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Introduction

We investigate the large time behaviour of non-negative and radially symmetric solutions to the initial-boundary value problem

     ∂ t u = ∆ p u + |∇u| q , x ∈ B, t ∈ (0, ∞), u = 0, x ∈ ∂B, t ∈ (0, ∞), u(x, 0) = u 0 (x), x ∈ B, (1.1) 
where B := {x ∈ R N : |x| < 1} is the unit ball in R N , N ≥ 2, and the p-Laplacian operator is defined by ∆ p u = div(|∇u| p-2 ∇u).
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We further assume the initial condition

u 0 ∈ W 1,∞ 0 (B)
is radially symmetric and non-negative and u 0 ≡ 0, (1.2) while the parameters p and q satisfy p ≥ 2 and 0 < q < p -1.

(1.

3)

The partial differential equation in (1.1) is a second-order parabolic equation featuring a diffusion term (possibly quasilinear and degenerate if p > 2) and a source term |∇u| q counteracting the effect of diffusion and depending solely on the gradient of the solution. The competition between the diffusion and the source term is already revealed by the structure of steady states to (1.1). Indeed, while it follows from [4, Theorem 1] that zero is the only steady state in C( B) when p ≥ 2 and q ≥ p -1, several steady states may exist when p ≥ 2 and q ∈ (0, p -1) [START_REF] Barles | Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a non lipschitz nonlinearity[END_REF][START_REF] Ph | Convergence to steady states for a one-dimensional viscous Hamilton-Jacobi equation with Dirichlet boundary conditions[END_REF][START_REF] Stinner | Convergence to steady states in a viscous Hamilton-Jacobi equation with degenerate diffusion[END_REF]. Another typical feature of the competition between diffusion and source is the possibility of finite time blow-up in a suitable norm, and this phenomenon has been shown to occur for (1.1) when p = 2 and q > 2 [START_REF] Ph | Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions[END_REF]. More precisely, it is established in [START_REF] Ph | Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions[END_REF] that, when p = 2 and q > 2, there are classical solutions to (1.1) for which the L ∞ -norm of the gradient blows up in finite time, the L ∞ -norm of the solution remaining bounded. These solutions may actually be extended to all positive times in a unique way within the framework of viscosity solutions [START_REF] Barles | On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations[END_REF][START_REF] Tchamba | Large time behavior of solutions of viscous Hamilton-Jacobi equations with superquadratic Hamiltonian[END_REF], the boundary condition being also satisfied in the viscosity sense. According to the latter, the homogeneous Dirichlet boundary condition might not always be fulfilled for all times, a property which is likely to be connected with the finite time blow-up of the gradient.

Coming back to the case where p and q fulfil (1.3) and several steady states may exist, a complete classification of steady states seems to be out of reach when B is replaced by an arbitrary open set of R N . Nevertheless, there are at least two situations in which the set of stationary solutions can be described, namely, when N = 1 and B = (-1, 1) [START_REF] Ph | Convergence to steady states for a one-dimensional viscous Hamilton-Jacobi equation with Dirichlet boundary conditions[END_REF][START_REF] Stinner | Convergence to steady states in a viscous Hamilton-Jacobi equation with degenerate diffusion[END_REF] and when N ≥ 2 under the additional requirement that the steady states are radially symmetric and non-increasing, the latter being the first result of this paper. More precisely, we show that (1.1) has a one-parameter family of stationary solutions and that each stationary solution is characterized by the value of its maximum.

Theorem 1.1 Assume (1.3). Let w ∈ W 1,∞ (B) be a radially symmetric and non-increasing viscosity solution to -∆ p w -|∇w| q = 0 in B satisfying w = 0 on ∂B. Then there is ϑ ∈ [0, 1] such that w = w ϑ , where

w ϑ (x) := c 0 1 max{|x|,ϑ} ρ -ϑ β ρ -(β-1) 1/(p-1-q) dρ, x ∈ B, (1.4 
)

for ϑ ∈ [0, 1] with β := 1 + (N -1)(p -1 -q) p -1 > 1 and c 0 := p -1 -q (p -q)β 1/(p-1-q) > 0. (1.5)
In particular, we have w 0 (x) = (c 0 /α) (1 -|x| α ) for x ∈ B, where α := (p -q)/(p -1 -q) > 1.

Remark 1.2 As already mentioned, for any M ∈ [0, c 0 /α] there is one and only one ϑ

∈ [0, 1] such that w ϑ L ∞ (B) = M as w ϑ L ∞ (B) is a decreasing function of ϑ ∈ [0, 1]
. This property plays an important role in the forthcoming analysis of the large time behaviour of solutions to (1.1).

Having a precise description of the set of steady states of (1.1) at our disposal, it is natural to investigate whether they attract the dynamics of (1.1) for large times. In other words, given a solution to (1.1), does it converge to a steady state as t → ∞? A positive answer to this question is given in [START_REF] Ph | Convergence to steady states for a one-dimensional viscous Hamilton-Jacobi equation with Dirichlet boundary conditions[END_REF][START_REF] Stinner | Convergence to steady states in a viscous Hamilton-Jacobi equation with degenerate diffusion[END_REF] when N = 1, B = (-1, 1), and p and q fulfil (1.3). The one dimensional framework is fully exploited there as it allows the construction of a Liapunov functional by the technique developed in [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable[END_REF]. Such a nice tool does not seem to be available here and we instead use the theory of viscosity solutions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] and more precisely the relaxed half-limits method introduced in [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF]. This approach has already been used in [START_REF] Barles | On the large time behaviour of solutions of Hamilton-Jacobi equations[END_REF][START_REF] Namah | Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations[END_REF][START_REF] Roquejoffre | Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations[END_REF] to investigate the large time behaviour of solutions to Hamilton-Jacobi equations and can be roughly summarized as follows: given a nonnegative and radially symmetric solution u to (1.1) which is bounded in W 1,∞ (B), the half-relaxed limits u * (x) := lim inf

(s,ε)→(t,0) u(x, ε -1 s) and u * (x) := lim sup (s,ε)→(t,0) u(x, ε -1 s), x ∈ B,
are well-defined, do not depend on t > 0, and are Lipschitz continuous viscosity supersolution and subsolution to -∆ p z -|∇z| q = 0 in B, z = 0 on ∂B, respectively, by [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Lemma 6.1]. Clearly, u * ≤ u * on B but we cannot apply the comparison principle at this stage to conclude that u * ≥ u * on B. However, additional information are available in this particular case, namely that u * and u * are both non-negative, radially symmetric, non-increasing, and have the same maximal value. Extensive use of these properties allows us to prove that u * ≥ u * , from which we readily conclude that u * = u * is a Lipschitz continuous radially symmetric and non-increasing stationary solution to (1.1). Consequently, u * = u * = w ϑ for some ϑ ∈ [0, 1] by Theorem 1.1 and the assumption u 0 ≡ 0 prevents ϑ = 1. The convergence result we obtain actually reads as follows.

