rely on strong assumptions on the covariance [15, 19]. Moreover,
their performance heavily depends on one (or several) tuning parameter, which
is usually not dimensionless and whose optimal value is unknown. On the other
hand, the exhaustive search of [11] has a good statistical accuracy and strong
theoretical results have been established, but the computational complexity of
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the exhaustive search is huge and it cannot be performed when the number
p of variables is larger than a few tens. Our strategy here is to build a data-
driven family of candidates graphs with several fast above-mentioned procedures
and then to apply the selection criterion presented in [11] to select one graph
among them. The resulting estimation procedure can handle several hundred
of variables X1, . . . , Xp and presents good statistical properties. Actually, the
procedure is shown to be consistent in a high-dimensional setting and its risk is
controlled by a non-asymptotic oracle-like inequality. The assumptions needed
to establish these results are weaker than those commonly used in the literature.
In addition, numerical experiments show a nice behavior on simulated exam-
ples. The procedure is implemented in the R-package GGMselect available on
http://w3.jouy.inra.fr/unites/miaj/public/logiciels/GGMselect/

The remaining of the paper is organized as follows. We describe the estimation
procedure in the next section and state some theoretical results on its statistical
accuracy in Section 3. In Section 4, we carry out some numerical experiments
and Section 5 is devoted to the proofs.

Notations. To estimate the graph GΣ, we will start from a n-sample X(1), . . . , X(n)

of the law PΣ. We denote by X the n × p matrix whose rows are given by the

vectors X(i), namely Xi,a = X
(i)
a for i = 1, . . . , n and a = 1, . . . , p. We write Xa

for the ath column of X. We also set Γ = {1, . . . , p} and for any graph G with
nodes indexed by Γ, we write da(G) for the degree of the node a in the graph
G (which is the number of edges incident to a) and deg(G) = maxa∈Γ da(G) for

the degree of G. Moreover, the notation a
G∼ b means that the nodes a and b

are neighbours in the graph G. Finally, we write Θ for the set of p× p matrices
with 0 on the diagonal, ‖ · ‖q×p for the Frobenius norm on q × p matrices

‖A‖2
q×p = Tr(AT A) =

q∑

i=1

p∑

j=1

A2
i,j ,

‖ · ‖n for the Euclidean norm on Rn divided by
√

n, and for any β ∈ Rp we
defined supp(β) as the set of the labels a ∈ Γ such that βa 6= 0.

2. Estimation procedure

GGMselect is a two-stage estimation procedure which first builds a data-driven
family Ĝ of candidate graphs and then applies a selection procedure to pick one
graph among these. We present the selection procedure in the next paragraph
and then describe different possible choices for the family of candidate graphs
Ĝ.

2.1. Selection procedure

We assume here that we have at hand a family Ĝ of candidate graphs, which all
have a degree smaller than n − 2. To select a graph Ĝ among the family Ĝ, we

http://w3.jouy.inra.fr/unites/miaj/public/logiciels/GGMselect/
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use the selection criterion introduced in [11]. We briefly present this criterion
here and refer to [11] for further details. We write θ for the p × p matrix such
that

EΣ

[
Xa

∣∣Xb, b 6= a
]

=
∑

b6=a

θa,bXb and θa,a = 0 for all a ∈ {1, . . . , p} .

The matrix θ minimizes ‖Σ1/2(I − θ′)‖p×p over the set Θ of p × p matrices θ′

with 0 on the diagonal. Since XTX/n is an empirical version of Σ, an empirical
version of ‖Σ1/2(I − θ)‖p×p is ‖X(I − θ)‖n×p divided by

√
n. Therefore, for any

graph G in Ĝ, we associate an estimator θ̂G of θ by setting

θ̂G = argmin {‖X(I − θ′)‖n×p : θ′ ∈ ΘG} , (1)

where ΘG is the set of p× p matrices θ′ such that θ′a,b is non-zero if and only if
there is an edge between a and b in G.

Finally, we select a graph Ĝ in Ĝ by taking any minimizer over Ĝ of the
criterion

Crit(G) =

p∑

a=1

[
‖Xa − X[θ̂G]a‖2

n

(
1 +

pen[da(G)]

n − da(G)

)]
, (2)

where da(G) is the degree of the node a in the graph G and the penalty function
pen : N → R+ is of the form of the penalties introduced in Baraud et al. [2]. To
compute this penalty, we define for any integers d and N the DKhi function by

DKhi(d, N, x) = P

(
Fd+2,N ≥ x

d + 2

)
− x

d
P

(
Fd,N+2 ≥ N + 2

Nd
x

)
, x > 0 ,

where Fd,N denotes a Fisher random variable with d and N degrees of freedom.
The function x 7→ DKhi(d, N, x) is decreasing and we write EDKhi[d, N, x] for
its inverse, see [2] Sect. 6.1 for more details. Then, we fix some constant K > 1
and set

pen(d) = K
n − d

n − d − 1
EDKhi

[
d + 1, n− d − 1,

((
p − 1

d

)
(d + 1)2

)−1
]

. (3)

When d remains small compared to n, the penalty function increases approx-

imately linearly with d. Actually, when d ≤ γ n/
(
2
(
1.1 +

√
log p

)2)
for some

γ < 1, we approximately have for large values of p and n

pen(d) . K
(
1 + eγ

√
2 log p

)2

(d + 1),

see Proposition 4 in Baraud et al. [2] for an exact bound.
The selection procedure depends on a dimensionless tuning parameter K.

A larger value for K yields a procedure more conservative. In theory (and in
practice) K has to be larger than one. We propose to set K between 2 and 3
depending on the desired level of false discovery rate of edges.
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2.2. Family Ĝ of candidate graphs

The computational complexity of the minimization of the criterion (2) over the

family Ĝ is linear with respect to its size. In particular, minimizing (2) over
all the graphs with degree smaller than some integer D, as proposed in [11], is
untractable when p is larger than a few tens. To overcome this issue, we propose
to build a much smaller (data-driven) family Ĝ of candidate graphs, with the
help of various fast algorithms dedicated to graph estimation.

We present below four way to build a family of candidate graphs, chosen on
the basis of theoretical results and simulation studies. They will be denoted by
ĜQE, ĜC01, ĜLA, and ĜEW. Even if the procedure applies for any family Ĝ, we
advise to choose in practice one of these four families or the union of them.

In the following, we describe these four families, provide algorithms to com-
pute them efficiently, and discuss their computational complexity and their size.
Each family depends on an integer D, smaller than n− 2, which corresponds to
the maximal degree of the graphs in this family.

Quasi-exhaustive family ĜQE

Description. Roughly, the idea is to break down the minimization of the crite-
rion (2) over all the graphs of degree at most D into p independent problems.
For each node a ∈ Γ, we estimate the neighborhood of a by

n̂e(a) = argmin

{
‖Xa − ProjVS

(Xa)‖2
n

(
1 +

pen(|S|)
n − |S|

)
: S ⊂ Γ \ {a} and |S| ≤ D

}
,

where pen is the penalty function (3) and ProjVS
denotes the orthogonal pro-

jection from Rn onto VS = {Xβ : β ∈ Rp and supp(β) = S}. We know from
Verzelen [21] that n̂e(a) is a good estimator of the true neighborhood of a, from

a non-asymptotic point of view. We then build two nested graphs ĜK,and and

ĜK,or as in Meinshausen and Bühlmann [17]

a
ĜK,and∼ b ⇐⇒ a ∈ n̂e(b) and b ∈ n̂e(a) ,

a
ĜK,or∼ b ⇐⇒ a ∈ n̂e(b) or b ∈ n̂e(a) ,

and define the family ĜQE as the collection of all the graphs that lie between

ĜK,and and ĜK,or

ĜQE =
{

G, ĜK,and ⊂ G ⊂ ĜK,or and deg(G) ≤ D
}

.

It is likely that the graph Ĝexhaustive which minimizes (2) over all the graphs of

degree at most D belongs to the family ĜQE. In such a case, the minimizer ĜQE

of the criterion (2) over ĜQE coincides with the estimator Ĝexhaustive of [11].
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QE Algorithm

1. Compute n̂e(a) for all a ∈ Γ.

2. Compute the graphs ĜK,and and ĜK,or.

3. Work out the family ĜQE.

Complexity. The complexity of the computation of the collections n̂e(a) is much

smaller than the complexity of the computation of Ĝexhaustive. Nevertheless, it
still remains of order npD+1D3 and the size of the family ĜQE can be of order

2pD/2 in the worst cases. However, for sparse graphs GΣ, the graphs ĜK,and

and ĜK,or are quite similar in practice, which makes the size of ĜQE much
smaller. The procedure then remains tractable for p and D reasonably small.
Computational times for some examples are given in Section 4.1.

C01 family ĜC01

Description. The family ĜC01 derives from the estimation procedure proposed
in Wille and Bühlmann [23] and is based on the 0-1 conditional independence
graph G01. This graph is defined as follows. For each pair of nodes (a, b), we
write Ra,b|∅ for the correlation between the variable Xa and Xb and Ra,b|c for the
correlation of Xa and Xb conditionally on Xc. Then, there is an edge between
a and b in G01, if and only if Ra,b|∅ 6= 0 and Ra,b|c 6= 0 for all c ∈ Γ \ {a, b}, viz

a
G01∼ b ⇐⇒ min

{
|Ra,b|c|, c ∈ {∅} ∪ Γ \ {a, b}

}
> 0 . (4)

Although the 0-1 conditional independence graph G01 does not usually coincide
with the graph GΣ, there is a close connection between both graphs in some
cases (see [23]). Wille and Bühlmann [23] propose then to estimate the graph
G01 in order to get an approximation of GΣ. The following construction of the
family Ĝ01 derives from their estimation procedure. We write P (a, b|c) for the
p-value of the likelihood ratio test of the hypothesis ”Ra,b|c = 0” and set

Pmax(a, b) = max {P (a, b|c), c ∈ {∅} ∪ Γ \ {a, b}} .

