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Different change-point type models encountered in statistical inference for stochastic processes give rise to different limiting likelihood ratio processes. In this paper we consider two such likelihood ratios. The first one is an exponential functional of a two-sided Poisson process driven by some parameter, while the second one is an exponential functional of a two-sided Brownian motion. We establish that for sufficiently small values of the parameter, the Poisson type likelihood ratio can be approximated by the Brownian type one. As a consequence, several statistically interesting quantities (such as limiting variances of different estimators) related to the first likelihood ratio can also be approximated by those related to the second one. Finally, we discuss the asymptotics of the large values of the parameter and illustrate the results by numerical simulations.

Introduction

Different change-point type models encountered in statistical inference for stochastic processes give rise to different limiting likelihood ratio processes. In this paper we consider two of these processes. The first one is the random process Z ρ on Ê defined by

ln Z ρ (x) =    ρ Π + (x) -x, if x 0, -ρ Π -(-x) -x, if x 0, (1) 
where ρ > 0, and Π + and Π -are two independent Poisson processes on Ê + with intensities 1/(e ρ -1) and 1/(1e -ρ ) respectively. We also consider the random variables

ζ ρ = Ê x Z ρ (x) dx Ê Z ρ (x) dx and ξ ρ = argsup x∈Ê Z ρ (x) (2) 
related to this process, as well as to their second moments B ρ = Eζ 2 ρ and M ρ = Eξ 2 ρ . The process Z ρ (up to a linear time change) arises in some non-regular, namely change-point type, statistical models as the limiting likelihood ratio process, and the variables ζ ρ and ξ ρ (up to a multiplicative constant) as the limiting distributions of the Bayesian estimators and of the maximum likelihood estimator respectively. In particular, B ρ and M ρ (up to the square of the above multiplicative constant) are the limiting variances of these estimators, and the Bayesian estimators being asymptotically efficient, the ratio E ρ = B ρ /M ρ is the asymptotic efficiency of the maximum likelihood estimator in these models.

The main such model is the below detailed model of i.i.d. observations in the situation when their density has a jump (is discontinuous). Probably the first general result about this model goes back to Chernoff and Rubin [START_REF] Chernoff | The estimation of the location of a discontinuity in density[END_REF]. Later, it was exhaustively studied by Ibragimov and Khasminskii in [START_REF] Ibragimov | Statistical estimation. Asymptotic theory[END_REF]Chapter 5] see also their previous works [START_REF] Ibragimov | On the asymptotic behavior of generalized Bayes' estimator[END_REF] and [START_REF] Ibragimov | The asymptotic behavior of statistical estimates for samples with a discontinuous density[END_REF] .

Model 1. Consider the problem of estimation of the location parameter θ based on the observation X n = (X 1 , . . . , X n ) of the i.i.d. sample from the density f (xθ), where the known function f is smooth enough everywhere except at 0, and in 0 we have

0 = lim x↑0 f (x) = a = b = lim x↓0 f (x) = 0.
Denote P n θ the distribution (corresponding to the parameter θ) of the observation X n . As n → ∞, the normalized likelihood ratio process of this model defined by

Z n (u) = dP n θ+ u n dP n θ (X n ) = n i=1 f X i -θ -u n f (X i -θ)
converges weakly in the space D 0 (-∞, +∞) (the Skorohod space of functions on Ê without discontinuities of the second kind and vanishing at infinity) to the process Z a,b on Ê defined by

ln Z a,b (u) =        ln( a b ) Π b (u) -(a -b) u, if u 0, -ln( a b ) Π a (-u) -(a -b) u, if u 0,
where Π b and Π a are two independent Poisson processes on Ê + with intensities b and a respectively. The limiting distributions of the Bayesian estimators and of the maximum likelihood estimator are given by 

ζ a,b = Ê u Z a,b (u) du Ê Z a,b (u) 
ln Z a,b (u) =        ln( a b ) Π b ( x a-b ) -x, if x a-b 0, -ln( a b ) Π a (-x a-b ) -x, if x a-b 0, = ln Z ρ (x) = ln Z ρ (a -b) u .
So, we have

ζ a,b = ζ ρ a -b and ξ a,b = ξ ρ a -b ,
and hence

Eζ 2 a,b = B ρ (a -b) 2 , Eξ 2 a,b = M ρ (a -b) 2 and Eζ 2 a,b Eξ 2 a,b = E ρ .
Some other models where the process Z ρ arises occur in the statistical inference for inhomogeneous Poisson processes, in the situation when their intensity function has a jump (is discontinuous). In Kutoyants [START_REF] Kutoyants | Statistical Inference for Spatial Poisson Processes[END_REF]Chapter 5] see also his previous work [START_REF] Kutoyants | Parameter estimation for stochastic processes[END_REF] one can find several examples, one of which is detailed below.

