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Grenoble Cedex 9, FRANCE

Current version: 2 July 2009

Abstract

We analyse the convergence rate of the quadratic tracking error, when a Delta-Gamma

hedging strategy is used at N discrete times. The fractional regularity of the payoff function

plays a crucial role in the choice of the trading dates, in order to achieve optimal rates of

convergence.
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by making a dynamic hedging strategy, i.e. trading continuously in time in the hedg-

ing instruments. In practice, this is often done through the so-called delta hedging

strategy (DHS in short), which ensures that the investor’s portfolio remains delta-

neutral (i.e. equalizing the first sensitivity δ of the hedging portfolio and that of the

option value). When the market is complete (we assume this in all what follows),

in a Markovian setting where the asset is modeled through a stochastic differential

equation and the payoff at time T is of the form g(ST ), it is known (cf Karatzas and

Shreve (1998)) that the number of assets to hold at time t is given by δt = ∂Su(t, St)

where u is the price function (solution of a valuation PDE). Theoretically, it means

that the investor must trade, continuously at each time t between 0 and the maturity,

in order to obtain zero residual risk.

However, due to practical considerations and to the transaction costs, one can only

use discrete-time hedging strategies. Here we do not consider the impact of trans-

action costs (we refer to Kabanov and Safarian (1997), Pergamenshchikov (2003)

and references therein) and we focus only on the impact of discrete-time rebalanc-

ing. Thus, the number of assets between two successive rebalancing dates ti and ti+1

is fixed to δti , and the associate hedging portfolio has a terminal value V N
T which

may differ from the required payoff g(ST ). In other words, this induces a tracking

error E∆
N := V N

T − g(ST ), which has been intensively studied in the literature. For

Call/Put option, in Zhang (1999) it is shown that the L2 error has a convergence

rate N1/2 for uniform rebalancing dates ti = iT/N . In Gobet and Temam (2001), it

is shown that the rate of convergence actually strongly depends on the smoothness

of the payoff function g: for instance for digital options, the order of convergence

becomes 1/4 instead of 1/2. Geiss and coauthors deeply investigated these features:

in a series of papers initiated by Geiss (2002), they paved the way to connect the

fractional regularity of the payoff and the rate of convergence of the related discrete

time delta-hedging strategy. Moreover, they showed that for a given payoff, a suitable
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non-uniform grid with N dates can be choosen to achieve the rate N1/2: the more

irregular the payoff, the more concentrated near T the points. Recently in Gobet and

Makhlouf (2008), these ideas have been extended to BSDEs and to multidimensional

diffusion models. One could alternatively measure the error using weak convergence

techniques, instead of L2 norm. Surprisingly, the convergence rate may be N1/2 even

for non-smooth payoffs, i.e. N1/2E∆
N weakly converges as N goes to infinity to a non

trivial random variable, which may not be square-integrable 1 for non-smooth pay-

offs. This convergence phenomenon has been noticed in Gobet and Temam (2001)

for digital options, then more systematically studied in Hayashi and Mykland (2005).

The integrability of the weak limit for non-smooth payoffs is investigated in details

in Geiss and Toivola (2008).

In all these works, it is pointed out that the weak limit is related to a suitably

weighted integral of the so-called Gamma (∂2
Su(t, St))0≤t<T of the option 2 . Thus, in

order to reduce the tracking error, one can think of reducing the portfolio Gamma

by incorporating in the hedging portfolio another instrument, the price of which is

(C(t, St))0≤t≤T : in practice, it is a liquid vanilla option (At-The-Money Call/Put).

The resulting strategy is called Delta-Gamma hedging strategy (DGHS in short) and

is well-known from practionners (see Hull (2009) p.371). It is obtained by equalizing

the second sensitivity of the hedging portfolio and that of the option value. It follows

that the numbers of options C and assets to hold at time ti are equal to

(0.1) δC
ti

:=
∂2

Su(ti, Sti)

∂2
SC(ti, Sti)

, δti := ∂Su(ti, Sti) −
∂2

Su(ti, Sti)

∂2
SC(ti, Sti)

∂SC(ti, Sti).