For any α > 0, the graph Ĝ01,α is defined by

a
Ĝ01,α∼ b ⇐⇒ Pmax(a, b) ≤ α

and the family ĜC01 is the family of nested graphs

ĜC01 =
{
Ĝ01,α, α > 0 and deg(Ĝ01,α) ≤ D

}
.

C01 Algorithm

1. Compute the p(p − 1)/2 values Pmax(a, b).
2. Order them.
3. Extract from these values the nested graphs

{
Ĝ01,α : α > 0

}
.

4. Stop when the degree becomes larger than D.
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Complexity. The algorithm goes very fast since its complexity is of order np3.
The size of the family ĜC01 is smaller than pD.

Lasso-And family ĜLA

Description. The Lasso-And family ĜLA derives from the estimation procedure
proposed by Meinshausen and Bühlmann [17] and is based on the LARS-lasso

algorithm of Hastie et al. [8]. For any λ > 0, we define the p × p matrix θ̂λ by

θ̂λ = argmin
{
‖X− Xθ′‖2

n×p + λ‖θ′‖1 : θ′ ∈ Θ
}

, (5)

where Θ is the set of p × p matrices with 0 on the diagonal and ‖θ′‖1 =∑
a6=b |θ′a,b|. Then, we define the graph Ĝλ

and by setting an edge between a and

b if both θ̂λ
a,b and θ̂λ

b,a are non-zero, namely

a
Ĝλ

and∼ b ⇐⇒ θ̂λ
a,b 6= 0 and θ̂λ

b,a 6= 0 .

This graph Ĝλ
and is exactly the estimator (7) introduced by Meinshausen and

Bühlmann [17]. We note that the size of Ĝλ
and has a tendency to increase when

the tuning parameter λ decreases. Hence, we define the family ĜLA as the set of
graphs Ĝλ

and with λ large enough to ensure that deg(Ĝλ
and) ≤ D, viz

ĜLA =
{
Ĝλ

and , λ > λ̂and,D

}
, where λ̂and,D = sup

{
λ, deg(Ĝλ

and) > D
}

.

From a computational point of view, the family ĜLA can be efficiently com-
puted with the LARS-lasso algorithm. The optimization problem (5) is broken
into the p independent minimization problems

θ̂λ
a = argmin

{
‖Xa − Xv‖2 + λ‖v‖1 : v ∈ Rp and va = 0

}
, for any a ∈ Γ, (6)

with ‖v‖1 =
∑p

b=1 |vb|. When λ decreases, the support of θ̂λ
a is piecewise constant

and the LARS-lasso algorithm provides the sequences (λl
a)l≥1 of the values of

λ where the support of θ̂λ
a changes, as well as the sequence of the supports(

supp(θλl
a )
)

l≥1
. We work out the family ĜLA by gathering these p sequences as

described below.

LA Algorithm

1. Compute with LARS-lasso the
(
λl

a, supp(θ̂λl
a )
)

l≥1
for all a ∈ Γ.

2. Order the sequence
{
λl

a : a ∈ Γ, l ≥ 1
}
.

3. Compute Ĝ
λl

a

and for all λl
a > λ̂and,D.

Complexity. The complexity of the LARS-lasso algorithm is unknown in general.
Nevertheless, according to Hastie et al. [8] the algorithm requires O(np(n ∧ p))
operations in most cases. Hence, the whole complexity of the LA algorithm is
generally of the order p2n(n ∧ p). Finally, the size of the family ĜLA cannot be
bounded uniformly, but it remains smaller than pD in practice.
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Adaptive lasso family ĜEW

Description. The family ĜEW is a modified version of ĜLA inspired by the
adaptive lasso of Zou [26]. The major difference between ĜEW and ĜLA lies

in the replacement of the l1 norm ‖θ′‖1 in (5) by ‖θ′/θ̂init‖1, where θ̂init is

a preliminary estimator of θ and θ′/θ̂init stands for the matrix with entries

(θ′/θ̂init)a,b = θ′a,b/θ̂init
a,b . Zou suggests to take for θ̂init a ridge estimator. Here,

we propose to use instead the Exponential Weights estimator θ̂EW of Dalalyan
and Tsybakov [5, 6]. The choice of this estimator appears more natural to us
since it is designed for the sparse setting and enjoys nice theoretical properties.
Moreover, we have observed on some simulated examples, that the adaptive
lasso with the Exponential Weights initial estimator performs much better than
the adaptive lasso with the ridge initial estimator.

To build the family ĜEW we thus start by computing the Exponential Weight
estimator θ̂EW . For each a ∈ Γ, we set Ha = {v ∈ Rp : va = 0} and

θ̂EW
a =

∫

Ha

v e−β‖Xa−Xv‖2

n

∏

j

(
1 + (vj/τ)2

)−α dv

Za
, (7)

with Za =
∫

Ha
e−β‖Xa−Xv‖2

n

∏
j

(
1 + (vj/τ)2

)−α
dv and α, β, τ > 0. We note

that θ̂EW
a with β = n/(2σ2

a) and σ2
a = var(Xa |X−a) is simply the Bayesian

estimator of θa with prior distribution dπ(v) ∝∏j

(
1 + (vj/τ)2

)−α
dv on Ha. In

the Gaussian stetting, Dalalyan and Tsybakov [5] give a sharp and assumption-

free sparse inequality for θ̂EW
a with β ≤ n/(4σ2

a), see Corollary 4 in [5].

The construction of ĜEW is now similar to the construction of ĜLA. For any
λ > 0 we set

θ̂EW,λ = argmin
{
‖X− Xθ′‖2

n×p + λ‖θ′/θ̂EW ‖1 : θ′ ∈ Θ
}

, (8)

and we define the graph ĜEW,λ
or by setting an edge between a and b if either

θ̂EW,λ
b,a or θ̂EW,λ

a,b is non-zero:

a
ĜEW,λ

or∼ b ⇐⇒ θ̂EW,λ
a,b 6= 0 or θ̂EW,λ

b,a 6= 0 .

Finally, the family ĜEW is given by

ĜEW =
{
ĜEW,λ

or , λ > λ̂EW
or,d

}
, where λ̂EW

or,D = sup
{

λ, deg(ĜEW,λ
or ) > D

}
.

The Exponential Weight estimator θ̂EW can be computed with a Langevin
Monte-Carlo algorithm. We refer to Dalalyan and Tsybakov [6] for the details.

Once θ̂EW is computed, the family ĜEW is obtained as before with the help of
the LARS-lasso algorithm.
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EW Algorithm

1. Compute θ̂EW with a Langevin Monte-Carlo algorithm.

2. Compute with LARS-lasso the
(
λl

a, supp(θ̂λl
a )
)

l≥1
for all a ∈ Γ.

3. Order the sequence
{
λl

a : a ∈ Γ, l ≥ 1
}
.

4. Compute Ĝ
EW,λl

a
or for all λl

a > λ̂or,D.

Complexity. The complexity of the first step depends on the choices of the tuning
parameters. Some examples are given in Section 4.1. The complexity of steps 2,
3 and 4 is the same as for the LA-algorithm, of the order p2n(n∧ p) in practice.

Finally, as for ĜLA, we do not know a general bound for the size of ĜEW, but it
remains smaller than pD in practice.

3. Theoretical results

We present in this section some theoretical results which assess the performance
of our selection procedure. We present two kind of results: a non-asymptotic
oracle-like inequality concerning the estimation of θ and a consistency result for
the estimation of GΣ.

3.1. A non-asymptotic oracle-like inequality

Next theorem states an oracle-like inequality in the spirit of Theorem 1 in [11].

We associate to the graph Ĝ selected by the procedure of Section 2, the estimator
θ̃ = θ̂

Ĝ
of the matrix θ, where θ̂G is given by (1) for any graph G ∈ Ĝ. The

quality of the estimation of θ is quantified by the MSEP of θ̃ defined by

MSEP(θ̃) = E
[
‖Σ1/2(θ̃ − θ)‖2

p×p

]
.

We refer to the introduction of Giraud [11] for a discussion on the relevance of

the use of the MSEP of θ̃ to assess the quality of the estimator Ĝ. In the sequel,
I stands for the identity matrix of size p.

Roughly speaking, next theorem ensures that the estimator θ̃ performs almost

as well as the best estimator in the family
{

θ̂G, G ∈ Ĝ
}
.
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Theorem 3.1. Assume that n ≥ 9. Let Ĝ be any (data-driven) family of graphs

with maximal degree DĜ = max{deg(G), G ∈ Ĝ} fulfilling

1 ≤ DĜ ≤ γ
n

2(1.1 +
√

log p)2
, for some γ < 1 . (9)

Then, the MSEP of the estimator θ̃ is upper bounded by

MSEP(θ̃) ≤ LK,γ log(p)

(
E

[
inf

G∈Ĝ

(
MSEP(θ̂G)

)]
∨ MSEP(I)

n

)
+ Rn . (10)

where LK,γ is a positive constant depending on K and γ only and the residual

term Rn = Rn(Σ, γ) (made explicit in the proof) is of order n3tr(Σ)e−n(
√

γ−γ)2/4.