Model 2. Consider the problem of estimation of the location parameter θ ∈ ]α, β[, 0 < α < β < τ , based on the observation X T on [0, T ] of the Poisson process with τ -periodic strictly positive intensity function S(t + θ), where the known function S is smooth enough everywhere except at points t * + τ k, k ∈ , with some t * ∈ [0, τ ], in which we have 0 = lim t↑t * S(t) = S -= S + = lim t↓t * S(t) = 0.

Denote P T θ the distribution (corresponding to the parameter θ) of the observation X T . As T → ∞, the normalized likelihood ratio process of this model defined by

Z T (u) = dP T θ+ u T dP T θ (X T ) = exp T 0 ln S θ+ u T (t) S θ (t) dX(t)- T 0 S θ+ u T (t) -S θ (t) dt
converges weakly in the space D 0 (-∞, +∞) to the process Z τ,S -,S + on Ê defined by

ln Z τ,S -,S + =        ln S + S -Π S - u τ -(S + -S -) u τ , if u 0, -ln S + S -Π S + -u τ -(S + -S -) u τ , if u 0,
where Π S -and Π S + are two independent Poisson processes on Ê + with in- tensities S -and S + respectively. The limiting distributions of the Bayesian estimators and of the maximum likelihood estimator are given by

ζ τ,S -,S + = Ê u Z τ,S -,S + (u) du Ê Z τ,S -,S + (u) du and ξ τ,S -,S + = argsup u∈Ê Z τ,S -,S + (u)
respectively. The convergence of moments also holds, and the Bayesian estimators are asymptotically efficient. So, Eζ 2 τ,S -,S + and Eξ 2 τ,S -,S + are the limiting variances of these estimators, and Eζ 2 τ,S -,S + /Eξ 2 τ,S -,S + is the asymptotic efficiency of the maximum likelihood estimator. Now let us note, that up to a linear time change, the process Z τ,S -,S + is nothing but the process Z ρ with ρ = ln S + S -. Indeed, by putting u = τ x S + -S - we get

Z τ,S -,S + (u) = Z ρ (x) = Z ρ S + -S - τ u .
So, we have

ζ τ,S -,S + = τ ζ ρ S + -S - and ζ τ,S -,S + = τ ξ ρ S + -S - ,
and hence

Eζ 2 τ,S -,S + = τ 2 B ρ (S + -S -) 2 , Eξ 2 τ,S -,S + = τ 2 M ρ (S + -S -) 2 and Eζ 2 τ,S -,S + Eξ 2 τ,S -,S + = E ρ .
The second limiting likelihood ratio process considered in this paper is the random process

Z 0 (x) = exp W (x) - 1 2 |x| , x ∈ Ê, (3) 
where W is a standard two-sided Brownian motion. In this case, the limiting distributions of the Bayesian estimators and of the maximum likelihood estimator (up to a multiplicative constant) are given by

ζ 0 = Ê x Z 0 (x) dx Ê Z 0 (x) dx and ξ 0 = argsup x∈Ê Z 0 (x) (4) 
respectively, and the limiting variances of these estimators (up to the square of the above multiplicative constant) are B 0 = Eζ 2 0 and M 0 = Eξ 2 0 . The models where the process Z 0 arises occur in various fields of statistical inference for stochastic processes. A well-known example is the below detailed model of a discontinuous signal in a white Gaussian noise exhaustively studied by Ibragimov and Khasminskii in [10, Chapter 7.2] see also their previous work [START_REF] Ibragimov | Estimation of a parameter of a discontinuous signal in a white Gaussian noise[END_REF] , but one can also cite change-point type models of dynamical systems with small noise see Kutoyants [START_REF] Kutoyants | Parameter estimation for stochastic processes[END_REF] and [START_REF] Kutoyants | Identification of dynamical systems with small noise[END_REF]Chapter 5] , those of ergodic diffusion processes see Kutoyants [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF]Chapter 3] , a changepoint type model of delay equations see Küchler and Kutoyants [START_REF] Küchler | Delay estimation for some stationary diffusion-type processes[END_REF] , an i.i.d. change-point type model see Deshayes and Picard [START_REF] Deshayes | Lois asymptotiques des tests et estimateurs de rupture dans un modèle statistique classique[END_REF] , a model of a discontinuous periodic signal in a time inhomogeneous diffusion see Höpfner and Kutoyants [START_REF] Höpfner | Estimating discontinuous periodic signals in a time inhomogeneous diffusion[END_REF] , and so on. Model 3. Consider the problem of estimation of the location parameter θ ∈ ]α, β[, 0 < α < β < 1, based on the observation X ε on [0, 1] of the random process satisfying the stochastic differential equation