Theorem 1.3 Assume (1.2) and (1.3) and let u denote the (radially symmetric) viscosity solution to (1.1). Then there is a unique ϑ ∈ [0, 1) such that

lim t→∞ u(t) -w ϑ C( B) = 0.
Notice that Theorem 1.3 applies in particular in the semilinear case p = 2 with q ∈ (0, 1) according to (1.3). Still in the semilinear case p = 2, several results on the large time behaviour of solutions to (1.1) are also available when q ≥ 1 and B is replaced by an arbitrary open set Ω of R N [START_REF] Arrieta | Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena[END_REF][START_REF] Benachour | Decay estimates for a viscous Hamilton-Jacobi equation with homogeneous Dirichlet boundary conditions[END_REF][START_REF] Ph | Global solutions of inhomogeneous Hamilton-Jacobi equations[END_REF][START_REF] Tchamba | Large time behavior of solutions of viscous Hamilton-Jacobi equations with superquadratic Hamiltonian[END_REF], including the convergence to zero of global solutions which are bounded in W 1,∞ (Ω).

The analysis in this paper being restricted to radially symmetric solutions, we define r := |x| and switch between the notation u = u(x, t) and u = u(r, t), whenever this is convenient.

For further use, we introduce the following notations:

F (s, X) := -|s| p-2 trace(X) -(p -2)|s| p-4 Xs, s -|s| q for (s, X) ∈ R N × R N ×N , (1.6) 
its radially symmetric counterpart

f (r, µ, ζ) := -(p -1)|µ| p-2 ζ - N -1 r |µ| p-2 µ -|µ| q for (r, µ, ζ) ∈ (0, 1) × R × R, (1.7) 
and the radially symmetric p-Laplacian operator

f 0 (r, µ, ζ) := -(p -1)|µ| p-2 ζ - N -1 r |µ| p-2 µ for (r, µ, ζ) ∈ (0, 1) × R × R. (1.8)
2 Radially symmetric and non-increasing stationary solutions

In this section, we prove Theorem 1.1, that is, if w is a radially symmetric, non-increasing, and Lipschitz continuous viscosity solution to the stationary equation

-∆ p w -|∇w| q = 0 in B, w = 0 on ∂B, (2.1) 
then w = w ϑ for some ϑ ∈ [0, 1]. To this end, we first observe that, as a function of r = |x|, w is a viscosity solution to f (r, ∂ r w, ∂ 2 r w) = 0 in (0, 1) with w(1) = 0 (recall that f is defined in (1.7)). Next, as a preliminary step, let us first give a formal proof, assuming w to be in C 1 ( B) and solving (2.1) pointwise. In particular, we will derive an identity (see (2.3) below) which turns out to be valid for viscosity solutions as we shall see later on. As w is radially symmetric and in C 1 ( B), we have ∂ r w(0) = 0. In addition, by (2.1),

ϕ(r) := r N -1 (|∂ r w| p-2 ∂ r w)(r), r ∈ [0, 1],
fulfils ϕ ∈ W 1,∞ ((0, 1)) with ∂ r ϕ(r) = -r N -1 |∂ r w(r)| q ≤ 0 a.e. in (0, 1). Thus, ϕ is a nonincreasing function in [0, 1]. As moreover w is non-increasing with w(1) = 0, we have ∂ r w(1) ≤ 0. Now, either ∂ r w(1) = 0 and thus ϕ(1) = 0. Since ϕ is non-increasing with ϕ(0) = 0, we conclude that ϕ ≡ 0. This implies w = w 1 ≡ 0. Or ∂ r w(1) < 0, and the continuity and monotonicity of ϕ warrant that there is a unique ϑ ∈ [0, 1) such that ϕ = 0 in [0, ϑ] and ϕ < 0 in (ϑ, 1]. Hence, ∂ r ϕ(r) = -r [(N -1)(p-1-q)]/(p-1) |ϕ(r)| q/(p-1) = -r β-1 (-ϕ(r)) q/(p-1) in (ϑ, 1).

After integration we obtain

- p -1 p -1 -q (-ϕ(r)) (p-1-q)/(p-1) + 1 β r β = γ for r ∈ (ϑ, 1)
with some constant γ ∈ R. Introducing

χ(z) := p -1 p -1 -q |z| p-2-q z for z ∈ R, (2.2) 
we end up with

r β-1 χ(∂ r w(r)) + 1 β r β = γ for r ∈ (ϑ, 1) (2.3)
as ∂ r w < 0 in (ϑ, 1). Letting r ց ϑ implies γ = ϑ β /β owing to ∂ r w(ϑ) = 0 and 0 < q < p -1. Furthermore, due to ∂ r w < 0 in (ϑ, 1), we have

- p -1 p -1 -q r (N -1)/(p-1) (-∂ r w(r)) p-1-q = 1 β ϑ β -r β for r ∈ (ϑ, 1).
Hence, we conclude

∂ r w(r) = - p -1 -q (p -1)β r -ϑ β r -(β-1) 1/(p-1-q)
for r ∈ (ϑ, 1).

Using w(1) = 0 and the definition of c 0 , a further integration implies

w(r) = c 0 1 r ρ -ϑ β ρ -(β-1) 1/(p-1-q) dρ = w ϑ (r) for r ∈ [ϑ, 1].
Furthermore, we get w(r) = w(ϑ) for any r ∈ [0, ϑ] since ∂ r w ≡ 0 in [0, ϑ] and we conclude that w = w ϑ .