This specification of piecewise-constant strategy on each interval [ti, ti+1[ leads to a

1 This gives a non trivial situation where the rate of convergence depends on the conver-

gence criterion (L2 convergence or weak convergence).
2 Similar integrals of the Gamma also appear in the measure of robustness of the Black

and Scholes formula, cf El Karoui, Jeanblanc-Picqué and Shreve (1998).

3



final wealth process V N
T hopefully closer to g(ST ) compared with that of the simple

DHS.

Objectives. The purpose of this work is to quantify how much the resulting track-

ing error E∆Γ
N := V N

T − g(ST ) is reduced with respect to the number of rebalancing

dates. More precisely, we aim at connecting the convergence rate of E∆Γ
N to the payoff

regularity, regarding the choice of rebalancing dates. These issues can be investigated

under several points of view.

• Choice of the convergence criterion. We conjecture that in the usual cases, the rate

of weak convergence of E∆
N is N (instead of N1/2), extending the results in Hayashi

and Mykland (2005), with a possible non square-integrable limit (our numerical

experiments support this phenomenon). We leave the proof of this conjecture to

further research and in this work, we prefer to investigate the L2 convergence

because it leads to a more intuitive dispersion measure of the tracking error. Our

results below state that equidistant trading dates with DGHS do not systematically

yield a better convergence order w.r.t. N compared with DHS (see Theorem 6).

But an appropriate choice of trading dates leads to a quadratic error equal to a

O(N−1). The choice of the trading dates is explicit and depends on the fractional

regularity of the payoff.

• Specification of the model for S. In this work, we emphasize the tuning of the trad-

ing dates according to the payoff regularity. Analogously to the results in Geiss

(2002) or Gobet and Makhlouf (2008), we believe that the results on the rate of

convergence (and thus the choice of trading dates) hold for a wide class of SDE

model on S. To simplify the analysis, we only consider geometric Brownian mo-

tions for the modeling of S (see (1.1)). Nevertheless, the analysis remains rather

intricate, but we hope that this model simplification will help the reader to focus
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on the measure of the payoff regularity, which is driven by the behavior of the

expected conditional variance Vt,T (g) = E|g(ST )−EFt(g(ST ))|2 as t goes to T . On

the other hand, we allow the payoff to depend on several assets (basket options

for instance). For this, we extend the single-asset formula (0.1) for DGHS to the

multi-asset case, involving the cross-Gammas of the options.

• Choice of hedging instruments. Obviously, the instruments C used for DGHS have

to yield non-zero gammas, in order to well define the strategy (see (0.1) for the

single-asset case and Definition 1 for the multi-asset case). To manage the individ-

ual gammas, the most natural choice is Call/Put options whose price are convex

in the spot variable (see Martini (1999) for general results on the propagation of

convexity, ). To handle cross gammas, we propose to use exchange options (spread

option with strike zero). Since the models for S are correlated geometric Brownian

motions, whenever needed we can take advantage of the closed Margrabe formula

for such an exchange option (see Appendix A.1).

The closest related work to ours is the one by Brodén and Wiktorsson (2008). In

this reference, S is a one-dimensional asset, following a local volatility model. The

payoff function g is the Call payoff and uniform trading dates are studied. They state

that the L2 convergence holds at rate N3/4. However, there are some gaps in their

proofs, in particular regarding some key estimates related to lower/upper bounds for

the second derivatives of the price function. The differences between their work and

ours are the following: we restrict to log-normal modelling; we extend the study of

DGHS to a multidimensional framework; we study the connection between the payoff

regularity and the choice of the trading dates in order to achieve optimal convergence

rates. Furthermore, our proofs leverage the intrinsic martingale properties of price

processes (see Lemma 2), which leads to simplified computations.
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Organization of the paper. In the next section, we define the stochastic model

for the underlying assets, the payoff option to hegde and the other instruments used

in the hedging portfolio. We state some preliminary results related to the Greeks’

processes as martingales. We also introduce notations used in all the paper, in par-

ticular for the fractional regularity of the payoff function. The section 2 contains our

main results: we define the DGHS strategy, show that the L2 norm of the tracking

error is essentially measured by a suitable integral of the third derivatives of the price

function, which can be accurately estimated through the payoff regularity. Then, we

give sufficient conditions on the N trading dates to yield a tracking error of order

1/N as the number N of dates goes to infinity. In section 3, we present numerical

results which corroborate these features. Section 4 is devoted to the proofs of the

main results.