dX ε (t) = 1 ε S(t -θ) dt + dW (t),
where W is a standard Brownian motion, and S is a known function having a bounded derivative on ]-1, 0[ ∪ ]0, 1[ and satisfying

lim t↑0 S(t) -lim t↓0 S(t) = r = 0.
Denote P ε θ the distribution (corresponding to the parameter θ) of the observation X ε . As ε → 0, the normalized likelihood ratio process of this model defined by

Z ε (u) = dP ε θ+ε 2 u dP ε θ (X ε ) = exp 1 ε 1 0 S(t -θ -ε 2 u) -S(t -θ) dW (t) - 1 2 ε 2 1 0 S(t -θ -ε 2 u) -S(t -θ) 2 dt
converges weakly in the space C 0 (-∞, +∞) (the space of continuous functions vanishing at infinity equipped with the supremum norm) to the process Z 0 (r 2 u), u ∈ Ê. The limiting distributions of the Bayesian estimators and of the maximum likelihood estimator are r -2 ζ 0 and r -2 ξ 0 respectively. The convergence of moments also holds, and the Bayesian estimators are asymptotically efficient. So, r -4 B 0 and r -4 M 0 are the limiting variances of these estimators, and E 0 is the asymptotic efficiency of the maximum likelihood estimator.

Let us also note that Terent'yev in [START_REF] Terent'yev | Probability distribution of a time location of an absolute maximum at the output of a synchronized filter[END_REF] determined explicitly the distribution of ξ 0 and calculated the constant M 0 = 26. These results were taken up by Ibragimov and Khasminskii in [START_REF] Ibragimov | Statistical estimation. Asymptotic theory[END_REF]Chapter 7.3], where by means of numerical simulation they equally showed that B 0 = 19.5 ± 0.5, and so E 0 = 0.73 ± 0.03. Later in [START_REF] Golubev | Computation of the efficiency of the maximumlikelihood estimator when observing a discontinuous signal in white noise[END_REF], Golubev expressed B 0 in terms of the second derivative (with respect to a parameter) of an improper integral of a composite function of modified Hankel and Bessel functions. Finally in [START_REF] Rubin | Exact computation of the asymptotic efficiency of maximum likelihood estimators of a discontinuous signal in a Gaussian white noise[END_REF] 

ζ(s) = ∞ n=1 1 n s .
The random variables ζ ρ and ξ ρ and the quantities B ρ , M ρ and E ρ , ρ > 0, are much less studied. One can cite Pflug [START_REF] Pflug | On an argmax-distribution connected to the Poisson process[END_REF] for some results about the distribution of the random variables

argsup x∈Ê + Z ρ (x) and argsup x∈Ê - Z ρ (x) related to ξ ρ .
In this paper we establish that the limiting likelihood ratio processes Z ρ and Z 0 are related. More precisely, we show that as ρ → 0, the process Z ρ (y/ρ), y ∈ Ê, converges weakly in the space D 0 (-∞, +∞) to the process Z 0 . So, the random variables ρ ζ ρ and ρ ξ ρ converge weakly to the random variables ζ 0 and ξ 0 respectively. We show equally that the convergence of moments of these random variables holds, that is,

ρ 2 B ρ → 16 ζ(3), ρ 2 M ρ → 26 and E ρ → 8 ζ(3)/13.
These are the main results of the present paper, and they are presented in Section 2, where we also briefly discuss the second possible asymptotics ρ → +∞. The necessary lemmas are proved in Section 3. Finally, some numerical simulations of the quantities B ρ , M ρ and E ρ for ρ ∈ ]0, ∞[ are presented in Section 4.

