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Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers

 

Terahertz (THz) quantum cascade lasers (QCLs) based on longitudinal-optical (LO) phonon depopulation of the lower laser level 1 are currently attracting considerable interest, owing to their higher output powers 2 and operating temperatures 3 compared to bound-tocontinuum designs. 4 Recently time domain spectroscopy (TDS) has been used to study the spectral gain of THz and mid-infrared QCLs. 5,6 Broadband THz probe pulses are coupled into the laser cavity and the detection of the transmitted pulses is used to determine the spectral gain. Owing to the coherent nature of the detection only the transmitted probe pulses are measured, which enables measurements of the spectral gain both below and above laser threshold. 7,8 Previous TDS studies of THz QCLs have focused on bound-to-continuum designs while no studies on devices based on the LO phonon depopulation scheme have been reported to date.

In this letter we investigate the gain of a 3.1THz LO phonon QCL using THz TDS.

The sample is based on the three well structure by Luo et al 9 which has subsequently shown operation up to 178K in a double metal waveguide. 10 In addition, we identify various absorption features at low fields, before the bandstructure aligns for laser action. These absorptions correspond to the pre-alignment of the structure and the population of the lower laser level through an electronic channel.

The QCL consists of 226 periods of a series of Al 0.15 Ga 0.85 As barriers and GaAs quantum wells with thicknesses 4.2/7.4/2/9.6/4.8/16.1 nm (AlGaAs barriers in bold).

Compared to the QCL in reference 10, this structure has a much thicker lower doped layer (700nm GaAs, doped at 2×10 18 cm -3 ) to support waveguiding in a single plasmon configuration, this waveguide geometry being used to enable coupling of the THz pulses into the laser cavity. The ridge width of the device was 140µm and the cavity length was 1mm.

The device showed laser action up to a heat sink temperature of 85K at a 2.5% duty cycle and 70K at 10% duty cycle. The laser emission was centered at ~3.1 THz (see inset, Fig. 1(c)).

Broadband THz probe pulses were generated using an inter-digitated photoconductive antenna 11 excited with a Ti:Sapphire femtosecond laser operating at 76MHz. The THz probe pulses were coupled into an end facet of the laser, with the transmitted pulses collected from the opposite facet and detected by a 300µm thick GaP crystal using electro-optic sampling. 12 The spectral gain was determined using a transmitted reference pulse with the QCL under zero bias. Details of this technique can be found in reference 7.

Fig. 1(a) shows the voltage-current (V-I) and light-current (L-I) characteristics of the laser at 10K, the latter measured with a standard pyroelectric detector. The laser threshold occurs at current density of 1.07kA/cm 2 and laser action ceases at 1.37kA/cm 2 . Fig. 1(b) shows the difference transmitted electric fields (i.e. that measured relative to the modulation frequency of the QCL) 7 of the THz pulses for various current densities. For current densities greater than 792A/cm 2 (when the bandstructure starts to align up to the design field) oscillations of the field are observed owing to the amplification of the input pulse and last for approximately 3ps when the device is above threshold. The short time period of the oscillations, compared to bound-to-continuum designs, 7,8 are attributed to both the small cavity length 13 and the broad gain spectra. The latter can be observed in Fig. 1(c) which shows the gain spectra for three different currents with maximum gain at 3.11 THz, in accordance with the design frequency (3.1THz). The linewidth of the gain spectrum is 0.6 THz at laser threshold, compared to 0.32THz for a 2.9THz bound-to-continuum design. 5 The reason for this large linewidth is possibly the larger number of periods (226 compared to 90), which leads to inhomogeneous broadening of the gain profile. This has been indirectly confirmed by measurements of the laser spectra of samples with a lower number of periods 14 -these exhibit, for the same cavity length, a reduced number of Fabry-Perot modes and hence indicates a smaller gain linewidth. Other effects that could play a role include impurity scattering, 15 the injector/laser state coupling 8 and the higher electron temperature in LO phonon depopulation designs leading to a larger in-plane momentum. 16 A very small narrowing of the spectral gain of approximately 80 GHz is observed owing to the misalignment of the structure as the applied field is increased. 8 The amplitude of the gain at 3.11 THz (i.e. at the laser emission frequency) as a function of applied current is also plotted in Fig. 1(a). During laser action the gain is clamped at a value of ~25 cm -1 . This value is in good agreement with a simple estimate of the total optical losses (α Total = α m + α g =10.2cm -1 + 9.8cm - 1 = 20cm -1 where α m and α g are the mirror and waveguide losses respectively).

Compared to previous work on bound-to-continuum samples, 7,8 transmitted THz electric fields at lower current densities (Fig. 1b) show several unusual features. As the current density is decreased from laser action (1.17kA/cm 2 ) to just below threshold (0.92kA/cm 2 ) and then to 0.79kA/cm 2 , the amplitude and extent of the field oscillations decrease as expected. This corresponds to a decrease in the gain, and the transmission of the input pulse without amplification. However, below 0.79kA/cm 2 , the transmitted amplitude unexpectedly increases again and long lasting oscillations appear after 10ps corresponding to a narrow linewidth spectral feature (with high frequency components at ~4 THz -see Fig. 3).