If we forget the term n−1MSEP(I) in (10), Theorem 3.1 states that under
Condition (9) the MSEP of θ̃ nearly achieves, up to a log(p) factor, the average

minimal MSEP of the family of estimators {θ̂G, G ∈ Ĝ}. Hence, θ̃ performs
almost as well as the oracle up to a log p factor. This logarithmic factor is
proved to be unavoidable from a minimax point of view (see [21] Sect. 4.2).

Let us now compare the additional term n−1MSEP(I) appearing in (10)

with the risk MSEP(θ̂G). This additional term is equal to n−1
∑

a σ2
a, where σ2

a

stands for the conditional variance of Xa given the remaining variables. Hence,
this quantity is usually smaller than the risk MSEP(θ̂G) which is the sum of a
bias term and a variance term of order n−1

∑
a da(G)σ2

a. Nevertheless, when the

true graph GΣ is empty and Ĝ contains the empty graph, the additional term
n−1MSEP(I) is dominant and the estimator θ̃ is not optimal. Such a drawback
is actually unavoidable in model selection when the target is too close to zero
(see Birgé and Massart [4] Sect.2.3.3 for a discussion).

Finally, we can compare the MSEP of θ̃ to the MSEP of θ̂GΣ
when GΣ belongs

to Ĝ with large probability. Roughly speaking, the MSEP of θ̃ is in this case
smaller (up to a log p factor) than the MSEP of θ̂GΣ

. This means that θ̃ performs
almost as well as if we knew the true graph GΣ in advance .

Corollary 3.2. Under the assumption of the above theorem, if the minimal
graph GΣ belongs to the family Ĝ with large probability

P
(
GΣ ∈ Ĝ

)
≥ 1 − L(α) exp(−βnδ), for some α, β, δ > 0 (11)

then, the MSEP of the estimator θ̃ is upper bounded by

MSEP(θ̃) ≤ LK,γ log(p)

(
MSEP(θ̂GΣ

) ∨ MSEP(I)

n

)
+ Rn . (12)

where the residual term Rn = Rn(Σ, γ, α, β, δ) is of order n3tr(Σ)[e−n(
√

γ−γ)2/4+√
L(α)e−

β
2

nδ

].
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3.2. Consistency of the selection procedure

The next theorem states, under mild assumptions, a consistency result for our
selection procedure in a high dimensional setting. In the spirit of the results
of Meinshausen and Bühlmann [17], we consider the case where the number of
variables p increase with the sample size n.

We make the following assumptions:

(H.1) pn ≥ n .

(H.2) deg(GΣn
) ≤ ns

log pn
∧ n

log2 pn

for some s < 1 .

(H.3) min
a6=b, b∈neGΣn

(a)
θ2

a,b min
a6=b

Var(Xa|X−a)

Var(Xb|X−b)
≥ ns′−1 for some s′ > s .

Theorem 3.3. Assume that the family Ĝ of candidate graphs contains the true
graph with probability going to 1 and (H.1), (H.2), (H.3) are fulfilled. Then,

the estimation procedure GGMselect with K >
[
3 ∨ 2.5

(1−s)

]
and

DĜ = max{deg(G), G ∈ Ĝ} ≤ n

log2 pn

is consistent. More precisely, there exist some universal constant L and some
integer n0 = n0 [K, s, s′] not depending on the true graph GΣn

nor on the co-
variance Σn such that

P
[
Ĝ = GΣn

]
≥ 1 − Lp−1/2

n − P
[
GΣn

/∈ Ĝ
]
, for any n ≥ n0 .

Let us discuss the assumptions of the theorem and their similarity with
some of the hypotheses made in Meinshausen and Bühlmann [17]. The Assump-
tion (H.2) is met if pn grows polynomially with respect to n and the degree
of the true graph does not grow faster than nκ with κ < s (which corresponds
to Assumptions 1 and 2 in [17]). We mention that (H.2) is not satisfied when
pn grows exponentially with n unless GΣn

is empty. It is actually impossible to
consistently estimate a non-empty graph if pn is of order exp(n), see Wainwright
[22].

The Assumption (H.3) ensures that the conditional variances as well as the
non-zero terms θa,b are large enough so that the edges can be detected. To
compare with [17], Assumption (H.3) is met as soon as Assumption 2 and 5
in [17] are satisfied. In addition, we underline that we make no assumption on
the l1-norm of the prediction coefficients or on the signs of θa,b (Assumption 4
and 6 in [17]).

Finally, we do not claim that the condition K > [2.5/(1 − s) ∨ 3] is minimal
to obtain consistency. It seems from simulation experiments that smaller choices
of K also provide good estimations.
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4. Numerical study

It is essential to investigate the performance of statistical procedures on data.
Since we do not know the actual underlying graph of conditional dependences
on real data sets, we opt for a numerical study with simulated data. Our aims
in this study are to evaluate the feasibility of the GGMselect procedure and to
compare its performances with those of recent graph-selection procedures.

Simulating the data The matrix X is composed of n i.i.d. rows with Gaus-
sian Np(0, Ω−1) distribution where the inverse covariance matrix Ω is con-
structed according to the following procedure. We set Ω = BBT + D, where
B is a random sparse lower triangular matrix and D is a diagonal matrix with
random entries of order 10−3. The latter matrix D prevents Ω from having too
small eigenvalues. To generate B we split {1, . . . , p} into three consecutive sets
I1, I2, I3 of approximately equal size, and choose two real numbers ηint and
ηext between 0 and 1. For any a, b such that 1 ≤ a < b ≤ p, we set Ba,b = 0
with probability 1 − ηint if a and b are in the same set, and we set Ba,b = 0
with probability 1− ηext if a and b belong to two different sets. Then, the lower
diagonal values that have not been set to 0 are drawn according to a uniform
law on [−1, 1] and the diagonal values are drawn according to a uniform law on
[0, ε]. Finally, we rescale Ω in order to have 1 on the diagonal of Σ = Ω−1. This
matrix Σ defines a graph G = GΣ and a matrix θ defined as in Section 2.1. The
sparsity of the graph is measured via a sparsity index noted Is, defined as the
average number of edges per nodes in the graph.

In our simulation study we set η = ηint = 5ηext, and ε = 0.1. We evaluate the
value of η corresponding to a desired value of the sparsity index Is by simulation.
Choosing Is small, we get sparse graphs whose edges distribution is not uniform,
see Figure 1.

GGMSelect: choice of graphs families Our procedure is applied for the
families of graphs presented in Section 2.2. The methods are respectively denoted
QE, C01, LA and EW.

As it was already mentioned in Section 2.2, the size of the family ĜQE may
be very large leading to memory size problems in the computational process.
In that case, as soon as a memory size problem is encountered, the research
between ĜK,and and ĜK,or is stopped and prolonged by a stepwise procedure.

The family ĜEW is based on the calculation of exponential weight estimators
θ̂EW. This calculation depends on parameters, denoted α, β, σ, τ in [6], that
defined the aggregation procedure, and on parameters, denoted h and T in [6],
used in the Langevin Monte-Carlo algorithm. We chose these parameters as
follows. The matrix X being scaled such that the norm of each column equals 1,
we took σ = 1/

√
n, and we set α = 0, β = 2/n, τ = 1/

√
n(p − 1) and h = 10−3,

T = 200. Using these parameters values we did not encountered convergence
problems in our simulation study.

Our procedure depends on two tuning parameters: K occurring in the penalty
function (see Equation 3) and D the maximum degree of the graph. We choose
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Figure 1. One simulated graph G with p = 30 and Is = 3. The degree deg(G) of the graph
equals 8.

K = 2.5 in all simulation experiments. In practice, we would like to choose D
as large as possible, and this can be done for all methods except QE where the
complexity of the algorithm increases exponentially with D.

All these methods are implemented in R-2.7.2 in the package GGMselect

available on request.

4.1. CPU times

We assess the practical feasibility of the methods we propose from the point of
view of the memory size and computer time. To this aim, we simulate graphs
with p = 30, 100, 200, 300 nodes, sparsity Is = 3 and n = 50. The simulation
were run on a Bi-Pro Xeon quad core 2.66 GHz with 24 Go RAM. The computer
time being strongly dependent on the simulated graph we calculate the mean of
computer times over NG = 100 simulated graphs. For each of these graphs, one
matrix X is simulated. The results are given in Table 1. The maximum degree
D of the estimated graph was set to 5, except for the QE method where D = 3
and 5. The maximum allowed memory size is exceeded for the QE method when
D = 5 and p = 100, 200, and when D = 3 for p = 300. The LA and C01 methods
are running very fast. The computing time for the EW method increases quickly
with p: in this simulation study, it is roughly proportional to exp

(√
p/2
)
, see

Figure 2. This order of magnitude is obviously dependent on the choice of the
parameters occurring in the Langevin Monte-Carlo algorithm for calculating
θ̂EW .
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p QE D = 3 QE D = 5 EW D = 5 LA D = 5 C01 D = 5
30 16 [1.9, 1366] 146 [125, 975] 7.4 [6, 9.3] 0.47 0.05
100 1956 [240, 5628] >ams 112 [103, 121] 3.05 0.13
200 4240 [4008, 5178] >ams 856 [813, 943] 8.0 0.65
300 >ams >ams 4305 [4240, 4444] 14.7 2.12

Table 1

Means and ranges (in square brackets) of computing times in seconds calculated over
NG = 100 simulated graphs. For LA and C01 there is no variability in the computing times.

>ams means that the maximum allowed memory size was exceeded.

50 100 150 200 250 300

10
20

30
40

50
60

70

Figure 2. Graphic of log2(CPU time) versus p for the EW method.