Main results

Consider the process X ρ (y) = Z ρ (y/ρ), y ∈ Ê, where ρ > 0 and Z ρ is defined by [START_REF] Chernoff | The estimation of the location of a discontinuity in density[END_REF]. Note that

Ê y X ρ (y) dy Ê X ρ (y) dy = ρ ζ ρ and argsup y∈Ê X ρ (y) = ρ ξ ρ ,
where the random variables ζ ρ and ξ ρ are defined by [START_REF] Cramér | On some questions connected with mathematical risk[END_REF]. Remind also the process Z 0 on Ê defined by (3) and the random variables ζ 0 and ξ 0 defined by [START_REF] Gihman | The theory of stochastic processes I[END_REF]. Recall finally the quantities

B ρ = Eζ 2 ρ , M ρ = Eξ 2 ρ , E ρ = B ρ /M ρ , B 0 = Eζ 2 0 = 16 ζ(3), M 0 = Eξ 2 0 = 26 and E 0 = B 0 /M 0 = 8 ζ(3)/13
. Now we can state the main result of the present paper.

Theorem 1 The process X ρ converges weakly in the space D 0 (-∞, +∞) to the process Z 0 as ρ → 0. In particular, the random variables ρ ζ ρ and ρ ξ ρ converge weakly to the random variables ζ 0 and ξ 0 respectively. Moreover, for any k > 0 we have

ρ k Eζ k ρ → Eζ k 0 and ρ k Eξ k ρ → Eξ k 0 ,
and in particular

ρ 2 B ρ → 16 ζ(3), ρ 2 M ρ → 26 and E ρ → 8 ζ(3)/13.
The results concerning the random variable ζ ρ are direct consequence of Ibragimov and Khasminskii [10, Theorem 1.10.2] and the following three lemmas.

Lemma 2

The finite-dimensional distributions of the process X ρ converge to those of Z 0 as ρ → 0.

Lemma 3 For all ρ > 0 and all y 1 , y 2 ∈ Ê we have

E X 1/2 ρ (y 1 ) -X 1/2 ρ (y 2 ) 2 1 4 |y 1 -y 2 | .
Lemma 4 For any c ∈ ] 0 , 1/8 [ we have

EX 1/2 ρ (y) exp -c |y|
for all sufficiently small ρ and all y ∈ Ê.

Note that these lemmas are not sufficient to establish the weak convergence of the process X ρ in the space D 0 (-∞, +∞) and the results concerning the random variable ξ ρ . However, the increments of the process ln X ρ being independent, the convergence of its restrictions (and hence of those of X ρ ) for all sufficiently small ρ and all A > 0.

on finite intervals [A, B] ⊂ Ê that is,
All the above lemmas will be proved in the next section, but before let us discuss the second possible asymptotics ρ → +∞. One can show that in this case, the process Z ρ converges weakly in the space D 0 (-∞, +∞) to the process Z ∞ (u) = e -u ½ {u>η} , u ∈ Ê, where η is a negative exponential random variable with P{η < t} = e t , t 0. So, the random variables ζ ρ and ξ ρ converge weakly to the random variables

ζ ∞ = Ê u Z ∞ (u) du Ê Z ∞ (u) du = η + 1 and ξ ∞ = argsup u∈Ê Z ∞ (u) = η
respectively. One can equally show that, moreover, for any k > 0 we have

Eζ k ρ → Eζ k ∞ and Eξ k ρ → Eξ k ∞ ,
and in particular, denoting

B ∞ = Eζ 2 ∞ , M ∞ = Eξ 2 ∞ and E ∞ = B ∞ /M ∞ , we finally have B ρ → B ∞ = E(η + 1) 2 = 1, M ρ → M ∞ = Eη 2 = 2 and E ρ → E ∞ = 1/2.
Let us note that these convergences are natural, since the process Z ∞ can be considered as a particular case of the process Z ρ with ρ = +∞ if one admits the convention +∞ • 0 = 0.

Note also that the process Z ∞ (up to a linear time change) is the limiting likelihood ratio process of Model 1 (Model 2) in the situation when a • b = 0 (S -• S + =0). In this case, the variables ζ ∞ = η + 1 and ξ ∞ = η (up to a multiplicative constant) are the limiting distributions of the Bayesian estimators and of the maximum likelihood estimator respectively. In particular, B ∞ = 1 and M ∞ = 2 (up to the square of the above multiplicative constant) are the limiting variances of these estimators, and the Bayesian estimators being asymptotically efficient, E ∞ = 1/2 is the asymptotic efficiency of the maximum likelihood estimator.