1 Preliminaries

1.1 Asset stochastic model, payoff, additional hedging instruments

Hereafter, Ŵ = (Ŵ 1, ..., Ŵ d) is a d-dimensional Brownian motion, defined on a fil-

tered probability space (Ω,F ,P), where P is the historical probability and (Ft)0≤t≤T

(T is a fixed terminal time) is the natural filtration of Ŵ , augmented with P-null

sets. We assume that the components of Ŵ are correlated, with 〈Ŵ j, Ŵ k〉t = ρj,kt,

and that the matrix (ρj,k)1≤j,k≤d has a full rank.

Assets. We denote the non-risky asset by S0 (bank account) and the risky assets by

(Sj)1≤j≤d. Although not essential for our results, we assume that the risky assets do

not pay dividends and that the interest rates are constant and equal to r. Morever,
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we assume that the risky assets (Sj)1≤j≤d are lognormal processes with constant

volatilities (σj)1≤j≤d, constant historical drifts (µj)1≤j≤d and correlations equal to

(ρj,k)j,k. It writes for 1 ≤ j ≤ d:

(1.1)































Sj
0 = sj

0,

dSj
t = µjS

j
t dt+ σjS

j
t dŴ

j
t ,

where Sj
t , s

j
0 and σj are positive. Set λj = µj−r

σj
: then, we can define the so-called

risk-neutral measure Q such that (W j
t := Ŵ j

t + λjt)1≤j≤d is a Q-Brownian motion

(the correlations remaining unchanged). Up to the correlation factor, λ is the market

price of risk. Under Q, the model writes































Sj
0 = sj

0,

dSj
t = rSj

t dt+ σjS
j
t dW

j
t .

By a slight abuse of notation by setting σ0 := 0 and S0
0 := 1, we make the above

equation also valid for j = 0, which might be useful in the following when short

notations are needed.

At least, note that S̄j
t := e−rtSj

t is a Q-martingale (for any 0 ≤ j ≤ d), and dS̄j
t =

σjS̄
j
t dW

j
t . More generally, if U is a stochastic process, Ū denotes its discounted value:

Ūt = e−rtUt.

When an expectation is computed under P, we write EP(.), while under Q we write

EQ(.). We add the superscript Ft to indicate the conditional expectations given Ft,

i.e. EFt
P (.) and EFt

Q (.).
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The payoff g. In what follows, g denotes the payoff function that defines the

option to hedge. The price function of this option is then defined by u(t, S) :=

EQ

[

e−r(T−t)g(ST )|St = S
]

, for S = (S1, ..., Sd) ∈ Rd
+. We assume that EP |g(ST )|2p0 <

∞ for some p0 > 1 (for instance, |g(S)| ≤ C(1+|S|n+|S|−n) for some n ∈ N). Without

additional regularity assumption on g, it is easy to check that u is a C∞ function for

t < T . In particular, for l,m, n = 1...d, ∂tu, ∂Slu, ∂2
Sl,Smu and ∂3

Sl,Sm,Snu exist and

are continuous for t < T .

As in Geiss (2002) and Gobet and Makhlouf (2008), the fractional regularity of the

payoff function g is measured through

Vt,T (g) := EP

∣

∣

∣g(ST ) − EFt
P (g(ST ))

∣

∣

∣

2
,

and we consider the following space (α ∈ (0, 1])

L2,α = {g s.t. E|g(XT )|2 + sup
0≤t<T

Vt,T (g)

(T − t)α
< +∞}.