4.2. Methods comparison

We compare our methods with the following ones:

• the 0-1 conditional independence approach proposed by Wille and Bühlman [23],
with the decision rule based on the adjusted p-values following the Benjamini-
Hochberg procedure taking α = 5%.

• the lasso approach, with the two variants and and or proposed by Mein-
shausen and Bühlmann [17] , taking α = 5%.

• the adaptive glasso method proposed by Fan et al. [9]. It works in two
steps. First, the matrix Ω is estimated using the glasso method. Then the
glasso procedure is run again using weights in the penalty that depend
on the previous estimate of Ω, see Equation (2.5) in [9]. At each step the
regularization parameter is calculated by K-fold cross-validation.

These methods will be denoted as WB, MB.and, MB.or and Aglasso. They were
implemented in R-2.7.2 using the packages lars for the MB methods and the
package glasso for the last one.

Assessing the performances of the methods We assess the performances
of the investigated methods on the basis of NG × NX runs where NG is the
number of simulated graphs and NX the number of matrices X simulated for
each of these graphs. We compare each simulated graph G with the estimated
graphs Ĝ by counting edges that are correctly identified as present or absent,
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and those that are wrongly identified. We thus estimate the false discovery rate
(or FDR) defined as the expected proportion of wrongly detected edges among
edges detected as present, and the power defined as the expected proportion of
rightly detected edges among edges present in the graph.

The statistical procedures designed to select graphs have one or several pa-
rameters that must be tuned. The quality of the final estimation is then affected
as well by the intrinsic ability of the procedure to select an accurate graph, as
by the parameter tuning. First, we investigate the first issue by varying the val-
ues of the tuning parameters and plotting power versus FDR curves. We choose
p = 100, n = 50 and Is = 3. Then, taking the point of view of a typical user, we
compare the different procedures with the tuning parameter recommended in the
literature. We investigate the effect of n by choosing n = 30, 50, 100, 150, keep-
ing p = 100. We also evaluate the effect of graph sparsity taking Is = 1, 2, 3, 4, 5,
p = 30 to keep the computer time under reasonable values, and n = 30.

4.2.1. Power versus FDR curves when p = 100

The number of nodes p and the number of observations n being fixed to p = 100,
n = 50, for each of the NG = 20 simulated graphs, we estimated the FDR, the
power and the MSEP on the basis of NX = 20 simulations. These calculation
are done for different values of the tuning parameter. The means over the NG

graphs are shown at Figure 3. The standard errors of the means over the NG

graphs are smaller than 0.0057 for the FDR, and 0.018 for the power.

Choice of the family of candidate graphs in our procedure The QE

method presents good performances: the FDR stays small and the power is high.
Though it was performed with D = 3, while EW, LA and C01 were performed
with D = 5, it works the best. The EW method is more powerful than LA and
C01 if one accepts a FDR greater than 2.5%.

Comparison with the other methods The procedures LA and C01 behave
similarly to WB method. The MB.or method presents higher values of the power
when the FDR is larger than 5%. The MB.and keeps down the FDR but lacks of
power. The Aglasso method behaves completely in a different way: the curve
stays under the others as long as the FDR is smaller than 20%. When the
regularization parameter is chosen by 5-fold cross-validation, the power equals
59% at the price of a very large FDR equal to 90% (not shown). In the following
we do not consider anymore the adaptive glasso method, and focus on methods
that have a good control of the FDR.

4.2.2. Effect of the number of observations n

Keeping p = 100 and Is = 3, the variations of the FDR and power values versus
the number of observations, are shown at Figure 4. The QE method is applied
with D = 3 while EW, LA and C01 are applied with D = 5. For all methods the
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Figure 3. Graphics of power versus FDR for the case p = 100, n = 50 and Is = 3. The
marks on the first graphic correspond to different values of the tuning parameter. The curves
for small FDR values are magnified on the second graphic. The FDR and power values cor-
responding to the tuning parameter recommended in the literature are superimposed on the
curves (dashed lines) : K = 2.5 for GGMselect, α = 5% for WB and MB methods. For Aglasso,
with λ chosen by 5-fold cross-validation, the FDR equals 0.90 and the power equals 0.59 (not
shown).
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power increases with n while the FDR decreases for EW and increases for MB.or,
LA and C01. QE and EW are the most powerful. When n is small, the QE method
stays more powerful than EW in spite of a smaller D.

0.0
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FDR versus n
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POWER versus n

QE
EW
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Figure 4. FDR and power estimated values as a function of n for p = 100 and Is = 3. The
results are calculated on the basis of NG = 20 simulated graphs and NX = 20 runs of matrices
X for each simulated graph. Our procedures were carried out with K = 2.5. The value of D

was equal to 3 for the QE method and 5 for the others. For the procedures MB.or, MB.and and
WB the tuning parameter α was taken equal to 5%.

4.2.3. Effect of graph sparsity

We have seen that when p is large, the GGMselect procedures using the graphs
families QE and EW are powerful and have a good control of the FDR. Never-
theless, the simulated graphs were sparse, Is = 3, and it may be worthwhile
testing how the methods perform when the graph sparsity varies. Because the
performances depend strongly on the simulated graph, the FDR and power are
estimated on the basis of a large number of simulations: the number of simulated
graphs NG equals 50 and the number of simulated matrices X for each graph,
NX equals 50. In order to keep reasonable computing times, we choose p = 30.
The results are shown at Figure 5. The standard errors of the means over the
NG graphs are smaller than 0.0055 for the FDR, and 0.025 for the power.

For all methods the power decreases when Is increases. The FDR values are
slightly increasing with Is for the EW and MB.or methods. The superiority of QE
over the others is clear. EW is more powerful then LA, C01, MB and WB methods
but its FDR is greater.
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Figure 5. Graphs of FDR and power estimated values versus the graph sparsity Is, for
p = 30 and n = 30. The results are calculated on the basis of NG = 50 simulated graphs and
NX = 50 runs of matrices X for each simulated graph. Our procedures were carried out with
K = 2.5 and D = 5. For the procedures MB.or, MB.and and WB the tuning parameter α was
taken equal to 5%.

4.2.4. GGMselect : mixing the graphs families

Our procedure allows to mix several graphs families. It may happen that some
graphs, or type of graphs, are known to be good candidates for modelling the
observed data set. In that case, they can be considered in the procedure, and thus
compete with ĜEW or ĜQE. This can be done with the function selectMyFam of
the package GGMselect.

Considering the results of our simulation study, we could ask if mixing ĜLA or
ĜC01 with ĜEW would not give a better control of the FDR than EW while keeping
high values of the power. To answer this question we carried out simulation
studies taking Ĝmix = ĜC01∪ĜLA∪ĜEW as the family of graphs. In all considered
cases for p, n, Is, the FDR and power values based on Ĝmix are similar to those
based on ĜEW. This result can be explained by studying the behavior of the
MSEP estimated by averaging the quantities ‖Σ1/2(θ̂

Ĝ
−θ)‖2 over the NG×NX

runs. The results are given at Figure 6. One can see that the smallest values of
the MSEP are obtained for QE, then EW. Moreover, the MSEP decreases when the
power increases, while it does not show any particular tendency when the FDR
varies. Considering these tendencies together with the fact that our procedure
aims at minimizing the MSEP, we can understand why we do not improve the
performances of EW by considering Ĝmix.
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Figure 6. Values of the MSEP for the simulation results given at Figure 5. The first graphic
on the left presents the ratio of the MSEP over the MSEP of the QE method. The two others
present the MSEP versus the FDR and the power.

4.3. Summary

We recommend to use the QE method if the calculation of ĜK,and and ĜK,or

is possible. Next, working out the family ĜQE can always be done using some
suitable algorithms if necessary (as a stepwise procedure for example). When p
is large, QE can be used for small values of D (D = 3 or even D = 2). It may

perform better than all the others when n is small. The procedure based on ĜEW

can be used for large p: the gain in power over LA, C01, MB and WB methods is
significant, but the FDR is slightly greater. The LA and C01 methods are running
very quickly, keep the FDR under control and are slightly more powerful than
WB and MB.and.

5. Proofs

5.1. Proof of Theorem 3.1

We write GD for the family of all the graph with nodes in Γ and degree less than
D. We remind the reader that for any graph G ∈ GD we have noted ΘG the
space of p×p matrices θ such that θa,b is non zero if and only if there is en edge
between a and b in G. We also set Θ̄Dmax

= ∪G∈GDmax
ΘG. We set λ = (1−√

γ)2

and introduce the event

B =

{
λ‖Σ1/2A‖p×p ≤ 1√

n
‖XA‖n×p ≤ λ−1‖Σ1/2A‖p×p, for all A ∈ θ + Θ̄Dmax

}
.

On this event we can control the L2-loss of θ̃ by the empirical loss since

‖Σ1/2(θ̃ − θ)‖2
p×p1B ≤ λ−2

n
‖X(θ̃ − θ)‖2

n×p1B . (13)
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Furthermore, according to Lemma 1 in [11], we have P(Bc) ≤ 2e−n(
√

γ−γ)2/2

when Condition (9) is met. To bound the risk of the procedure, we consider
apart the events B and Bc.