Proofs of the lemmas

First we prove Lemma 2. Note that the restrictions of the process ln X ρ (as well as those of the process ln Z 0 ) on Ê + and on Ê -are mutually independent processes with stationary and independent increments. So, to obtain the convergence of all the finite-dimensional distributions, it is sufficient to show the convergence of one-dimensional distributions only, that is,

ln X ρ (y) ⇒ ln Z 0 (y) = W (y) - |y| 2 = N - |y| 2 , |y|
for all y ∈ Ê. Here and in the sequel "⇒" denotes the weak convergence of the random variables, and N (m, V ) denotes a "generic" random variable distributed according to the normal law with mean m and variance V .

Let y > 0. Then, noting that Π + y ρ is a Poisson random variable of

parameter λ = y ρ (e ρ -1) → ∞, we have ln X ρ (y) = ρ Π + y ρ - y ρ = ρ y ρ (e ρ -1) Π + y ρ -λ √ λ + y e ρ -1 - y ρ = √ y ρ e ρ -1 Π + y ρ -λ √ λ -y e ρ -1 -ρ ρ (e ρ -1) ⇒ N - y 2 , y , since ρ e ρ -1 = ρ ρ + o(ρ) → 1, e ρ -1 -ρ ρ (e ρ -1) = ρ 2 /2 + o(ρ 2 ) ρ ρ + o(ρ) → 1 2 and Π + y ρ -λ √ λ ⇒ N (0, 1).
Similarly, for y < 0 we have

ln X ρ (y) = -ρ Π - -y ρ - y ρ = ρ -y ρ (1 -e -ρ ) λ ′ -Π - -y ρ √ λ ′ - -y 1 -e -ρ - y ρ = √ -y ρ 1 -e -ρ λ ′ -Π - -y ρ √ λ ′ + y e -ρ -1 + ρ ρ (1 -e -ρ ) ⇒ N y 2 , -y ,
and so, Lemma 2 is proved. Now we turn to the proof of Lemma 4 (we will prove Lemma 3 just after). For y > 0 we can write

EX 1/2 ρ (y) = E exp ρ 2 Π + y ρ - y 2ρ = exp - y 2ρ E exp ρ 2 Π + y ρ .
Note that Π + y ρ is a Poisson random variable of parameter λ = y ρ (e ρ -1) with moment generating function M(t) = exp λ (e t -1) . So, we get

EX 1/2 ρ (y) = exp - y 2ρ exp y ρ (e ρ -1) (e ρ/2 -1) = exp - y 2ρ + y ρ (e ρ/2 + 1)
= exp -y e ρ/2 -1 2ρ (e ρ/2 + 1) = exp -y e ρ/4e -ρ/4 2ρ (e ρ/4 + e -ρ/4 ) = exp -y tanh(ρ/4) 2ρ .

For y < 0 we obtain similarly

EX 1/2 ρ (y) = E exp - ρ 2 Π - -y ρ - y 2ρ = exp - y 2ρ exp -y ρ (1 -e -ρ ) (e -ρ/2 -1) = exp - y 2ρ + y ρ (1 + e -ρ/2 ) = exp y 1 -e -ρ/2 2ρ (1 + e -ρ/2 ) = exp y tanh(ρ/4) 2ρ .
Thus, for all y ∈ Ê we have Further we verify Lemma 3. We first consider the case y 1 , y 2 ∈ Ê + (say y 1 y 2 ). Using ( 5) and taking into account the stationarity and the independence of the increments of the process ln X ρ on Ê + , we can write

EX 1/2 ρ (y) = exp -|y| tanh(ρ/4) 2ρ , (5) 
E X 1/2 ρ (y 1 ) -X 1/2 ρ (y 2 ) 2 = EX ρ (y 1 ) + EX ρ (y 2 ) -2 EX 1/2 ρ (y 1 )X 1/2 ρ (y 2 ) = 2 -2 EX ρ (y 2 ) E X 1/2 ρ (y 1 ) X 1/2 ρ (y 2 ) = 2 -2 EX 1/2 ρ (y 1 -y 2 ) = 2 -2 exp -|y 1 -y 2 | tanh(ρ/4) 2ρ |y 1 -y 2 | tanh(ρ/4) ρ 1 4 |y 1 -y 2 | .
The case y 1 , y 2 ∈ Ê -can be treated similarly.