It describes the rate of decreasing of the expected conditional variance of g(ST ) given

Ft as t goes to T . When g belongs to L2,α and g(ST ) ∈ L2p0 (for some p0 > 1), we

can define Kα(g) and Kα,p0(g) as

Kα(g) := EP|g(ST )|2 + sup
t∈[0,T )

Vt,T (g)

(T − t)α
,

Kα,p0(g) :=
(

EP |g(ST )|2p0
) 1

p0 + sup
t∈[0,T )

Vt,T (g)

(T − t)α
.(1.2)

Notice that
⋃

α∈(0,1] L2,α obviously contains uniformly Hölder continuous functions,

but also some non-smooth functions. Some examples are given in the lemma below,

whose proof is done in Appendix A.2.

Lemma 1

• Call/Put options. If g(S) = (Sj −K)+ or g(S) = (K −Sj)+ (for 1 ≤ j ≤ d), then
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g ∈ L2,α with α = 1.

• Digital options. If g(S) = 1Sj>K or g(S) = 1Sj<K (for 1 ≤ j ≤ d), then g ∈ L2,α

with α = 1/2.

• Stability by summation and product. Let g1 and g2 belong resp. to L2,α1 and L2,α2 .

Then

· g1 + g2 ∈ L2,α with α = α1 ∧ α2;

· If in addition g1 and g2 are bounded, then g1g2 ∈ L2,α with α = α1 ∧ α2.

A straightforward application of the above rules shows for instance that Put payoffs

with digital triggers (of the form g(S) = 1S1<K1,··· ,Sd−1<Kd−1
(Kd − Sd)+) belong to

L2,α with α = 1/2.

The additional instruments. To perform the DGHS, we need d(d+ 1)/2 extra

financial instruments that have non vanishing gammas. To simplify the exposure, we

assume that these instruments are options with the same time maturity T2 > T .

Their payoffs are given by (for 0 ≤ j < k ≤ d)

(1.3) (Sk
T2

−Kj,kS
j
T2

)+

(Kj,k > 0). If j = 0 and 1 ≤ k ≤ d, it corresponds to a Call on the asset Sk with

strike K0,ke
rT2 . If 1 ≤ j < k ≤ d, it is an exchange option between Sj and Sk. The

price function of each of these instruments writes

Cj,k(t, Sj, Sk) := EQ

[

e−r(T2−t)(Sk
T2

−Kj,kS
j
T2

)+|Sj
t = Sj, Sk

t = Sk
]

.

Since the model is log-normal with constant correlation, the price functions are ex-

plicit and are given by the Black-Scholes and Margrabe formulas (see Appendix A.1).
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1.2 Greeks and martingales

In this paragraph, we introduce some specific martingales which are related to the

option Greeks. These properties are quite standard, but to our knowledge their im-

portance in the analysis of the tracking error has not been emphasized so far: in

particular, leveraging this property, we will deduce that the tracking error is an iter-

ated stochastic integral w.r.t. the Q-Brownian motion W (see Theorem 3).

Notation. For any function ψ(t, S1, ..., Sd) and a multi-index (l1, ..., lp) ∈ {1, ..., d}p,

we will denote ∂p

Sl1 ,...,Slpψ(t, S1
t , ..., S

d
t ) by ∂p

l1,...,lpψ(t).

For l,m, n = 1...d, we define

ū(t) := e−rtu(t);(1.4)

ū
(1)
l (t) := e−rtσlS

l
t∂lu(t);(1.5)

ū
(2)
l,m(t) := e−rtσlσmS

l
tS

m
t ∂

2
l,mu(t);(1.6)

ū
(3)
l,m,n(t) := e−rtσlσmσnS

l
tS

m
t S

n
t ∂

3
l,m,nu(t).(1.7)

In the same way, we define, for 0 ≤ j < k ≤ d and l,m, n = 1...d,

C̄j,k(t) := e−rtCj,k(t);

C̄
j,k,(1)
l (t) := e−rtσlS

l
t∂lC

j,k(t);

C̄
j,k,(2)
l,m (t) := e−rtσlσmS

l
tS

m
t ∂

2
l,mC

j,k(t);

C̄
j,k,(3)
l,m,n (t) := e−rtσlσmσnS

l
tS

m
t S

n
t ∂

3
l,m,nC

j,k(t).