We now turn to the proof of Theorem 1.1 and first establish some preliminary results. We recall that, by the Rademacher theorem, a Lipschitz continuous function v ∈ W 1,∞ ((0, 1)) is differentiable a.e. and the measure of the differentiability set

D(v) := {r 0 ∈ (0, 1) : ∂ r v(r 0 ) exists } is thus equal to one. Lemma 2.1 Let v ∈ W 1,∞ ((0, 1 
)) be a non-negative and non-increasing viscosity supersolution to

f 0 (r, ∂ r z, ∂ 2 r z) = 0 in (0, 1), (2.4)
the Hamiltonian f 0 being defined in (1.8). Then, if r 1 ∈ D(v) and r 2 ∈ D(v) are such that r 1 < r 2 , we have r

(N -1)/(p-1) 2 ∂ r v(r 2 ) ≤ r (N -1)/(p-1) 1 ∂ r v(r 1 ).
Proof. Take 0 < r 1 < r 2 < 1 with r 1 , r 2 ∈ D(v) and assume for contradiction that

ξ 1 := r (N -1)/(p-1) 1 ∂ r v(r 1 ) < r (N -1)/(p-1) 2 ∂ r v(r 2 ) =: ξ 2 .
As v is non-increasing we have ξ 2 ≤ 0. Now take ξ 1 < η 1 < η 2 < ξ 2 ≤ 0 and define Φ by

r (N -1)/(p-1) ∂ r Φ(r) = η 1 + (η 2 -η 1 ) r -r 1 r 2 -r 1 , r ∈ [r 1 , r 2 ],
along with Φ(r 1 ) = 0. On the one hand, v-Φ is continuous in [r 1 , r 2 ] and thus attains its minimum at a point

r 0 ∈ [r 1 , r 2 ].
On the other hand, we have

∂ r (v -Φ)(r 1 ) = ξ 1 -η 1 r (N -1)/(p-1) 1 < 0 and ∂ r (v -Φ)(r 2 ) = ξ 2 -η 2 r (N -1)/(p-1) 2 
> 0 so that we cannot have r 0 = r 1 or r 0 = r 2 . Thus, r 0 ∈ (r 1 , r 2 ) and, since v is a viscosity supersolution to (2.4), we have

- 1 r N -1 0 ∂ r r N -1 |∂ r Φ| p-2 ∂ r Φ (r 0 ) ≥ 0. Since r (N -1)/(p-1) ∂ r Φ(r) ≤ η 2 < 0 for r ∈ [r 1 , r 2 ] we obtain -r N -1 |∂ r Φ| p-2 ∂ r Φ (r) = r N -1 |∂ r Φ(r)| p-1 = -r (N -1)/(p-1) ∂ r Φ(r) p-1 = η 1 + (η 2 -η 1 ) r -r 1 r 2 -r 1 p-1
.

Differentiating and taking r = r 0 , we end up with

0 ≤ -∂ r r N -1 |∂ r Φ| p-2 ∂ r Φ (r 0 ) = (p -1) η 1 + (η 2 -η 1 ) r 0 -r 1 r 2 -r 1 p-3 η 1 + (η 2 -η 1 ) r 0 -r 1 r 2 -r 1 η 2 -η 1 r 2 -r 1 < 0,
and a contradiction. //// In order to show that a viscosity solution to (2.1) satisfies (2.3), we next prove that the left-hand side of (2.3) is non-increasing for a supersolution to (2.1).

Lemma 2.2 Let w ∈ W 1,∞ ((0, 1)) be a non-increasing viscosity supersolution to f (r, ∂ r z, ∂ 2 r z) = 0 in (0, 1) such that w L ∞ ((0,1)) > 0 and w(1) = 0, and define r 0 ∈ [0, 1] by r 0 := inf r ∈ (0, 1] : w(r) < w L ∞ ((0,1)) .

If r 1 ∈ D(w) and r 2 ∈ D(w) are such that r 0 < r 1 < r 2 , then

r β-1 1 χ(∂ r w(r 1 )) + r β 1 β ≥ r β-1 2 χ(∂ r w(r 2 )) + r β 2 β ,
the parameter β and the function χ being defined in (1.5) and (2.2), respectively.

Proof. The properties of w imply r 0 ∈ [0, 1). As w is non-increasing and Lipschitz continuous, the definition of r 0 yields that there is a sequence

(̺ n ) n≥1 such that ̺ n ∈ D(w), ∂ r w(̺ n ) < 0 and ̺ n ց r 0 as n → ∞. Pick r 1 ∈ D(w) ∩ (r 0 , 1).
For n large enough, we have r 1 > ̺ n . Since w is clearly also a supersolution to (2.4), we infer from Lemma 2.1 that

r (N -1)/(p-1) 1 ∂ r w(r 1 ) ≤ ̺ (N -1)/(p-1) n ∂ r w(̺ n ) < 0
for n large enough. Consequently,

r (N -1)/(p-1) 1 ∂ r w(r 1 ) < 0 for r 1 ∈ D(w) ∩ (r 0 , 1). (2.5)
Assume now for contradiction that there are r 1 , r 2 ∈ (r 0 , 1) ∩ D(w) such that r 1 < r 2 and

r β-1 1 χ(∂ r w(r 1 )) + r β 1 β < r β-1 2 χ(∂ r w(r 2 )) + r β 2 β .
As ∂ r w(r 1 ) < 0 by (2.5), we have χ(∂ r w(r 1 )) < 0 and we can choose two real numbers η 1 and η 2 such that

r β-1 1 χ(∂ r w(r 1 )) + r β 1 β < η 1 < η 2 < r β-1 2 χ(∂ r w(r 2 )) + r β 2 β , η 1 < r β 1 β ,
and

a := 1 - β(η 2 -η 1 ) r β 2 -r β 1 ∈ (0, 1). Indeed we first choose η 1 ∈ (r β-1 1 χ(∂ r w(r 1 )) + (r β 1 /β), r β 1 /β
) and then η 2 > η 1 close enough to η 1 in order to have a ∈ (0, 1). Setting now

A := η 1 -(1 -a) r β 1 β = η 2 -(1 -a) r β 2 β ,
let Φ denote the solution to

r β-1 χ(∂ r Φ(r)) + a r β β = A, r ∈ [r 1 , r 2 ], (2.6) 
such that Φ(r 1 ) = 0. Observe that the choice of a and A ensure that and

r β-1 i χ(∂ r Φ(r i )) + r β i β = η i for i = 1, 2. (2.7) Due to A -a r β 1 β = η 1 - r β 1 β < 0 we conclude by (2.6) that χ(∂ r Φ(r)) = r -(β-1) A -a r β β ≤ r -(β-1) A -a r β 1 β < 0 for r ∈ [r 1 , r 2 ]. This implies that ∂ r Φ(r) < 0 for r ∈ [r 1 , r 2 ], so that Φ ∈ C 2 ([r 1 , r 2 ]
) by (2.6). In addition,