5.1.1. Bound on E
[
‖Σ1/2(θ̃ − θ)‖2

p×p1B

]

We have X = Xθ + ǫ, where ǫ is a n× p matrix distributed as follows: for each
a ∈ Γ, the column ǫa is independent of X−a and is distributed according to the
Gaussian law N (0, σ2

aIn), with σ2
a = 1/Ωa,a. For any G ∈ GD, we write hence-

forth θG for the orthogonal projection of θ on ΘG according to the Euclidean
norm ‖Σ1/2 · ‖p×p on Rp×p. Similarly, we write θ̄G for the orthogonal projection
of θ on ΘG according to the (random) Euclidean norm ‖X · ‖n×p on Rp×p. For
any G ∈ GD, we write da(G) for the degree of the node a in G and introduce
the positive quantity

R(G) =

p∑

a=1

(
1 +

pen(da(G))

n − da(G)

)(
‖X(θa − θ̄G

a )‖2 + 2| < Xθa − Xθ̄G
a , ǫa > |

)

+

p∑

a=1

pen(da(G))

n − da(G)
‖ǫa‖2,

where ‖.‖ and < ., . > denote the canonical norm and scalar product on Rn.
Following the same lines as in the beginning of the proof of Theorem 2 in Baraud
et al. [2], we get for any G∗ in Ĝ

K − 1

K
‖X(θ̃ − θ)‖2

n×p1B ≤ R(G∗)1B + ∆(Ĝ)1B (14)

with

∆(G) =

p∑

a=1

σ2
a

(
KUneG(a) −

pen(da(G))

n − da(G)
VneG(a)

)

+

where UneG(a) and VneG(a) are two independent χ2 random variables with da(G)+
1 and n − da(G) − 1 degrees of freedom.

We note that under Condition (9) there exists some constant c(γ) depending
on γ only, such that

pen(d) ≤ c(γ)K(d + 1) log(p), for all d ∈ {0, . . . , Dmax} ,

see Proposition 4 in Baraud et al. [2]. In particular, we have for any G ∈ GD

pen(da(G))

n − da(G)
≤ c(γ)K(Dmax + 1) log(p)

n/2
≤ 4Kγc(γ) = Lγ,K .

Using this bound together with

|2 < Xθ − Xθ̄G
a , ǫa > | ≤ ‖X(θa − θ̄G

a )‖2 + σ2
aξ2

a,G,
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where for any G ∈ G and a ∈ {1, . . . , p}, the random variable

ξa,G =< X(θa − θ̄G
a ), ǫ > /(σa‖X(θa − θ̄G

a )‖)

is standard Gaussian, we obtain

R(G) ≤ (1 + Lγ,K)

p∑

a=1

(
2‖X(θa − θ̄G

a )‖2 + σ2
aξ2

a,G

)
+

pen(da(G))

n − da(G)
‖ǫa‖2

≤ 2(1 + Lγ,K)‖X(θ − θ̄G)‖2
n×p + (4 + Lγ,K)

p∑

a=1

pen(da(G))σ2
a + r(GD)

where

r(GD) =

p∑

a=1

σ2
a

(
(1 + Lγ,K)

∑

G∈G

[
ξ2
a,G − pen(da(G))

]
+

+ Lγ,K

[
‖ǫa‖2/σ2

a − 3n/2
]
+

)
.

Furthermore, we have ‖X(θ − θ̄G)‖n×p ≤ ‖X(θ − θG)‖n×p and on the event B
we also have ‖X(θ − θG)‖2

n×p ≤ nλ−2‖Σ1/2(θ − θG)‖2
p×p so that on B

R(G) ≤ L′
γ,K

(
nλ−2‖Σ1/2(θ − θG)‖2

p×p +

p∑

a=1

pen(da(G))σ2
a

)
+ r(GD),

with L′
γ,K = max(2 + 2Lγ,K, 4 + Lγ,K). Putting this bound together with (13)

and(14), we obtain

‖Σ1/2(θ̃ − θ)‖2
p×p1B ≤ K

nλ2(K − 1)

(
inf

G∗∈Ĝ
R(G∗) + ∆(Ĝ)

)
1B

≤ L′′
γ,K inf

G∗∈Ĝ

(
‖Σ1/2(θ − θG∗

)‖2
p×p +

p∑

a=1

pen(da(G∗))
σ2

a

n

)

+L′′
γ,Kn−1

(
r(GD) + ∆(Ĝ)

)
.

We note that

n−1E(r(GD)) ≤
p∑

a=1

σ2
a

n
(1 + Lγ,K)(3 + log(p))

and we get from the proof of Theorem 1 in [11] that

n−1E(∆(Ĝ)) ≤ n−1E

(
sup

G∈GD

∆(G)

)

≤ K

p∑

a=1

σ2
a

n
(1 + log(p)).
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Since pen(d) ≤ c(γ)K(d + 1) log(p), the latter bounds enforce the existence of
constants Lγ,K and L′

γ,K depending on γ and K only, such that

E
[
‖Σ1/2(θ̃ − θ)‖2

p×p1B

]

≤ Lγ,K E

[
inf

G∗∈Ĝ

(
‖Σ1/2(θ − θG∗

)‖2
p×p +

p∑

a=1

(
log(p) ∨ pen[da(G∗)]

)σ2
a

n

)]

≤ L′
γ,K log(p)

(
E

[
inf

G∗∈Ĝ
MSEP(θ̂G∗)

]
∨

p∑

a=1

σ2
a

n

)
.

Finally, we note that
∑p

a=1 σ2
a/n = MSEP(I).

5.1.2. Bound on E
[
‖Σ1/2(θ̃ − θ)‖2

p×p1Bc

]

We now prove the bound E
[
‖Σ1/2(θ̃ − θ)‖2

p×p1Bc

]
≤ Ln3tr(Σ)

√
P(Bc). We have

E
[
‖Σ1/2(θ̃ − θ)‖2

p×p1Bc

]
=

p∑

a=1

E
[
‖Σ1/2(θ̃a − θa)‖21Bc

]

and we will upper bound each of the p terms in this sum. Let a be any node in Γ.
Given a graph G, the vector [θ̂G]a depends on G only through the neighborhood

neG(a) of a in G. Henceforth, we write θ̂ne
Ĝ

(a) for θ̃a in order to emphasize

this dependency. By definition θ̂ne
Ĝ

(a) is the least-squares estimator of θa with

support included in neĜ(a). Let us apply the same arguments as in the proof of
Lemma 7.12 in [21]. By Cauchy-Schwarz inequality, we have

E
[
‖Σ1/2(θ̃a − θa)‖21Bc

]
≤
√

P(Bc)

√
E
[
‖Σ1/2(θ̂ne

Ĝ
(a) − θa)‖4

]
. (15)

Let ND(a) be the set made of all the subsets of Γ \ {a} whose size are smaller
than γn/[2(1.1 +

√
log(p))2]. By Condition (9), it holds that the estimated

neighborhood ne
Ĝ

(a) belongs to ND(a), so Hölder inequality gives

E
[
‖Σ1/2(θ̂ne

Ĝ
(a) − θa)‖4

]
=

∑

ne(a)∈ND(a)

E
[
1ne

Ĝ
(a)=ne(a)‖Σ1/2(θ̂ne(a) − θa)‖4

]

≤
∑

ne(a)∈ND(a)

P
[
ne

Ĝ
(a) = ne(a)

]1/u

E
[
‖Σ1/2(θ̂ne(a) − θa)‖4v

]1/v

≤
∑

ne(a)∈ND(a)

P
[
ne

Ĝ
(a) = ne(a)

]1/u

sup
ne(a)∈ND(a)

E
[
‖Σ1/2(θ̂ne(a) − θa)‖4v

]1/v

,
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where v =
⌊

n
8

⌋
, and u = v

v−1 (we remind the reader that n is larger than 8). In
particular, we have the crude bound

√
E
[
‖Σ1/2(θ̂ne

Ĝ
(a) − θa)‖4

]

≤ [Card(ND(a))]1/2v sup
ne(a)∈ND(a)

E
[
‖Σ1/2(θ̂ne(a) − θa)‖4v

]1/2v

,

since the sum is maximum when every P[ne(a) = ne
Ĝ

(a)] equals [Card(ND(a))]−1.

We first bound the term [Card(ND(a))]
1/2v

. The size of the largest subset in
ND(a) is smaller than n/(2 log(p)), so the cardinality of ND(a) is smaller than

p
D

Ĝ . Since n is larger than 8, we get

[Card(ND(a))]
1/2v ≤ exp

[
n

4⌊n/8⌋

]
≤ L ,

which ensures the bound
√

E
[
‖Σ1/2(θ̂ne

Ĝ
(a) − θa)‖4

]
≤ L sup

ne(a)∈ND(a)

E
[
‖Σ1/2(θ̂ne(a) − θa)‖4v

]1/2v

.

(16)
To conclude, we need to upper bound this supremum. Given a subset ne(a)
in ND(a), we define θne(a) as the vector in Rp such that Σ1/2θne(a) is the or-

thogonal projection of Σ1/2θa onto the linear span
{
Σ1/2β : supp(β) ⊂ ne(a)

}
.

Pythagorean inequality gives

‖Σ1/2(θ̂ne(a) − θa)‖2 = ‖Σ1/2(θne(a) − θa)‖2 + ‖Σ1/2(θ̂ne(a) − θne(a))‖2

and we obtain from Minkowski’s inequality that

E
[
‖Σ1/2(θ̂ne(a) − θa)‖4v

]1/(2v)

≤ ‖Σ1/2(θne(a) − θa)‖2 + E
[
‖Σ1/2(θ̂ne(a) − θne(a))‖4v

]1/(2v)

.

The first term is smaller than Var(Xa). In order to bound the second term, we
use the following lemma which rephrases Proposition 7.8 in [21].

Lemma 5.1. For any neighborhood ne(a) and any r > 2 such that n−|ne(a)|−
2r + 1 > 0,

E
[
‖Σ1/2(θ̂ne(a) − θne(a))‖2r

]1/r

≤ Lr|ne(a)|nVar(Xa) .