The lemma below will be useful.

Lemma 2 The processes above are Q-martingales on [0,T), and their Itô decompo-
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sitions w.r.t. the Q-Brownian motions W write

dū(t) =
d
∑

l=1

ū
(1)
l (t)dW l

t ;(1.8)

dū
(1)
l (t) =

d
∑

m=1

(

ū
(2)
l,m(t) + σlū

(1)
l (t)1m=l

)

dWm
t ;(1.9)

dū
(2)
l,m(t) =

d
∑

n=1

(

ū
(3)
l,m,n(t) + σmū

(2)
l,m(t)1n=m + σlū

(2)
l,m(t)1n=l

)

dW n
t .(1.10)

Similarly, one has

dC̄j,k(t) =
d
∑

l=1

C̄
j,k,(1)
l (t)dW l

t ;

dC̄
j,k,(1)
l (t) =

d
∑

m=1

(

C̄
j,k,(2)
l,m (t) + σlC̄

j,k,(1)
l (t)1m=l

)

dWm
t ;(1.11)

dC̄
j,k,(2)
l,m (t) =

d
∑

n=1

(

C̄
j,k,(3)
l,m,n (t) + σmC̄

j,k,(2)
l,m (t)1n=m + σlC̄

j,k,(2)
l,m (t)1n=l

)

dW n
t .

Proof. We show the result for the martingales involving u. The proof is the same for

those involving Cj,k.

Let us define ū(t, S) := e−rtu(t, S), for S = (S1, ..., Sd) ∈ Rd
+. Since ū(t, St) :=

EFt
Q

[

e−rTg(ST )
]

, clearly (ū(t, St))t≤T is a Q-martingale for any initial values (sj
0)1≤j≤d.

Then (see e.g Gobet and Munos (2005)), for a multi-index l = (l1, ..., ld), the process

∂
|l|
(s1

0)l1 ,...,(sd
0)ld

ū(t, S1
t , ..., S

d
t ), which is equal to (

S1
t

s1
0
)l1 ...(

Sd
t

sd
0
)ld∂

|l|
l1,··· ,ldū(t) (since Sj

t is lin-

ear w.r.t. sj
0), is a martingale (the estimates on the regularity for t < T are given

later in Lemma 7). Taking |l| equal to 1 (resp. 2, resp. 3), we obtain that the process

in (1.5) (resp. (1.6), resp. (1.7)) is a Q-martingale on [0, T [.

Concerning the differentials, it is clear that, if (ψ(t))t =
(

ψ(t, S1
t , ..., S

d
t )
)

t
is a Q-

martingale where ψ is a smooth function, then its Itô decomposition contains only

terms w.r.t. dW :

dψ(t) =
d
∑

l=1

σlS
l
t∂lψ(t)dW l

t .
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By taking ψ(t) = ū(t) (resp. ū
(1)
l (t), resp. ū

(2)
l,m(t)), the relation (1.8) (resp. (1.9), resp.

(1.10)) follows. 2

1.3 Other notations

The time net. In all what follows, π := (tk)k=0...N is a deterministic time net,

such that 0 = t0 < t1 < ... < tN = T , and |π| := supk=0...N−1(tk+1 − tk). This defines

the N trading dates of the DGHS. We shall use the following net (β ∈ (0, 1])

π(β) :=
{

t
(N,β)
k := T − T

(

1 − k

N

) 1
β , 0 ≤ k ≤ N

}

.

Note that π(1) = (t
(N,1)
k ) coincides with the equidistant net. For β < 1, the points in

π(β) are more concentrated near T .

The constants. In our estimates, we use numerous constants that will be gener-

ically denoted by C or c. We emphasize the fact that, whenever a constant depends

on the function g, the dependence will be expressed explicitly, so that all the constants

such as C or c do not depend on g, but may depend on r, (µj)j, (σj)j, (ρj,k)j,k, (Kj,k)j,k, (s
j
0)j, α

and other universal constants. They may also depend on T and on T2, but remain

bounded when T → 0.