(-∂ r Φ(r)) p-1-q = p -1 -q p -1 a β r -Ar -(β-1) , r ∈ [r 1 , r 2 ], hence ∂ r Φ(r) = - p -1 -q p -1 a β r -Ar -(β-1) 1/(p-1-q) , r ∈ [r 1 , r 2 ].
Furthermore, due to (2.7) and the choice of η 1 , we obtain

r β-1 1 χ(∂ r w(r 1 )) + r β 1 β < η 1 = r β-1 1 χ(∂ r Φ(r 1 )) + r β 1 β .
This implies χ(∂ r w(r 1 )) < χ(∂ r Φ(r 1 )) and, since χ is increasing,

∂ r w(r 1 ) < ∂ r Φ(r 1 ).
Similarly, we conclude

∂ r w(r 2 ) > ∂ r Φ(r 2 ). Now w -Φ is a continuous function in [r 1 , r 2 ]
and thus attains its minimum at some

r m ∈ [r 1 , r 2 ].
The above two inequalities prevent r m to be equal to r 1 or r 2 and, since w is a viscosity supersolution to f (r, ∂ r v, ∂ 2 r v) = 0 in (0, 1), we have

- 1 r N -1 m ∂ r r N -1 |∂ r Φ(r)| p-2 ∂ r Φ(r) (r m ) -|∂ r Φ(r m )| q ≥ 0. But as ∂ r Φ < 0, (2.6) implies -∂ r r N -1 |∂ r Φ(r)| p-2 ∂ r Φ(r) = ∂ r r N -1 |∂ r Φ(r)| p-1 = ∂ r p -1 -q p -1 r β-1 χ(∂ r Φ(r)) (p-1)/(p-1-q) = -ar β-1 p -1 -q p -1 r β-1 χ(∂ r Φ(r)) [(p-1)/(p-1-q)]-2 p -1 -q p -1 r β-1 χ(∂ r Φ(r))
= ar (β-1)(p-1)/(p-1-q) p -1 -q p -1 χ(∂ r Φ(r))

[(p-1)/(p-1-q)]-1 = ar N -1 |∂ r Φ(r)| q for r ∈ [r 1 , r 2 ], (2.8) 
so that

- 1 r N -1 m ∂ r r N -1 |∂ r Φ(r)| p-2 ∂ r Φ(r) (r m ) -|∂ r Φ(r m )| q = (a -1)|∂ r Φ(r m )| q < 0 since a < 1,
and a contradiction.

//// In a similar way we now establish that the left-hand side of (2.3) is non-decreasing for viscosity subsolutions to (2.1).

Lemma 2.3 Let w ∈ W 1,∞ ((0, 1 
)) be a non-increasing viscosity subsolution to f (r, ∂ r z, ∂ 2 r z) = 0 in (0, 1) such that w L ∞ ((0,1)) > 0 and w(1) = 0, and define r 0 ∈ [0, 1] by

r 0 := inf r ∈ (0, 1] : w(r) < w L ∞ ((0,1)) . If r 1 ∈ D(w) and r 2 ∈ D(w) are such that r 0 < r 1 < r 2 , then r β-1 1 χ(∂ r w(r 1 )) + r β 1 β ≤ r β-1 2 χ(∂ r w(r 2 )) + r β 2 β .
Proof. The properties of w imply r 0 ∈ [0, 1). Assume for contradiction that there are r 1 , r 2 ∈ (r 0 , 1) ∩ D(w) such that r 1 < r 2 and

r β-1 1 χ(∂ r w(r 1 )) + r β 1 β > r β-1 2 χ(∂ r w(r 2 )) + r β 2 β .
We may then choose η 1 , η 2 ∈ R such that

r β-1 1 χ(∂ r w(r 1 )) + r β 1 β > η 1 > η 2 > r β-1 2 χ(∂ r w(r 2 )) + r β 2 β ,
and define

a := 1 + β(η 1 -η 2 ) r β 2 -r β 1 > 1 and A := η 1 + (a -1) r β 1 β = η 2 + (a -1) r β 2 β .
Let Φ denote the solution to

r β-1 χ(∂ r Φ(r)) + a r β β = A, r ∈ [r 1 , r 2 ], (2.9) 
such that Φ(r 1 ) = 0. Thanks to the choice of a and A, we have

r β-1 i χ(∂ r Φ(r i )) + r β i β = η i for i = 1, 2, (2.10) 
and the monotonicity of w implies that

A -a r β 1 β = η 1 - r β 1 β < r β-1 1 χ(∂ r w(r 1 )) ≤ 0.
Consequently,

χ(∂ r Φ(r)) = r -(β-1) A -a r β β ≤ r -(β-1) A -a r β 1 β < 0 for r ∈ [r 1 , r 2 ], hence ∂ r Φ(r) < 0 for r ∈ [r 1 , r 2 ].
We then conclude from (2.9) that Φ ∈ C 2 ([r 1 , r 2 ]). Furthermore, due to (2.10), the choices of η 1 and η 2 , and the monotonicity of χ, we obtain

∂ r w(r 1 ) > ∂ r Φ(r 1 ) and ∂ r w(r 2 ) < ∂ r Φ(r 2 ). Now w -Φ is a continuous function in [r 1 , r 2 
] and thus attains its maximum at some point r m ∈ [r 1 , r 2 ]. The above two inequalities prevent r m to be equal to r 1 or r 2 and, since w is a viscosity subsolution to f (r, ∂ r v, ∂ 2 r v) = 0 in (0, 1), we have

- 1 r N -1 m ∂ r r N -1 |∂ r Φ(r)| p-2 ∂ r Φ(r) (r m ) -|∂ r Φ(r m )| q ≤ 0.
But, owing to ∂ r Φ(r) < 0, (2.9) and a > 1, we conclude similarly to (2.8) that

- 1 r N -1 m ∂ r r N -1 |∂ r Φ(r)| p-2 ∂ r Φ(r) (r m ) -|∂ r Φ(r m )| q = (a -1)|∂ r Φ(r m )| q > 0
and end up with a contradiction.