Finally, if y 1 y 2 0 (say y 2 0 y 1 ), we have

E X 1/2 ρ (y 1 ) -X 1/2 ρ (y 2 ) 2 = 2 -2 EX 1/2 ρ (y 1 ) EX 1/2 ρ (y 2 ) = 2 -2 exp -|y 1 | tanh(ρ/4) 2ρ -|y 2 | tanh(ρ/4) 2ρ = 2 -2 exp -|y 1 -y 2 | tanh(ρ/4) 2ρ 1 4 |y 1 -y 2 | ,
and so, Lemma 3 is proved. Now let us check Lemma 5. First let y 1 , y 2 ∈ Ê + (say y 1 y 2 ) such that

∆ = |y 1 -y 2 | < h. Then P ln X ρ (y 1 ) -ln X ρ (y 2 ) > ε 1 ε 2 E ln X ρ (y 1 ) -ln X ρ (y 2 ) 2 = 1 ε 2 E ln X ρ (∆) 2 = 1 ε 2 E ρ Π + ∆ ρ - ∆ ρ 2 = 1 ε 2 ρ 2 (λ + λ 2 ) + ∆ 2 ρ 2 -2λ∆ = 1 ε 2 β(ρ) ∆ + γ(ρ) ∆ 2 < 1 ε 2 β(ρ) h + γ(ρ) h 2 ,
where λ = ∆ ρ (e ρ -1) is the parameter of the Poisson random variable Π + ∆ ρ ,

β(ρ) = ρ (e ρ -1) = ρ ρ + o(ρ) → 1 and γ(ρ) = 1 (e ρ -1) 2 + 1 ρ 2 - 2 ρ (e ρ -1) = 1 ρ - 1 e ρ -1 2 = e ρ -1 -ρ ρ (e ρ -1) 2 = ρ 2 /2 + o(ρ 2 ) ρ ρ + o(ρ) 2 → 1 4
as ρ → 0. So, we have

lim ρ→0 sup |y 1 -y 2 |<h P ln X ρ (y 1 ) -ln X ρ (y 2 ) > ε lim ρ→0 1 ε 2 β(ρ) h + γ(ρ) h 2 = 1 ε 2 h + h 2 4 ,
and hence

lim h→0 lim ρ→0 sup |y 1 -y 2 |<h P ln X ρ (y 1 ) -ln X ρ (y 2 ) > ε = 0,
where the supremum is taken only over y 1 , y 2 ∈ Ê + .

For

y 1 , y 2 ∈ Ê -such that ∆ = |y 1 -y 2 | < h one can obtain similarly P ln X ρ (y 1 ) -ln X ρ (y 2 ) > ε 1 ε 2 E ln X ρ (y 1 ) -ln X ρ (y 2 ) 2 = 1 ε 2 β ′ (ρ) ∆ + γ ′ (ρ) ∆ 2 < 1 ε 2 β ′ (ρ) h + γ ′ (ρ) h 2 ,
where

β ′ (ρ) = ρ (1 -e -ρ ) = ρ ρ + o(ρ) → 1 and γ ′ (ρ) = e -ρ -1 + ρ ρ (1 -e ρ ) 2 = ρ 2 /2 + o(ρ 2 ) ρ ρ + o(ρ) 2 → 1 4
as ρ → 0, which will yield the same conclusion as above, but with the supremum taken over y 1 , y 2 ∈ Ê -.

Finally, for y 1 y 2 0 (say y 2 0 y 1 ) such that |y 1y 2 | < h, using the elementary inequality (ab) 2 2(a 2 + b 2 ) we get

P ln X ρ (y 1 ) -ln X ρ (y 2 ) > ε 1 ε 2 E ln X ρ (y 1 ) -ln X ρ (y 2 ) 2 13 ε 2 E ln X ρ (y 1 ) 2 + E ln X ρ (y 2 ) 2 = 2 ε 2 β(ρ)y 1 +γ(ρ)y 2 1 +β ′ (ρ)|y 2 |+γ ′ (ρ)|y 2 | 2 2 ε 2 β(ρ) + β ′ (ρ) h + γ(ρ) + γ ′ (ρ) h 2 ,
which again will yield the desired conclusion. Lemma 5 is proved.