A ≤c B means A ≤ cB with a generic constant c.
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2 The Delta-Gamma hedging strategy

2.1 Decomposition of the tracking error as multiple Itô integrals

In order to illustrate the ideas and results of the multidimensional case, which will

be studied in paragraph 2.1.2, let us show what happens in the one-dimensional case

(d = 1), with a single asset S1.

2.1.1 The one-dimensional case

In that case, the additional hedging instrument is simply a Call on S1 with strike

K0,1S
0
T2

at maturity T2 (see (1.3)). The related price function C0,1(t, S0, S1) is the

Black-Scholes formula, where the usual variables are t and S1.

Now let us decompose the tracking error. Taking advantage of the self-financing

condition, the discounted terminal value of the hedging portfolio V̄ N
T = e−rTV N

T is

V̄ N
T :=ū(0, S0) +

N−1
∑

i=0

δ1
ti
(S̄1

ti+1
− S̄1

ti
)

+
N−1
∑

i=0

δ0,1
ti (C̄0,1(ti+1, S

0
ti+1

, S1
ti+1

) − C̄0,1(ti, S
0
ti
, S1

ti
)),(2.1)

where

δ0,1
ti =

ū
(2)
1,1(ti)

C̄
0,1,(2)
1,1 (ti)

,(2.2)

δ1
ti

=
1

σ1S̄1
ti

ū
(1)
1 (ti) −

1

σ1S̄1
ti

δ0,1
ti C̄

0,1,(1)
1 (ti).(2.3)

Note that δ0,1
ti =

∂2
S1,S1u(t,S1

t )

∂2
S1,S1C0,1(t,S0

t ,S1
t )

and δ1
ti

= ∂S1u(t, S1
t ) − δ0,1

ti ∂S1C0,1(t, S0
t , S

1
t ), which

shows that the above representation is equivalent to that mentioned in the introduc-

tion (see identities (0.1)). However, representations (2.2) and (2.3) are more conve-

nient for the mathematical analysis below.
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The discounted tracking error is defined by

E∆Γ
N (g, π) := V̄ N

T − e−rTg(ST )

= V̄ N
T − ū(T, ST )

= V̄ N
T − (ū(0, S0) +

∫ T

0
ū

(1)
1 (t)dWt),

where we have used the Itô decomposition (1.8). Combining this with (2.1), one has

(2.4) E∆Γ
N (g, π) = −

N−1
∑

i=0

∫ ti+1

ti
T i,(1)(t)dWt,

where

T i,(1)(t) := ū
(1)
1 (t) − δ1

ti
σ1S̄

1
t − δ0,1

ti C̄
0,1,(1)
1 (t).

Then, using (2.3), we observe that

T i,(1)(ti) = ū
(1)
1 (ti) −





ū
(1)
1 (ti)

σ1S̄
1
ti

− δ0,1
ti C̄

0,1,(1)
1 (ti)

σ1S̄
1
ti



σ1S̄
1
ti
− δ0,1

ti C̄
0,1,(1)
1 (ti) = 0.

This is the usual Delta-hedging condition. Applying Itô’s rule and using Lemma 2,

one obtains

(2.5) T i,(1)(t) =
∫ t

ti
T i,(2)(s)dWs

for t ∈ [ti, ti+1), with

T i,(2)(s) = ū
(2)
1,1(s) + σ1ū

(1)
1 (s) − δ1

ti
[σ1]

2S̄1
s − δ0,1

ti

(

C̄
0,1,(2)
1,1 (s) + σ1C̄

0,1,(1)
1 (s)

)

.

Then, using (2.3), we obtain

T i,(2)(ti) =ū
(2)
1,1(ti) + σ1ū

(1)
1 (ti) −





ū
(1)
1 (ti)

σ1S̄1
ti

− δ0,1
ti C̄

0,1,(1)
1 (ti)

σ1S̄1
ti



 [σ1]
2S̄1

ti

− δ0,1
ti

(

C̄
0,1,(2)
1,1 (ti) + σ1C̄

0,1,(1)
1 (ti)

)

=ū
(2)
1,1(ti) − δ0,1

ti C̄
0,1,(2)
1,1 (ti).