////

We are now in a position to prove Theorem 1.1. The keystone of the proof is that, according to Lemma 2.2 and Lemma 2.3, any non-increasing viscosity solution to f (r, ∂ r v, ∂ 2 r v) = 0 in (0, 1) satisfying w(1) = 0 has to fulfil (2.3).

Proof of Theorem 1.1. Let w ∈ W 1,∞ ((0, 1)) be a non-increasing viscosity solution to f (r, ∂ r v, ∂ 2 r v) = 0 in (0, 1) satisfying w(1) = 0. Either w ≡ 0 = w 1 or M := w L ∞ ((0,1)) > 0 and we define r 0 ∈ [0, 1) by r 0 := inf{r ∈ (0, 1] : w(r) < M }. Now, owing to Lemma 2.2 and Lemma 2.3, there is a constant γ ∈ R such that

r β-1 χ(∂ r w(r)) + r β β = γ (2.11)
for any r ∈ (r 0 , 1) ∩ D(w) and thus a.e. in (r 0 , 1). Combining the monotonicity of w and χ with (2.11), we moreover deduce that

γ ≤ r β 0 β (2.12) 
and

∂ r w(r) = - p -1 -q p -1 r β -γr -(β-1) 1/(p-1-q)
for a.e. r ∈ (r 0 , 1).

Integrating and using the boundary condition w(1) = 0, we obtain

w(r) = 1 r p -1 -q (p -1)β ρ -γβρ -(β-1)
1/(p-1-q) dρ for any r ∈ [r 0 , 1].

Recalling w(r) ≡ M for r ∈ [0, r 0 ] and the definition of c 0 , we conclude

w(r) = c 0 1 max{r,r0} ρ -γβρ -(β-1) 1/(p-1-q) dρ, r ∈ [0, 1]. (2.13) 
It remains to show that γ = r β 0 /β in order to obtain that w = w r0 . Consider first the case r 0 = 0. Since β > 1, the Lipschitz continuity of w yields γ = 0 = r β 0 /β by letting r ց 0 in (2.11). Next, if r 0 ∈ (0, 1), we assume for contradiction that γ < r β 0 /β. Then we fix ϑ ∈ [0, r 0 ) such that γ < ϑ β /β and choose Λ > 1 such that

Λ p-1-q < 1 + ϑ β -γβ.
This choice of Λ implies that the function

g(r) := 1 -γβr -β -Λ p-1-q 1 -ϑ β r -β , r ∈ (r 0 , 1), satisfies g ′ (r) = β 2 r -β-1 γ -Λ p-1-q ϑ β β ≤ β 2 r -β-1 γ - ϑ β β < 0, r ∈ (r 0 , 1),
and thus

g(r) ≥ g(1) ≥ 1 -γβ -Λ p-1-q + ϑ β > 0, r ∈ [r 0 , 1]. Consequently, 1 -γβr -β > Λ p-1-q 1 -ϑ β r -β , r ∈ [r 0 , 1],
and it follows from (2.13) that

∂ r w(r) = -c 0 r 1/(p-1-q) 1 -γβr -β 1/(p-1-q)
< -c 0 r 1/(p-1-q) Λ 1 -ϑ β r -β 1/(p-1-q) = Λ∂ r w ϑ (r), r ∈ (r 0 , 1).

In particular, w(r) -Λw ϑ (r) ≤ w(r 0 ) -Λw ϑ (r 0 ) for r ∈ [r 0 , 1]. Furthermore,

w(r) -Λw ϑ (r) = w(r 0 ) -Λw ϑ (r) ≤ w(r 0 ) -Λw ϑ (r 0 ), r ∈ [0, r 0 ],
thanks to the monotonicity of w ϑ , and the function w -Λw ϑ has a global maximum at r 0 . Since w ϑ ∈ C 2 ((ϑ, 1)), ϑ < r 0 , and w is a viscosity subsolution to f (r, ∂ r v, ∂ 2 r v) = 0 in (0, 1), we conclude that f (r 0 , ∂ r (Λw ϑ )(r 0 ), ∂ 2 r (Λw ϑ )(r 0 )) ≤ 0. However, as Λ > 1 and ϑ < r 0 , we clearly have

f (r 0 , ∂ r (Λw ϑ )(r 0 ), ∂ 2 r (Λw ϑ )(r 0 )) = Λ p-1 -Λ q |∂ r w ϑ (r 0 )| q > 0,
and the contradiction. Therefore, γ = r β 0 /β and w = w r0 , which completes the proof. //// 3 Some properties of solutions to (1.1)

We now focus on time-dependent solutions to (1.1) and establish some qualitative properties of non-negative and radially symmetric viscosity solutions to (1.1) which are needed to analyse their large time behaviour.

Proposition 3.1 Assume that u 0 , p, and q fulfil (1.

2) and (1.3). There is a unique non-negative viscosity solution

u ∈ C( B × [0, ∞)) to (1.1
) such that u(x, t) = 0 for x ∈ ∂B and x -→ u(x, t) is radially symmetric and belongs to W 1,∞ (B) for all t ≥ 0. In addition, there is a constant A 0 > 0 depending only on p, q, and u 0 , and a decreasing function

W ∈ C 1 ([0, ∞)) such that 0 ≤ u(x, t) ≤ A 0 and -A 0 ≤ ∇u(x, t) • x |x| ≤ W (t) , (x, t) ∈ B × [0, ∞), (3.1)
and W (t) -→ 0 as t → ∞.

Proof.

We first derive the expected properties on suitable approximations to (1.1) which we introduce now. For ε ∈ (0, 1), let a ε ∈ C ∞ ([0, ∞)) and b ε ∈ C ∞ ([0, ∞)) be two functions such that • a ε is bounded and increasing and a ε (ξ

) := (ε 2 + ξ) (p-2)/2 for ξ ∈ [0, ε -1 ],
• b ε is increasing, Lipschitz continuous, and b ε (ξ) := (ε 2 + ξ) q/2 -ε q for ξ ∈ [0, ε -1 ].