Since v is smaller than n/8 and since |ne(a)| is smaller than n/2, it follows
that for any model ne(a) ∈ ND(a), n − |ne(a)| − 4v + 1 is positive and

E
[
‖Σ1/2(θ̂ne(a) − θa)‖4v

]1/(2v)

≤ Var(Xa)
[
1 + Ln2v

]
≤ Ln3Σa,a .
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Gathering this last upper bound with (15) and (16), we get that

E
[
‖Σ1/2(θ̃ − θ)‖2

p×p1Bc

]
≤ Ln3tr(Σ)

√
P(Bc).

5.1.3. Conclusion

Finally, putting together the bound on E[‖Σ1/2(θ̃ − θ)‖21B], the bound on

E[‖Σ1/2(θ̃ − θ)‖21Bc ], and the bound P(Bc) ≤ 2pe−n(
√

γ−γ)2/2, we obtain

MSEP(θ̃) ≤ LK,γ log(p)

(
E

[
inf
G∈Ĝ

(
MSEP(θ̂G)

)]
∨ MSEP(I)

n

)
+ Rn ,

with Rn ≤ Ln3tr(Σ)e−n(
√

γ−γ)2/4.

5.2. Proof of Corollary 3.2

The result is proved analogously except that we replace the event B by

B′ = B ∪
{

GΣ ∈ Ĝ
}

.

Hence, the residual term now satisfies

Rn ≤ Ln3tr(Σ)
√

P(Bc)

≤ Ln3tr(Σ)
[
e−n(

√
γ−γ)2/4 +

√
L(α)e−

β

2
nδ
]

.

5.3. Proof of Theorem 3.3

In this proof, the notations o(1), O(1) respectively refer to sequences that con-
verge to 0 or stay bounded when n goes to infinity. These sequences may depend
on K, s, s′ but do not depend on Gn, on the covariance Σ, or a particular subset
S ⊂ Γ. The technical lemmas are postponed to Section 5.4. In the sequel, we
omit the dependency of p and Σ on n for the sake of clarity. First, observe that
the result is trivial if n/ log(p)2 < 1, because the assumptions imply that GΣ

is the empty graph whereas the family Ĝ contains at most the empty graph. In
the sequel, we assume that n/ log(p)2 ≥ 1.

Let us set Dmax = n/ log(p)2. We shall prove that for some L > 0,

P

(
Crit(GΣ) = inf

G′, deg(G′)≤Dmax

Crit(G′)

)
≥ 1 − Lp−1/2 , (17)

for n larger than n0(K, s, s′). Since Ĝ minimizes the criterion Crit(.) on the

family Ĝ, this will imply the result of the theorem.



Giraud, Huet and Verzelen/GGMselect 25

In fact, we shall prove a slightly stronger result than (17). Let a be a node

in Γ and let ne(a) be a subset of Γ \ {a}. As defined in Section 5.1.2, θ̂ne(a) is
the least-squares estimator of θa whose support is included in ne(a).

θ̂ne(a) = arg inf
θ′

a, supp(θ′
a)⊂ne(a)

‖Xa − Xθ′a‖2
n .

If G is a graph such that the neighborhood neG(a) equals ne(a), then θ̂ne(a) =

[θ̂G]a. We then define the partial criterion Crit(a, ne(a)) by

Crit(a, ne(a)) = ‖Xa − Xθ̂ne(a)‖2
n

(
1 +

pen(|ne(a)|)
n − |ne(a)|

)
.

Observe that for any graph G, Crit(G) =
∑p

a=1 Crit(a, neG(a)). We note
n̂e(a) the set that minimizes the criterion Crit(a, .) among all subsets of size
smaller than Dmax.

n̂e(a) = arg inf
ne(a)∈NDmax

(a)
Crit(a, ne(a)) .

If for all nodes a ∈ Γ, the selected set n̂e(a) equals neGΣ
(a), then GΣ minimizes

the criterion Crit(.) over all graphs of degree smaller than Dmax. Consequently,
the property (17) is satisfied if for any node a ∈ Γ, it holds that

P [n̂e(a) = neGΣ
(a)] ≥ 1 − 7p−3/2

n , (18)

for n larger than some n0[K, s, s′].

Let us fix some node a ∈ Γ. We prove the lower bound (18) in two steps:

1. With high probability, the estimated neighborhood n̂e(a) does not strictly
contain the true one neGΣ

(a).

P [n̂e(a) ! neGΣ
(a)] ≤ p−3/2

n , (19)

for n larger than some n0[K, s, s′].
2. With high probability, the estimated neighborhood n̂e(a) contains the true

one neGΣ
(a).

P [n̂e(a) + neGΣ
(a)] ≤ 6p−3/2

n , (20)

for n larger than some n0[K, s, s′].

The remaining part of the proof is deserved to (19) and (20).

Let us recall some notations and let us introduce some other ones. The com-
ponent Xa decomposes as

Xa = Xθa + ǫa ,
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where ǫa follows a centered normal distribution with variance Ω−1
a,a = Var(Xa|X−a).

The variables ǫa are independent of X−a. Given a set S ⊂ Γ, ΠS stands for the
projection of Rn into the space generated by (Xa)a∈S , whereas Π⊥

S denotes the
projection along the space generated by (Xa)a∈S . The notation 〈., .〉n refers to
the empirical inner product associated with the norm ‖.‖n. For any neighbor-
hood ne(a) ⊂ Γ \ {a} such that |ne(a)| ≤ Dmax, let us define ∆(ne(a), neGΣ

(a))
by

∆(ne(a), neGΣ
(a)) = Crit(a, ne(a)) − Crit(a, neGΣ

(a)) .

5.3.1. Bound on P (n̂e(a) ! neGΣ
(a))

We shall upper bound the probability that ∆(ne(a), neGΣ
(a)) is negative for

at least one of the neighborhoods ne(a) ∈ NDmax
(a) such that ne(a) strictly

contains neGΣ
(a). For such a set ne(a), ∆(ne(a), neGΣ

(a)) decomposes as (see
e.g. Lemma 7.1 in [21])

∆(ne(a), neGΣ
(a))

= ‖Π⊥
ne(a)ǫa‖2

n

[
1 +

pen(|ne(a)|)
n − |ne(a)|

]
− ‖Π⊥

neGΣ
(a)ǫa‖2

n

[
1 +

pen(|neGΣ
(a)|)

n − |neGΣ
(a)|

]

= −‖ΠneGΣ
(a)⊥∩ne(a)ǫa‖2

n

[
1 +

pen(|neGΣ
(a)|)

n − |neGΣ
(a)|

]

+ ‖Π⊥
ne(a)ǫa‖2

n

[
pen(|ne(a)|)
n − |ne(a)| − pen(|neGΣ

(a)|)
n − |neGΣ

(a)|

]
.

Hence, ∆(m, neGΣ
(a)) > 0 if

‖ΠneGΣ
(a)⊥∩ne(a)ǫa‖2

n/(|ne(a) \ neGΣ
(a)|)

‖Π⊥
ne(a)ǫa‖2

n/(n − |ne(a)|)

<
pen(|ne(a)|) − pen(|neGΣ

(a)|)
|ne(a) \ neGΣ

(a)|

[
1 +

pen(|neGΣ
(a)|)

n − |neGΣ
(a)|

]−1

. (21)

To conclude, it remains to prove that the bound (21) holds with high probabil-
ity. Let us call A1 the right expression of (21) and let us derive a lower bound of
A1. Afterwards, we shall upper bound with high probability the left expression
of (21).

Upper bound of A1. We first upper bound the penalty function.

Lemma 5.2. Let d1 ≥ d2 be two positive integers such that d1 ≤ e−3/2(p − 1).
We have

pen(d1) − pen(d2) ≥ 2K(d1 − d2) log

(
p − d1

d1

)
. (22)
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A proof of this lemma is provided in Section 5.4. By Proposition 4 in [2], the
penalty pen(|neGΣ

(a)|) satisfies

pen (|neGΣ
(a)|) ≤ LK

|neGΣ
(a)|

n
log

(
p − 1

|neGΣ
(a)|

)
,

where L is some numerical constant. This last term converges towards 0 as n
goes to infinity since |neGΣ

(a)| ≤ (ns/ log(p)) ∧ (n/ log(p)2) (Assumption 2).
Gathering this upper bound with Lemma 5.2, we get

A1 ≥ 2K
log
(

p−|ne(a)|
|ne(a)|

)

1 +
pen(|neGΣ

(a)|)
n−|neGΣ

(a)|
≥ 2K log

(
p

|ne(a)|

)
(1 − o(1)) . (23)

Lower bound of the left part of (21). The random variables involved in
this expression follow a Fisher distribution with |ne(a)\neGΣ

(a)| and n−|ne(a)|
degrees of freedom. To conclude, we only need to compare the quantile of such
a variable with the bound (23). Let u ∈ (0, 1) and let F−1

D,N (u) denote the 1− u
quantile of a Fisher random variable with D and N degrees of freedom. By
Lemma 1 in [3], it holds that

DF−1
D,N (u) ≤ D + 2

√
D

(
1 + 2

D

N

)
log

(
1

u

)

+

(
1 + 2

D

N

)
N

2

[
exp

(
4

N
log

(
1

u

))
− 1

]
.

Let us set u to

u =

{
p3/2e|ne(a)\neGΣ

(a)|
(

p − |neGΣ
(a)| − 1

|ne(a) \ neGΣ
(a)|

)}−1

.

Since we consider the case n/ log(p)2 ≥ 1 and p ≥ n, the term 4/(n −
|ne(a)|) log(1/u) goes to 0 with n (uniformly w.r.t. ne(a)).