Using (2.2), it leads to T i,(2)(ti) = 0: this is the Gamma-hedging condition. We apply
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once again Itô’s rule and Lemma 2 to obtain

(2.6) T i,(2)(s) =
∫ s

ti
T i,(3)(r)dWr,

where T i,(3)(r) can be explicitly written using ū
(3)
1,1,1, ū

(2)
1,1, ū

(1)
1 and the similar Greeks

for C0,1. For the purpose of the current discussion, the exact espression of T i,(3)(t) is

not important (it is given in the general case in Theorem 3). More interesting is to

identify the form of the tracking error as a triple iterated stochastic integral w.r.t.

W . Indeed, from (2.4), (2.5) and (2.6), one obtains

(2.7) E∆Γ
N (g, π) = −

N−1
∑

i=0

∫ ti+1

ti

∫ t

ti

∫ s

ti
T i,(3)(r)dWrdWsdWt.

The generalization of such a decomposition to the multidimensional asset model will

be given in Theorem 3.

Now, let us formally comment the consequences of (2.7). At first sight, if T i,(3)(r) had

a Q-L2 moment uniformly bounded in r, we would deduce that

EQ|E∆Γ
N (g, π)|2 ≤

N−1
∑

i=0

∫ ti+1

ti

∫ t

ti

∫ s

ti
sup

0≤r≤T
|T i,(3)(r)|2

L2
drdsdt

≤ sup
0≤i≤N−1, 0≤r≤T

|T i,(3)(r)|2
L2
|π|2T

6
,(2.8)

i.e. the tracking error has a Q-L2 norm of the order of the time step |π|. In particular,

N regular trading dates would lead to an optimal rate of convergence. Actually, this

argumentation is not complete because the moments of T i,(3)(r) may explode as r

goes to T (because for non smooth payoff, the Greeks may go to ±∞ as the time

to maturity shrinks to 0). It illustrates that a significant piece of work in the Delta-

Gamma error analysis lies in the understanding of the behavior of |T i,(3)(r)|2
L2

as

r → T . This feature is tightly estimated through the fractional regularity of g (see

Proposition 4 and Corollary 5).
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2.1.2 The multidimensional case

Following the previous decomposition for a single asset, we can handle the general

case as well. The discounted terminal value of the hedging portfolio is

V̄ N
T := ū(0, S0) +

N−1
∑

i=0

d
∑

j=1

δj
ti(S̄

j
ti+1

− S̄j
ti)

+
N−1
∑

i=0

∑

0≤j<k≤d

δj,k
ti (C̄j,k(ti+1, S

j
ti+1

, Sk
ti+1

) − C̄j,k(ti, S
j
ti , S

k
ti
)).(2.9)

Definition 1 (Delta-Gamma hedging strategy) We define the DGHS by

δj,k
ti :=

ū
(2)
j,k(ti)

C̄
j,k,(2)
j,k (ti)

(1 ≤ j < k ≤ d, Exchange options),(2.10)

δ0,l
ti :=

ū
(2)
l,l (ti)

C̄
0,l,(2)
l,l (ti)

− 1

C̄
0,l,(2)
l,l (ti)

∑

1≤j<k≤d

δj,k
ti C̄

j,k,(2)
l,l (ti) (1 ≤ l ≤ d, Call options),

(2.11)

δl
ti

:=
1

σlS̄l
ti

ū
(1)
l (ti) −

1

σlS̄l
ti

∑

0≤j<k≤d

δj,k
ti C̄

j,k,(1)
l (ti) (1 ≤ l ≤ d, assets).(2.12)

These are natural extensions of (2.2) and (2.3). Then, similarly, the discounted track-

ing error is defined by

E∆Γ
N (g, π) := V̄ N

T − e−rTg(ST ).