The first few oscillations in the time trace correspond to a broad spectral response. The vertical line at 9.5ps in Fig. 1b shows that the relative phase of the fields is nearly constant for current densities larger than 0.79kA/cm 2 . Below 0.79kA/cm 2 , however, the phase shifts significantly (by almost 180°) indicating a change from gain to strong absorption in the spectra. 5 The spectral gain below 0.80 kA/cm 2 is shown in Fig. 2(a) and shows several features that are not present at higher current densities. For low frequencies, below the laser frequency of 3.1THz, a broad absorption is present. Its peak red-shifts towards lower frequencies with increasing current densities, indicating a diagonal transition between adjacent wells. The narrow absorption at high frequencies, however, remains roughly constant in frequency at (e)) the injector (4) and extractor (2) levels are resonant although the overlap between the two states is small owing to their large spatial separation. For even lower fields (7kV/cm -Figs. 4 where the frequency separation and oscillator strength are plotted as a function of applied electric field. Encircled in Fig. 4 are the transitions that correspond to the observed absorption features at low current densities (<0.8kA/cm 2 ). The absorption observed at 4.2THz in Fig. 2 at low biases can be identified as the transition between states |1> and |3> as it does not shift significantly between 7kV/cm and 11kV/cm, its oscillator strength disappears as the structure aligns for laser action and its FWHM (~0.27THz) corresponds to a transition involving only two distinct states. The absorption peak at ~4.6THz is an artifact of the measurement technique as the signal-to-noise ratio of the antenna signal is small for frequencies greater than 4.5THz. The broad absorption at lower frequencies (~2 THz) in Fig. 2 is identified as the transition between the lower (1) and the extractor (2) level. The simulations in Fig. 4 show that this transition shifts to lower frequencies with increasing bias, which is in agreement with the observed behavior in Fig. 2. (As state 2 is resonantly depopulated through LO phonon emission to state 4' the electron population is expected to be very small in this state). 17 The broadness of the absorption originates from its spatially diagonal character and also from the presence of nearby transitions (1-4, 2-4 and 2-3) whose dipoles contribute to the absorption spectrum for fields less than 10kV/cm. (A peak that corresponds to gain is also observed at 3.5THz in Fig. 2. In the bandstructure simulations in Fig. 4, however, no such peak can be identified. This is possibly a result of domain formation and hence a non-uniform field across the active region). Note that the absorptions identified are a result of transitions from state 1, meaning that most of the electrons are in this state at low applied fields. This corresponds to an electron leakage channel as these electrons are not injected into the upper laser state (level 3). Further improvements in the QCL design can therefore be achieved by suppressing this electronic channel by better injection schemes, allowing laser action to be obtained at lower threshold currents. This could in turn lead to a larger current dynamic range and a lower electron temperature, and achievement of higher operating temperatures.

In conclusion we have studied the gain and losses in LO phonon depopulation based THz QCLs. The clamped gain was found to be 25cm -1 and agrees with a simple estimate of the total losses. Absorption features were also identified at low applied fields, before alignment of the energy levels for laser action, and correlated with bandstructure calculations.

The absorptions are a result of a leakage current channel which leads to significant electronic population of the lower laser state before the structure is correctly aligned for laser action.

The presented results suggest that the information provided by THz TDS can be valuable to elucidate parasitic transport mechanisms in QCLs.

This work was financially supported by the DGA, CNano, ANR, EPSRC and the EC NOTES programme. The LPA-ENS is a "Unité Mixte de Recherche Associée au CNRS UMR8551 et aux Universités Paris 6 et 7". (Bandstructure calculations performed using design dimensions). 17. As state 2 and 4' are mostly in the wide well of the structure, the energy separation does not vary significantly with applied field and is always close to the LO phonon energy. This will lead to carriers in state 2 being resonantly depopulated for the all applied fields. 
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 2 THz, suggesting a vertical intersubband transition. Figs. 2(b) and 2(c) show the peak gain value and the corresponding frequency, respectively, of the low and high frequency absorptions as a function of current. Simulations of the QCL's conduction band profile and the square modulus of the wavefunctions of the structure are shown in Fig. 3 for various applied fields (a-c). Corresponding schematic representations of the subband levels are also shown (d-f). The laser transition occurs within the two narrow wells separated by a thin barrier; the extraction and injection of electrons from one period to the next takes place in the wide well. The energy separation between the first two states in the wide well (labeled 4' and 2) is approximately the LO phonon energy to provide rapid scattering of electrons from the lower laser level to the first state of the wide well (4'). At the laser design bias of 12.5kV/cm (Figs. 3(a) and (d)) the upper laser state (3) is resonant with the 'injector' state (4), and the lower state of the two narrow wells (1) is resonant with the second state ('extractor') of the wide well (2). As the applied field is reduced the injector (extractor) state decreases (increases) in energy with respect to the states in the two narrow wells. For intermediate fields (9kV/cm -Figs. 3(b) and
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  (c) and (f)) the upper laser state (3) and extractor state (2), along with the lower level of the narrow wells (1) and injector (4) states, become resonant in energy. At low biases, various absorption transitions between states |1>, |2>, |3> and |4> are possible. A contour plot of all possible transitions is shown in Fig.
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 1 Figure 1: (a) Voltage, output power and gain at 3.11THz of the QCL as a function of current
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 2 Figure 2: (a) Spectral gain at low current densities showing a sharp absorption at 4.2THz and
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 3 Figure 3: Conduction band profile and modulus squared of the wavefunctions at applied
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 4 Figure 4: Contour plot of intersubband transitions showing the oscillator strength (color scale