It remains to verify Lemma 6. Clearly,

P sup |y|>A X ρ (y) > e -bA P sup y>A X ρ (y) > e -bA + P sup y<-A X ρ (y) > e -bA .
In order to estimate the first term, we need two auxiliary results.

Lemma 7 For any c ∈ ] 0 , 3/32 [ we have

EX 1/4 ρ (y) exp -c |y|
for all sufficiently small ρ and all y ∈ Ê.

Lemma 8 For all ρ > 0 the random variable

η ρ = sup t∈Ê + Π λ (t) -t ,
where Π λ is a Poisson process on Ê + with intensity λ = ρ/(e ρ -1) ∈ ]0, 1[,

verifies E exp ρ 4 η ρ 2.
The first result can be easily obtained following the proof of Lemma 4, so we prove the second one only. For this, let us remind that according to Shorack and Wellner [19, Proposition 1 on page 392] see also Pyke [START_REF] Pyke | The supremum and infimum of the Poisson process[END_REF] , the distribution function

F ρ (x) = P{η ρ < x} of η ρ is given by 1 -F ρ (x) = P{η ρ x} = (1 -λ) e λx n>x (n -x) n n! λ e -λ n
for x > 0, and is zero for x 0. Hence, for x > 0 we have

1 -F ρ (x) (1 -λ) e λx n>x (n -x) n √ 2πn n n e -n λ e -λ n = 1 -λ √ 2π e λx n>x 1 √ n 1 - x n n λ e 1-λ n 1 -λ √ 2π e λx n>x e -x λ e 1-λ n √ n 1 -λ √ 2π e (λ-1)x λ e 1-λ x n>x λ e 1-λ n-x √ n -x = 1 -λ √ 2π λ x k>0 λ e 1-λ k √ k 1 -λ √ 2π λ x Ê + λ e 1-λ t √ t dt = 1 -λ √ 2π λ x Γ(1/2) -ln λ e 1-λ = 1 -λ -2 ln λ e 1-λ ρ e ρ -1 x ρ e -ρ/2 e ρ/2 -e -ρ/2 x = ρ e -ρ/2 2 sinh(ρ/2) x e -ρx/2 ,
where we used Stirling inequality and the inequality 1-λ -2 ln λ e 1-λ , which is easily reduced to the elementary inequality ln(1µ) -µµ 2 /2 by putting µ = 1λ. So, we can finish the proof of Lemma 8 by writing

E exp ρ 4 η ρ = Ê e ρx/4 dF ρ (x) = e ρx/4 F ρ (x) -1 +∞ -∞ - ρ 4 Ê e ρx/4 F ρ (x) -1 dx = ρ 4 Ê - e ρx/4 dx + ρ 4 Ê + e ρx/4 1 -F ρ (x) dx 1 + ρ 4 Ê + e -ρx/4 dx = 2.
Now, let us get back to the proof of Lemma 6. Using Lemma 8 and taking into account the stationarity and the independence of the increments of the process ln X ρ on Ê + , we obtain for all sufficiently small ρ and all A > 0, and so the first term is estimated.

P sup y>A X ρ (y) > e -bA e bA/4 E sup y>A X 1/4 ρ (y) = e bA/4 EX 1/4 ρ (A) E sup y>A X 1/4 ρ (y) X 1/4 ρ (A) = e bA/4 EX 1/4 ρ (A) E sup z>0 X 1/4 ρ (z) = e bA/4 EX 1/4 ρ (A) E sup z>0 exp ρ 4 Π + (z/ρ) - z 4ρ = e bA/4 EX 1/4 ρ (A) E exp sup t>0 ρ 4 Π ρ e ρ -1 ( 
The second term can be estimated in the same way, if we show that for all ρ > 0 the random variable

η ′ ρ = sup t∈Ê + -Π λ ′ (t) + t = -inf t∈Ê + Π λ ′ (t) -t ,
where Π λ ′ is a Poisson process on Ê + with intensity λ

′ = ρ/(1 -e -ρ ) ∈ ]0, 1[, verifies E exp ρ 4 η ′ ρ 2.
For this, let us remind that according to Pyke [17] see also Cramér [START_REF] Cramér | On some questions connected with mathematical risk[END_REF] , η ′ ρ is an exponential random variable with parameter r, where r is the unique positive solution of the equation λ ′ (e -r -1) + r = 0.