In addition, owing to the properties (1.2) of u 0 , there exists a sequence (u 0ε ) ε∈(0,1) of non-negative and radially symmetric functions in C ∞ ( B) such that

u 0ε L ∞ (B) ≤ u 0 L ∞ (B) + ε , ∇u 0ε L ∞ (B) ≤ 2 ∇u 0 L ∞ (B) , (3.2) 
and lim

ε→0 u 0ε -u 0 C( B) = 0.
Fix ε ∈ (0, 1). According to the properties of a ε , b ε , and u 0ε , it follows from [START_REF] Ladyženskaja | Linear and Quasi-linear Equations of Parabolic Type[END_REF] that the initialboundary value problem

     ∂ t u ε = div(a ε (|∇u ε | 2 )∇u ε ) + b ε (|∇u ε | 2 ), x ∈ B, t ∈ (0, ∞), u ε = 0, x ∈ ∂B, t ∈ (0, ∞), u ε | t=0 = u 0ε , x ∈ B, (3.3) 
has a unique non-negative classical solution u ε . In addition, x -→ u ε (t, x) is radially symmetric for every t ≥ 0 and the comparison principle entails that

0 ≤ u ε (x, t) ≤ u 0ε L ∞ (B) ≤ u 0 L ∞ (B) + ε, (x, t) ∈ B × [0, ∞). (3.4) 
We next derive some estimates on the gradient of u ε and begin with the normal trace ∂ r u ε (1, t). Let L ε be the parabolic operator

L ε z := ∂ t z - 1 r N -1 ∂ r r N -1 a ε |∂ r z| 2 ∂ r z -b ε |∂ r z| 2 , (r, t) ∈ (0, 1) × (0, ∞),
and fix

A 0 ∈ ( √ 3ε, ε -1/2 ) such that A 0 ≥ 2 1/(p-1-q) + 2 1 + u 0 L ∞ (B) + ∇u 0 L ∞ (B) . (3.5)
Then, thanks to the properties of a ε , b ε , and (3.5), the function ψ defined by ψ(r)

:= A 0 (1 -r) for r ∈ [0, 1] satisfies L ε ψ(r) = 1 r N -1 ∂ r r N -1 a ε A 2 0 A 0 -b ε A 2 0 = N -1 r a ε A 2 0 A 0 -b ε A 2 0 ≥ ε 2 + A 2 0 (p-2)/2 A 0 -ε 2 + A 2 0 q/2 + ε q ≥ ε 2 + A 2 0 (p-2)/2 ε 2 + A 2 0 -ε -ε 2 + A 2 0 q/2 ≥ ε 2 + A 2 0 (p-1)/2 1 - ε ε 2 + A 2 0 -ε 2 + A 2 0 q/2 ≥ 1 2 ε 2 + A 2 0 (p-1)/2 -ε 2 + A 2 0 q/2 ≥ 0, r ∈ (0, 1].
Furthermore, (3.2), (3.4), and (3.5) entail that

u ε 1 2 , t ≤ 1 + u 0 L ∞ (B) ≤ A 0 2 = ψ 1 2 , t ≥ 0 , and 
u 0ε (r) = - 1 r ∂ r u 0ε (̺) d̺ ≤ 2 ∇u 0 ∞ (1 -r) ≤ ψ(r) , r ∈ 1 2 , 1 . Since L ε u ε = 0 in (1/2, 1) × (0, ∞), the comparison principle ensures that u ε (r, t) ≤ A 0 (1 -r) for (r, t) ∈ (1/2, 1) × (0, ∞). Since u ε (1, t) = 0, this implies in particular that 0 ≤ -∂ r u ε (1, t) ≤ A 0 for t ≥ 0.
Recalling that u ε (t) is radially symmetric and smooth, we thus have

-A 0 ≤ ∂ r u ε (1, t) ≤ 0 = ∂ r u ε (0, t) , t ≥ 0 . (3.6) 
We next estimate the gradient of u ε in B. For that purpose, we introduce the parabolic operator

M ε z := ∂ t z -∂ r a ε z 2 + 2a ′ ε z 2 z 2 ∂ r z - N -1 r a ε z 2 + 2a ′ ε z 2 z 2 + 2b ′ ε z 2 z 2 ∂ r z + N -1 r 2 a ε z 2 z
for (r, t) ∈ (0, 1) × (0, ∞) and readily deduce from (3.3) that

M ε ∂ r u ε = 0 in (0, 1) × (0, ∞). (3.7) 
Observe next that

∂ r u ε (r, 0) ≥ -2 ∇u 0 L ∞ (B) ≥ -A 0 by (3.2) and (3.5) and 
M ε (-A 0 ) = - N -1 r 2 a ε A 2 0 A 0 ≤ 0 ,
which, together with (3.6), (3.7), and the comparison principle implies that

-A 0 ≤ ∂ r u ε (r, t), (r, t) ∈ [0, 1] × [0, ∞). (3.8) 
Finally, let W ε ∈ C 1 ([0, ∞)) be the solution to the ordinary differential equation

dW ε dt + (N -1) a ε W 2 ε W ε = 0, W ε (0) = 2 ∇u 0 L ∞ (B) . (3.9) 
Then W ε is positive and decreasing, W ε (0) ≥ ∂ r u ε (r, 0) for r ∈ (0, 1) by (3.2), and M ε W ε ≥ 0 in (0, 1) × (0, ∞) by (3.9). Recalling (3.7), we deduce from the comparison principle that

∂ r u ε (r, t) ≤ W ε (t), (r, t) ∈ [0, 1] × [0, ∞). (3.10) 
Finally, we argue as in [START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q[END_REF]Lemma 5] to deduce from (3.3), (3.4), (3.8), and (3.10) that there is a constant C depending on ∇u 0 L ∞ (B) , p, q, and N , such that

|u ε (x, t 1 ) -u ε (x, t 2 )| ≤ C(|t 1 -t 2 | + |t 1 -t 2 | 1/2 ) (3.11)
for any x ∈ B, t 1 , t 2 ∈ [0, ∞) and ε ∈ (0, 1). Indeed, consider t 1 = t 2 and set τ := |t 1 -t 2 | 1/2 > 0 and L := max{A 0 , 2 ∇u 0 L ∞ (B) }. Since (3.8), (3.10), and the Dirichlet boundary conditions imply that

|u ε (x, t)| ≤ L dist(x, ∂B) for (x, t) ∈ B × [0, ∞), we have |u ε (x 0 , t 1 ) -u ε (x 0 , t 2 )| ≤ 2L dist(x 0 , ∂B) ≤ 2Lτ if dist(x 0 , ∂B) ≤ τ. (3.12) 
If dist(x 0 , ∂B) > τ and ε ∈ (0, 1/L), we infer from (3.3), the properties of (a ε , b ε ), and