A2 = F−1
|ne(a)\neGΣ

(a)|,n−|ne(a)|(u) ≤ 1 + 2

√
1

|ne(a) \ neGΣ
(a)| (1 + o(1)) log

(
1

u

)

+
2

|ne(a) \ neGΣ
(a)| (1 + o(1)) log

(
1

u

)
.

The term log(1/u)/|ne(a) \ neGΣ
(a)| goes to infinity with n (uniformly w.r.t.

ne(a)). Hence, we get

A2 ≤ 1 +
2

|ne(a) \ neGΣ
(a)| log

(
1

u

)
(1 + o(1)) .
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Applying the classical inequality log
(

l
k

)
≤ k log(el/k), we obtain

A2 ≤
[
3

log(p)

|ne(a) \ neGΣ
(a)| + 2 log

(
p

|ne(a) \ neGΣ
(a)|

)]
(1 + o(1))

≤ 5 log

(
p

|ne(a) \ neGΣ
(a)|

)
(1 + o(1)) . (24)

Conclusion. Let us compare the lower bound (23) of A1 with the upper
bound (24) of A2.

• Let us first assume that |ne(a)| ≤ 2|neGΣ
(a)|. Then, we have

A1 ≥ 2K log

(
p

|neGΣ
(a)|

)
(1 − o(1)) ≥ 2K(1 − s) log(p) (1 − o(1)) ,

since |neGΣ
(a)| ≤ ns/ log(p) ≤ ps. In particular,

A2 ≤ 5 log

(
p

|ne(a) \ neGΣ
(a)|

)
(1 + o(1)) < A1,

for n large enough since we assume that 2K(1 − s) > 5.
• If |ne(a)| > 2|neGΣ

(a)|, we also have

A2 ≤ 5 log

(
p

|ne(a)|

)
(1 + o(1)) < A1 ,

for n large enough since we assume that 2K > 5.

It follows from Ineq. (21) and the definition of A1 and A2 that

P [∆(ne(a), neGΣ
(a)) < 0] ≤

{
p3/2e|ne(a)\neGΣ

(a)|
(

p − |neGΣ
(a)|

|ne(a) \ neGΣ
(a)|

)}−1

,

for n larger than some positive constant that may depend on K, s, but does not
depend on ne(a). Applying this bound to any neighborhood ne(a) that strictly
contains neGΣ

(a) yields Statement (19):

P [n̂e(a) ! neGΣ
(a)] ≤ p−3/2 ,

for n large enough.

5.3.2. Bound on P (n̂e(a) + neGΣ
(a))

Again, we shall prove that ∆[ne(a), neGΣ
(a)] is positive for ne(a) + neGΣ

(a)
with overwhelming probability. We recall that θne(a) is the vector in Rp such

that Σ1/2θne(a) is the orthogonal projection of Σ1/2θa onto the linear span{
Σ1/2β : supp(β) ⊂ ne(a)

}
. Moreover, ‖Σ1/2(θa−θne(a))‖2 = Var(Xa|Xne(a))−

Var(Xa|X−a) (see e.g. Lemma 7.1 in [21]).
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Then, ∆(ne(a), neGΣ
(a)) decomposes as

∆(ne(a), neGΣ
(a)) =

∥∥∥Π⊥
ne(a)

[
ǫa + X(θa − θne(a))

]∥∥∥
2

n

[
1 +

pen(|ne(a)|)
n − |ne(a)|

]

−
∥∥∥Π⊥

neGΣ
(a)ǫa

∥∥∥
2

n

[
1 +

pen(|neGΣ
(a)|)

n − |neGΣ
(a)|

]
.

Let κ = 6/7 and let us define

Ene(a) = κ−1

〈
Π⊥

ne(a)X(θ − θne(a))

‖Π⊥
ne(a)X(θ − θne(a))‖n

, Π⊥
ne(a)ǫa

〉2

n

+ ‖Πne(a)ǫa‖2
n .

We recall that 〈., .〉n is the inner product associated to the norm ‖.‖n. The
quantity ∆(ne(a), neGΣ

(a)) is positive if

(1 − κ)‖Π⊥
ne(a)X(θ − θne(a))‖2

n > Ene(a)

[
1 +

pen(|ne(a)|)
n − |ne(a)|

]

+ ‖ǫa‖2
n

[
pen(|neGΣ

(a)|)
n − |neGΣ

(a)| − pen(|ne(a)|)
n − |ne(a)|

]
. (25)

We respectively call A3 and A4 the right and the left terms of the inequality.
To conclude, we need to control the deviations of these terms in order to prove
that (25) holds with high probability.

Upper Bound of A3. On an event A of probability larger than 1− 2p−3/2,
the random variable ‖ǫa‖2

n satisfies (see Lemma 1 in [16])

1 − 2

√
3 log(p)

2n
≤ ‖ǫa‖2

n

Var(Xa|X−a)
≤ 1 + 2

√
3 log(p)

2n
+ 3

log(p)

n
.

Let us bound the other random variables involved in (25). As explained in
the proof of Th.3.1 in [21], the random variables ‖Π⊥

ne(a)X(θ − θne(a))‖2
n and

Ene(a) follow distributions of linear combinations of χ2 random variables. We
apply again Lemma 1 in [16] . On a event Ane(a) of probability larger than

1 − 2p−3/2e−|ne(a)|( p−1
|ne(a)|

)−1
, it holds that

‖Π⊥
ne(a)X(θ − θne(a))‖2

n

Var(Xa|Xne(a)) − Var(Xa|X−a)
≥ 1 − |ne(a)|

n

− 2

√
3
2 log(p) + |ne(a)| [2 + log (p − 1)]

n
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and

Ene(a)

Var(Xa|X−a)
≤ |ne(a)| + κ−1

n

+
2

n

√

(|ne(a)| + κ−2)

[
|ne(a)|

(
2 + log

(
p − 1

|ne(a)|

))
+

3

2
log(p)

]

+
2κ−1

n

[
|ne(a)|

(
2 + log

(
p − 1

|ne(a)|

))
+

3

2
log(p)

]
.

We derive that

Ene(a)

Var(Xa|X−a)
≤ 2κ−1

n

[
|ne(a)| log

(
p − 1

|ne(a)|

)
+

3

2
log(p)

]
(1 + o(1))

+

√
6|ne(a)| log(p)

n
+

κ−1

n
.

• CASE 1: ne(a) is non empty.

Ene(a)

Var(Xa|X−a)
≤ κ−1

2|ne(a)| log
(

p−1
|ne(a)|

)
+ 3 log(p)

n
(1 + o(1)) .

Let us upper bound the terms involving pen(|ne(a)|) in (25) on the event
A ∩ Ane(a).

{
Ene(a)

[
1 +

pen(|ne(a)|)
n − |ne(a)|

]
− ‖ǫa‖2

n

pen(|ne(a)|)
n − |ne(a)|

}
/Var(Xa|X−a)

≤ κ−1

n

(
2|ne(a)| log

(
p − 1

|ne(a)|

)
+ 3 log(p)

)
(1 + o(1))

− 2K

n
|ne(a)| log

(
p − 1

|ne(a)|

)
(1 + o(1)) .

This last quantity is negative for n large enough since K ≥ 3.

• CASE 2: ne(a) is empty. We get the upper bound

Ene(a)

[
1 +

pen(|ne(a)|)
n − |ne(a)|

]
− ‖ǫa‖2

n

pen(|ne(a)|)
n − |ne(a)|

≤ κ−1 + 3 log(p)

n
Var(Xa|X−a)

≤ (3 + κ−1)ns−1Var(Xa|X−a) .

Indeed, log(p) has to be smaller than ns. If this is not the case, then
neGΣ

(a) should be empty and ne(a) cannot satisfy neGΣ
(a) * ne(a).
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We conclude that on the event A ∩ Ane(a),

A3 ≤ (3 + κ−1)ns−1Var(Xa|X−a) + ‖ǫa‖2
n

pen(|neGΣ
(a)|)

n − |neGΣ
(a)| ,

for n large enough. Let us upper bound the penalty term as done in the upper
bound of A1.

pen(neGΣ
(a)) ≤ LK

|neGΣ
(a)|

n
log

(
p − 1

|neGΣ
(a)|

)
.

Since |neGΣ
(a)| is assumed to be smaller than ns

log(p) , the term A3 is upper

bounded as follows

A3 ≤ (K + 1)ns−1Var(Xa|X−a)O(1) . (26)

for n large enough.

Lower Bound of A4. Let us lower bound the left term A4 in (25) on the
event A ∩ Ane(a).

A4 ≥ (1 − o(1))(1 − κ)
[
Var(Xa|Xne(A)) − Var(Xa|X−a)

]

≥ (1 − o(1))(1 − κ) min
b∈Γ\{a}

(θa,b)
2

min
b,c∈Γ\{a}

Var(Xb|X−b)

Var(Xc|X−c)
Var(Xa|X−a)

≥ (1 − κ)(1 − o(1))ns′−1Var(Xa|X−a) .

Thanks to the last bound and (26) and since s′ is larger than s, A3 < A4 on
the event A∩Ane(a) and for n large enough (not depending on ne(a)). Hence, for
n large enough the inequality (25) holds simultaneously for all neighborhoods
ne(a) such that neGΣ

(a) * ne(a) with probability larger than 1 − 2p−3/2 −
2(e/(e − 1))p−3/2. We conclude that

P (n̂e(a) + neGΣ
(a)) ≤ 6p−3/2 ,

for n large enough.