In our case, this equation becomes ρ 1e -ρ (e -r -1) + r = 0, and r = ρ is clearly its solution. Hence η ′ ρ is an exponential random variable with parameter ρ, which yields

E exp ρ 4 η ′ ρ = 4 

Numerical simulations

In this section we present some numerical simulations of the quantities B ρ , M ρ and E ρ for ρ ∈ ]0, ∞[. Besides giving approximate values of these quantities, the simulation results illustrate both the asymptotics 

B ρ ∼ B 0 ρ 2 , M ρ ∼
B ρ → B ∞ , M ρ → M ∞ and E ρ → E ∞ as ρ → ∞,
with B ∞ = 1, M ∞ = 2 and E ∞ = 0.5. First, we simulate the events x 1 , x 2 , . . . of the Poisson process Π + with the intensity 1/(e ρ -1) , and the events x ′ 1 , x ′ 2 , . . . of the Poisson process Π - with the intensity 1/(1e -ρ ) .

Then we calculate

ζ ρ = Ê x Z ρ (x) dx Ê Z ρ (x) dx = ∞ i=1
x i e ρi-x i + Finally, repeating these simulations 10 7 times (for each value of ρ), we approximate B ρ = Eζ 2 ρ and M ρ = Eξ 2 ρ by the empirical second moments, and E ρ = B ρ /M ρ by their ratio. The results of the numerical simulations are presented in Figures 1 and2. The ρ → 0 asymptotics of B ρ and M ρ can be observed in Figure 1, where besides these functions we also plotted the functions ρ 2 B ρ and ρ 2 M ρ , making apparent the constants B 0 ≈ 19.2329 and M 0 = 26. In Figure 2 we use a different scale on the vertical axis to better illustrate the ρ → ∞ asymptotics of B ρ and M ρ , as well as both the asymptotics of E ρ . Note that the function E ρ appear to be decreasing, so we can conjecture that bigger is ρ, smaller is the efficiency of the maximum likelihood estimator, and so, this efficiency is always between E ∞ = 0.5 and E 0 ≈ 0.7397. 

  du and ξ a,b = argsup u∈Ê Z a,b (u) respectively. The convergence of moments also holds, and the Bayesian estimators are asymptotically efficient. So, Eζ 2 a,b and Eξ 2 a,b are the limiting variances of these estimators, and Eζ 2 a,b /Eξ 2 a,b is the asymptotic efficiency of the maximum likelihood estimator. Now let us note, that up to a linear time change, the process Z a,b is nothing but the process Z ρ with ρ = ln( a b ) . Indeed, by putting u = x a-b we get

  , Rubin and Song obtained the exact values B 0 = 16 ζ(3) and E 0 = 8 ζ(3)/13, where ζ is Riemann's zeta function defined by

Lemma 5 Lemma 6

 56 convergence in the Skorohod space D[A, B] of functions on [A, B] without discontinuities of the second kind follows from Gihman and Skorohod [4, Theorem 6.5.5], Lemma 2 and the following lemma. For any ε > 0 we have lim h→0 lim ρ→0 sup |y 1 -y 2 |<h P ln X ρ (y 1 )ln X ρ (y 2 ) > ε = 0. Now, Theorem 1 follows from the following estimate on the tails of the process X ρ by standard argument. For any b ∈ ] 0 , 3/40 [ we have P sup |y|>A X ρ (y) > e -bA 2 e -bA

2 ρ

 2 ρ → 0, for any c ∈ ] 0 , 1/8 [ we have EX 1/(y)exp -c |y| for all sufficiently small ρ and all y ∈ Ê. Lemma 4 is proved.

M 0 ρ 2

 2 and E ρ → E 0 as ρ → 0, with B 0 = 16 ζ(3) ≈ 19.2329, M 0 = 26 and E 0 = 8 ζ(3)/13 ≈ 0.7397, and

= argmax i 1 (ρi -x i ) and ℓ = argmax i 1 (

 11 x∈Ê Z ρ (x) = x k , if ρkx k > ρρℓ + x ′ ℓ , -x ′ ℓ , otherwise,wherek ρρi + x ′ i ), so that x k = argsup x∈Ê + Z ρ (x) andx ′ ℓ = argsup x∈Ê - Z ρ (x).

Figure 1 :

 1 Figure 1: B ρ and M ρ (ρ → 0 asymptotics)

Figure 2 :

 2 Figure 2: B ρ and M ρ (ρ → ∞ asymptotics) E ρ (both asymptotics)

< 2, and so, Lemma 6 is proved.