|∇u ε | ≤ L in B × [0, ∞) that |u ε (x 0 , t 1 ) -u ε (x 0 , t 2 )| = 1 |B|τ N {|x-x0|<τ } (u ε (x 0 , t 1 ) -u ε (x 0 , t 2 ))dx = 1 |B|τ N {|x-x0|<τ } (u ε (x, t) -u ε (x 0 , t))dx t=t2 t=t1 - t2 t1 {|x-x0|<τ } ∂ t u ε (x, t)dxdt ≤ 2L |B|τ N {|x-x0|<τ } |x -x 0 |dx + 1 |B|τ N t2 t1 {|x-x0|<τ } div(a ε (|∇u ε | 2 )∇u ε ) + b ε (|∇u ε | 2 ) (x, t)dxdt ≤ 2LN N + 1 τ + 1 |B|τ N t2 t1 {|x-x0|<τ } (ε 2 + |∇u ε | 2 ) q/2 (x, t)dxdt + 1 |B|τ N t2 t1 {|x-x0|=τ } a ε (|∇u ε | 2 )|∇u ε | (y, t)dSdt ≤ 2LN N + 1 τ + (1 + L 2 ) q/2 |t 1 -t 2 | + N τ (1 + L 2 ) (p-2)/2 L|t 1 -t 2 | ≤ 2LN N + 1 τ + (1 + L 2 ) q/2 τ 2 + N (1 + L 2 ) p/2 τ.
Combining (3.12) and the above estimate gives the claim (3.11).

We can now pass to the limit as ε → 0. Owing to (3.4) 

dW dt + (N -1) |W | p-2 W = 0, W (0) = 2 ∇u 0 L ∞ (B) .
In fact, W (t) = W (0) 

M ∞ := lim t→∞ u(t) L ∞ (B) > 0. (3.13)
Proof. Any positive constant being obviously a supersolution to (1.1), the time monotonicity of the L ∞ (B)-norm of u readily follows from the comparison principle. Next, since u 0 ≡ 0 by (1.2), there is x 0 ∈ B, ̺ > 0, and m > 0 such that

B ̺ (x 0 ) := {x ∈ R N : |x -x 0 | < ̺} ⊂ B and u 0 (x) ≥ m for x ∈ B ̺ (x 0 ).
Introducing v λ (x) := λ (p-q)/(p-1-q) w 0 (|x -x 0 |/λ) for x ∈ B λ (x 0 ) and λ ∈ (0, 1) (the function w 0 being defined in Theorem 1.1), a simple computation shows that v λ is a solution to

-∆ p v λ -|∇v λ | q = 0 in B λ (x 0 ) with v λ (x) = 0 ≤ u(x, t) for (x, t) ∈ ∂B λ (x 0 ) × (0, ∞).
Furthermore, if λ = λ m := min{1 -|x 0 |, (mα/c 0 ) (p-1-q)/(p-q) } , we have v λm (x) ≤ m ≤ u 0 (x) for x ∈ B λm (x 0 ). The comparison principle [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF]Theorem 2.1] then warrants that u(x, t) ≥ v λm (x) for (x, t) ∈ B λm (x 0 ) × (0, ∞). In particular, u(t

) L ∞ (B) ≥ v λm L ∞ (B λm (x0)) for all t ≥ 0, whence M ∞ ≥ v λm L ∞ (B λm (x0)) > 0. ////

Convergence to steady states

We introduce the half-relaxed limits

u * (x) := lim inf (s,ε)→(t,0) u(x, ε -1 s), x ∈ B, and 
u * (x) := lim sup (s,ε)→(t,0) u(x, ε -1 s), x ∈ B,
which are well-defined and do not depend on t > 0. Moreover, we infer from the stability theorem (see [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]Lemma 6.1]) that u * is a viscosity subsolution to F (∇z,

D 2 z) = 0 in B, (4.1) 
u * is a viscosity supersolution to F (∇z, D 2 z) = 0 in B.

(4.2)

Next we state some useful properties of the half-relaxed limits.

Lemma 4.1 The half-relaxed limits u * and u * enjoy the following properties:

u * ∈ W 1,∞ (B), u * ∈ W 1,∞ (B), (4.3) 0 ≤ u * (x) ≤ u * (x), x ∈ B, (4.4 
) u * and u * are radially symmetric and non-increasing, (4.5)

u * (0) = u * (0) = M ∞ := lim t→∞ u(t) L ∞ (B) > 0, (4.6) u * (x) = u * (x) = 0 for x ∈ ∂B. (4.7) 
Proof. By (3.1) there is

L := max {A 0 , W (0)} > 0 such that u(x, ε -1 s) ≤ u(y, ε -1 s) + L|x -y| for all (x, y, ε -1 s) ∈ B × B × [0, ∞) , (4.8) 
from which we deduce that u * and u * are Lipschitz continuous in B by taking the lim sup or lim inf in ε and s. This proves (4.3), while (4.4) comes directly from the definition of u * and u * and the facts that u is non-negative, radially symmetric for any t ≥ 0 and vanishes identically on ∂B × (0, ∞). The proof of (4.7) uses, in addition, the uniform Lipschitz and C 0,1/2 -bounds we have for u in space and time respectively. In order to prove (4.5), we use Proposition 

(x, t) ≤ u(0, t) + W (t)|x| ≤ u(0, t) + W (t) ≤ u(t) L ∞ (B) + W (t), x ∈ B whence u(t) L ∞ (B) ≤ u(0, t) + W (t) ≤ u(t) L ∞ (B) + W (t),
and (4.10) due to W (t) → 0 as t → ∞. Moreover, by the definition of the half-relaxed limits, we have u *

(0) = u * (0) = M ∞ and u * L ∞ (B) ≤ u * L ∞ (B) ≤ M ∞ .
This completes the proof of (4.6). //// and thus

1 Λ ∂ r Φ(r 0 ) ≤ -m δ < 0 which implies |∂ r Φ(r 0 )| ≥ Λm δ . Consequently, (4.15) becomes f (r 0 , ∂ r Φ(r 0 ), ∂ 2 r Φ(r 0 )) ≥ Λ p-1-q -1 Λ q m q δ =: ε δ,Λ > 0,
which ends the proof. ////

We are now able to prove that the half-relaxed limits u * and u * coincide. Proof. We fix Λ > 1 > λ > 0 such that λ > r * and

δ := M ∞ ∇u * L ∞ (B)
1 -λ (p-q)/(p-1-q) ∈ (0, λ -r * ).