5.4. Lemmas

Lemma 5.3. For any positive integer d ≤ e−3/2(p − 1),

EDKhi

[
d + 1, n − d − 1,

[(
p − 1

d

)
(d + 1)2

]−1
]
≥ d + 1 .

Lemma 5.4. For any positive number x and any positive integers d and N ,
EDKhi(d, N, x) is an increasing function with respect to d and a decreasing
function with respect to N .
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Lemma 5.5. For any integer d ≥ 2, the function

E
[
(Xd − xXN

N )+
]

E [(X2 − x)+]

is increasing with respect to x as soon as x ≥ d.

Proof of Lemma 5.2. Let us write L1 = log
((

p−1
d1

))
and L2 = log

((
p−1
d2

))
.

Lemma 5.4 ensures that

EDKhi
(
d1 + 1, n − d1 − 1, e−L1

)
≥ EDKhi

(
d2 + 1, n − d2 − 1, e−L1

)
. (27)

Let x1 ≥ x2 be two positive numbers larger than some integer d2 + 1. By
Lemma 5.5, it holds that

DKhi(d2 + 1, n− d2 − 1, x1)

DKhi(d2 + 1, n− d2 − 1, x2)
≥ E [(X2 − x1)+]

E [(X2 − x2)+]
= e−(x1−x2)/2 .

By Lemma 5.3, EDKhi(d2 + 1, n− d2 − 1, e−L2) is larger than d2 + 1. Setting
x1 = EDKhi(d2 +1, n− d2 − 1, e−L1) and x2 = EDKhi(d2 +1, n− d2 − 1, e−L2),
we obtain

EDKhi(d2 + 1, n− d2 − 1, e−L1) − EDKhi(d2 + 1, n − d2 − 1, e−L2) ≥ 2(L1 − L2) , (28)

for d2 ≥ 1. Gathering the bounds (27), (28) with the definition (3) of the penalty
enables to conclude

pen(d1) − pen(d2) ≥ 2K(d1 − d2) log

(
p − d1

d1

)
. (29)

Proof of Lemma 5.3. We write henceforth Xd and X ′
N for two independent χ2

random variables with d and N degrees of freedom. Applying Jensen inequality
we obtain that for any x > 0 and any d ≥ 2

d × DKhi(d, N, x) = E

[(
Xd − x

X ′
N

N

)

+

]

≥ E
[
(Xd − x)+

]

≥ E
[
(X2 − x)+

]
= 2e−x/2.

Setting x = EDKhi(d, N, e−L) with L ≥ 0, we obtain

EDKhi(d, N, e−L) ≥ 2L − 2 log(d), for d ≥ 2.

It follows that

EDKhi

[
d + 1, n − d − 1,

[(
p − 1

d

)
(d + 1)2

]−1
]

≥ 2 log

(
p − 1

d

)

≥ 2d log

(
p − 1

ed

)
,

which is larger than d if d ≤ e−3/2(p − 1).
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Proof of Lemma 5.4. By definition (3) of the function EDKhi, we only have to
prove that DKhi(d, N, x) is increasing with respect to d and decreasing with
respect to n.

Conditioning on XN (resp. Xd) it suffices to prove the two following facts:
FACT 1: Let d be a positive integer. For any positive number x,

dE [(Xd+1 − x)+] ≥ (d + 1)E [(Xd − x)+] .

FACT 2: Let N be a positive integer. For any positive numbers x and x′,

E

[(
x′ − x

XN

N

)

+

]
≥ E

[(
x′ − x

XN+1

N + 1

)

+

]
.

Proof of FACT 1. Let (Z1, . . . , Zd+1) be d + 1 independent χ2 random

variables with 1 degree of freedom. Let Y =
∑d+1

i=1 Zi and for any i ∈ {1, . . . d+
1}, let Y (i) be the sum Y (i) =

∑
j 6=i Zj. The variable Y follows a χ2 distribution

with d + 1 degrees of freedom, while the variables Y (i) follow χ2 distribution
with d degrees of freedom. It holds that

d (Y − x)+ ≥
d+1∑

i=1

(
Y (i) − x

)

+
. (30)

Indeed, if all the variables Y (i) are larger than x, one observes that d (Y − x)+ =

d(
∑d+1

i=1 Zi − dx) while the second term equals d
∑d+1

i=1 Zi − d(d + 1)x. If some
of the variables Y (i) are smaller than x, it is sufficient to note that the variables
Y (i) are smaller than Y . We prove FACT 1 by integrating the inequality (30).

Proof of FACT 2. It is sufficient to prove that for any positive number x,

E

[(
x − XN

N

)

+

]
≥ E

[(
x − XN+1

N + 1

)

+

]
.

Observe that E
[(

x − XN

N

)
+

]
= (x − 1) + E

[(
XN

N − x
)
+

]
. Hence, it remains to

prove that

(N + 1)E
[
(XN − Nx)+

]
≥ NE

[
(XN+1 − (N + 1)x)+

]
. (31)

As in the proof of FACT 1, let (Z1, . . . , Zd+1) be d + 1 independent χ2 random

variables with 1 degree of freedom. Let Y =
∑d+1

i=1 Zi and for any i ∈ {1, . . . d+
1}, let Y (i) be the sum Y (i) =

∑
j 6=i Zi. It holds that

N+1∑

i=1

(
Y (i) − Nx

)

+
≥ N (Y − (N + 1)x)+ . (32)
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This bound is trivial if Y ≤ (N + 1)x. If Y is larger than (N + 1)x, then the

second term equals (N + 1)
∑N+1

i=1 (Y (i) − Nx), which is clearly smaller than
the first term. Integrating the bound (32) enables to prove (31) and then FACT
2.

Proof of Lemma 5.5. We show that the derivate of the function
E
[
(Xd − xXN

N )+
]
/E [(X2 − x)+] in non-negative for any x ≥ d. Thus, we have

to prove the following inequality:

E
[(

Xd − xXN

N

)
+

]

E
[

XN

N 1
Xd≥x

XN
N

] ≥ E
[
(X2 − x)+

]

P(X2 ≥ x)
= 2 .

Hence, we aim at proving that the function

Ψ(x) = E

[(
Xd − x

XN

N

)

+

]
− 2E

[
XN

N
1

Xd≥x
XN
N

]

is positive. Observe that Ψ(x) converges to 0 when x goes to infinity. Let us
respectively note fXd

(t) and fXN
N

(t) the densities of Xd and XN/N .

Ψ′(x) =

∫ ∞

t=0

t

[
2tfXd

(xt) −
∫ ∞

u=xt

fXd
(u)du

]
fXN

N

(t)dt .

Integrating by part the density of a χ2 distribution, we get the lower bound

∫ ∞

u=xt

fXd
(u)du ≥ (1/2)d/2

Γ(d/2)
2(xt)d/2−1e−xt/2 .

Ψ′(x) ≤ (1/2)d/2−1

Γ(d/2)

∫ ∞

t=0

t(xt)d/2−1e−xt/2(t − 1)fXN
N

(t)dt

≤ (1/2)(N+d)/2−1

Γ(d/2)Γ(N/2)
NN/2xd/2−1

∫ ∞

t=0

td/2(t − 1)tN/2−1e−(x+N)t/2dt

≤ 2NN/2xd/2−1

Γ(d/2)Γ(N/2)(x + N)(d+N)/2

∫ ∞

t=0

t(d+N)/2−1

(
2t

x + N
− 1

)
e−tdt

≤ 2NN/2xd/2−1

Γ(d/2)Γ(N/2)(x + N)(d+N)/2

[
2Γ
(

d+N
2 + 1

)

x + N
− Γ

(
d + N

2

)]

≤ 2NN/2xd/2−1Γ
(

d+N
2

)

Γ(d/2)Γ(N/2)(x + N)(d+N)/2

[
d + N

x + N
− 1

]
≤ 0 ,

since x ≥ d. Hence, Ψ is decreasing to 0 for x larger than d and it is therefore
non-negative.
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[17] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs
and variable selection with the lasso. Ann. Statist. 34, 3, 1436–1462.
MR2278363 (2008b:62044)

http://www.ams.org/mathscinet-getitem?mr=MR2417243
http://www.ams.org/mathscinet-getitem?mr=MR1962505
http://www.ams.org/mathscinet-getitem?mr=MR1962505
http://www.ams.org/mathscinet-getitem?mr=MR1848946
http://www.ams.org/mathscinet-getitem?mr=MR2064941
http://www.ams.org/mathscinet-getitem?mr=MR2060166
http://www.ams.org/mathscinet-getitem?mr=MR2277742
http://www.ams.org/mathscinet-getitem?mr=MR1805785
http://www.ams.org/mathscinet-getitem?mr=MR2278363


Giraud, Huet and Verzelen/GGMselect 36

[18] Rocha, G., Zhao, P., and Yu, B. (2008). A path following algorithm
for sparse pseudo-likelihood inverse covariance estimation (splice). Tech. Rep.
759, Statistics Department, UC Berkeley.

[19] Rothman, A., Bickel, P., Levina, E., and Zhu, J. (2008). Sparse
permutation invariant covariance estimation. Electron. J. Stat. 2, 494–515.
MR2417391

[20] Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, predic-
tion, and search, Second ed. Adaptive Computation and Machine Learning.
MIT Press, Cambridge, MA. With additional material by David Heckerman,
Christopher Meek, Gregory F. Cooper and Thomas Richardson, A Bradford
Book. MR1815675 (2001j:62009)

[21] Verzelen, N. (2009). High-dimensional gaussian model selection on a
gaussian design. Ann. Inst. H. Poincaré Probab. Statist. (accepted).
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