Defining now U (r) := Λu * (r), r ∈ [0, 1], and V (r) := λ (p-q)/(p-1-q) u * r λ , r ∈ [0, λ],

we obtain due to (4.13) ≥ λ (p-q)/(p-1-q) M ∞ ≥ V (r).

U (r) ≥ u * (r) = M ∞ ≥ V (
Recalling (4.16), we have thus shown that U (r) ≥ V (r) for r ∈ [0, r * + δ] . (4.17)

Next, we define I λ := (r * +δ, λ). On the one hand, V is a viscosity subsolution to f (r, ∂ r z, ∂ 2 r z) = 0 in I λ . Indeed, take Φ ∈ C 2 (I λ ) and assume that V -Φ has a local maximum at r 1 ∈ I λ . Then u * -Ψ has a local maximum at r 1 /λ, where Ψ(r) := λ -(p-q)/(p-1-q) Φ(λr) for r ∈ ((r * + δ)/λ, 1). Owing to (4.1), we obtain

f r 1 λ , ∂ r Ψ r 1 λ , ∂ 2 r Ψ r 1 λ ≤ 0.
Consequently, 0 ≥ λ q/(p-1-q) f r 1 λ , λ -1/(p-1-q) ∂ r Φ(r 1 ), λ 1-1/(p-1-q) ∂ 2 r Φ(r and V is a viscosity subsolution to f (r, ∂ r z, ∂ 2 r z) = 0 in I λ . On the other hand, it follows from Lemma 4.2 that U is a viscosity supersolution to f (r, ∂ r z, ∂ 2 r z) = ε δ,Λ in I λ with some ε δ,Λ > 0. As furthermore V (r) = 0 ≤ U (r) for r = λ and U (r) ≥ V (r) for r = r * + δ due to (4.17 

  , (3.8),(3.10), and(3.11), (u ε ) ε is bounded in, say, C 0,1/2 (B × (0, ∞)) because the uniform Lipschitz continuity in r implies a uniform C 0,1/2bound in r; thus (u ε ) ε is relatively compact in C( B × [0, T ])for all T > 0. It follows from the stability theorem [10, Section 6] and the comparison principle for (1.1) [11, Theorem 2.1] that (u ε ) ε converges uniformly towards the unique viscosity solution u to (1.1) on compact subsets of B × [0, ∞). The properties of u and the bounds listed in Proposition 3.1 then readily follow from this convergence, the properties of u ε , (3.4), (3.8), and (3.10), the function W being the solution to the ordinary differential equation

Lemma 4 . 3

 43 We have u * = u * on B.

  r) for r ∈ [0, r * ]. (4.16)Furthermore, we infer from the Lipschitz continuity of u * that, for r ∈ (r * , r * + δ],U (r) ≥ u * (r) ≥ u * (r * ) -∇u * L ∞ (B) |r -r * | = M ∞ -∇u * L ∞ (B) |r -r * | ≥ M ∞ -δ ∇u * L ∞ (B)

1 )=

 1 -(p -1)|∂ r Φ(r 1 )| p-2 ∂ 2 r Φ(r 1 ) -N -1 r 1 |∂ r Φ(r 1 )| p-2 ∂ r Φ(r 1 ) -|∂ r Φ(r 1 )| q = f (r 1 , ∂ r Φ(r 1 ), ∂ 2 r Φ(r 1 ))

  ), we conclude that U (r) ≥ V (r) for r ∈ [r * + δ, λ] by[START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] Section 5C]. Using (4.17), we end up withΛu * (r) ≥ λ (p-q)/(p-1-q) u * r λ for r ∈ [0, λ].Letting now Λ ց 1 and λ ր 1, we conclude u * ≥ u * in [0, 1] which, together with (4.4), implies u * = u * . //// Finally, we prove Theorem 1.3. Proof of Theorem 1.3. Defining u ∞ := u * = u * by Lemma 4.3, (4.1), (4.2), and Lemma 4.1 imply that u ∞ is a radially symmetric, non-increasing, and Lipschitz continuous viscosity solution to F (∇z,D 2 z) = 0 in B satisfying u ∞ = 0 on ∂B. Moreover, u ∞ L ∞ (B) = M ∞ > 0 due to (4.6). Hence, owing to Theorem 1.1, there is a unique ϑ ∈ [0, 1) such that u ∞ = w ϑ . In particular, the equality u * = u * and the definition of u * and u * provide the uniform convergence of u(t) towards u * = w ϑ in every compact subset of B as t → ∞, see [3, Lemme 4.1] or [2, Lemma V.1.9]. Combining this local convergence with (4.3) and (4.7) gives lim t→∞ u(t) -w ϑ C( B) = 0 and the claim is proved. ////

  0} of the solution u to (1.1) is bounded in L ∞ (B). More precise information are gathered in the next lemma. Assume that u 0 , p, and q fulfil (1.2) and(1.3). Let u be the viscosity solution to (1.1) described in Proposition 3.1. Then t -→ u(t) L ∞ (B) is a non-increasing function and

	2-p + (p -2)(N -1)t creasing and converges to zero as t → ∞.	-1/(p-2) for t ≥ 0 and W is obviously positive, de-////
	By (3.1), the trajectory {u(t) : t ≥ Lemma 3.2	
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Now, owing to the monotonicity and radial symmetry of u * and u * , there are r * ∈ [0, 1] and r * ∈ [0, 1] such that

Due to (4.4), (4.6), and (4.7), we have

Next, we show that Λu * is a strict supersolution to the stationary equation in a subset of B for Λ > 1.

Lemma 4.2 Fix Λ > 1 and δ ∈ (0, 1 -r * ). Then there are

Proof.

Fix δ ∈ (0, 1 -r * ). Then, due to (4.3), (4.5), and (4.11), there is

, it is also a viscosity supersolution to f 0 (r, ∂ r z, ∂ 2 r z) = 0 in (0, 1) and it follows from Lemma 2.1 that

for a.e. r ∈ (r δ , 1). Integrating and using the continuity of u * we conclude that

)) and assume that Λu * -Φ has a local minimum at some r 0 ∈ (r δ , 1). Then u * -(Φ/Λ) has a local minimum at r 0 and (4.2) implies

Thus, we have