Using expression (2.9) and Lemma 2, one has

(2.13) E∆Γ
N (g, π) = −

N−1
∑

i=0

d
∑

l=1

∫ ti+1

ti
T

i,(1)
l (t)dW l

t ,

where

(2.14) T
i,(1)
l (t) = ū

(1)
l (t) − δl

ti
σlS̄

l
t −

∑

0≤j<k≤d

δj,k
ti C̄

j,k,(1)
l (t)

for t ∈ [ti, ti+1).
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2.2 Main results

In the general case, the (discounted) tracking error can be decomposed as a triple

stochastic integral w.r.t.W , analogously to (2.7) in dimension 1. In the decomposition

below, there are a principal part (related to the third derivative of the option price)

and some residual terms.

Theorem 3 Assume that EP |g(ST )|2p0 <∞ for some p0 > 1. We have

(2.15) E∆Γ
N (g, π) = −

N−1
∑

i=0

d
∑

l,m,n=1

∫ ti+1

ti

∫ t

ti

∫ s

ti

(

ū
(3)
l,m,n(r) +R

i,(3)
l,m,n(r)

)

dW n
r dWm

s dW l
t ,

where

R
i,(3)
l,m,n(t) =

(

σmū
(2)
l,m(t)1n=m + σlū

(2)
l,m(t)1n=l + σlū

(2)
l,n(t)1m=l

)

+ σ2
l

(

ū
(1)
l (t) − S̄l

t

S̄l
ti

ū
(1)
l (ti)

)

1n=m=l

−
∑

0≤j<k≤d

δj,k
ti C̄

j,k,(3)
l,m,n (t)

−
∑

0≤j<k≤d

δj,k
ti

(

σmC̄
j,k,(2)
l,m (t)1n=m + σlC̄

j,k,(2)
l,m (t)1n=l + σlC̄

j,k,(2)
l,n (t)1m=l

)

− σ2
l

∑

0≤j<k≤d

δj,k
ti

(

C̄
j,k,(1)
l (t) − S̄l

t

S̄l
ti

C̄
j,k,(1)
l (ti)

)

1n=m=l.(2.16)

In addition, the following estimate holds:

EP

∣

∣

∣E∆Γ
N (g, π)

∣

∣

∣

2
≤ C

N−1
∑

i=0

d
∑

l,m,n=1

∫ ti+1

ti

∫ t

ti

∫ s

ti
EP

∣

∣

∣ū
(3)
l,m,n(r) +R

i,(3)
l,m,n(r)

∣

∣

∣

2
drdsdt.(2.17)

The proof is postponed to Section 4. We now bring in the next proposition several es-

timates, as key ingredients of our main results. These estimates are proved in Section

4.

Proposition 4 Assume that EP |g(ST )|2p0 <∞ for some p0 > 1.
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• For l,m, n = 1...d and 0 ≤ t < T ,

(2.18) EP

∣

∣

∣ū
(3)
l,m,n(t)

∣

∣

∣

2 ≤ C
Vt,T (g)

(T − t)3
.

• There exists a positive πthreshold (depending on p0, T and T2) such that, if |π| ≤

πthreshold, then, for 0 ≤ ti ≤ t < ti+1 ≤ T ,

(2.19) EP

∣

∣

∣R
i,(3)
l,m,n(t)

∣

∣

∣

2 ≤ C
Vt,T (g) +

(

EP |g(ST )|2p0
)

1
p0

(T − t)2
.

Thus, an easy and direct consequence of Proposition 4 and the definition (1.2) of

Kα,p0(g) is the following corollary.

Corollary 5 Let α ∈ (0, 1]. If g ∈ L2,α and EP |g(ST )|2p0 < ∞ for some p0 > 1.

Then, when |π| ≤ πthreshold, for 0 ≤ t < T ,

(2.20) EP

∣

∣

∣ū
(3)
l,m,n(t) +R

i,(3)
l,m,n(t)

∣

∣

∣

2 ≤ C
Kα,p0(g)

(T − t)3−α
.

Now we are in a position to expose our main results.

Theorem 6 Let α ∈ (0, 1]. Assume g ∈ L2,α and EP |g(ST )|2p0 <∞ for some p0 > 1.

(1) Regular grid π(1). For N sufficiently large to ensure |π(1)| = T
N

≤ πthreshold, one

has

(2.21)
(

EP

∣

∣

∣E∆Γ
N (g, π(1))

∣

∣

∣

2 )1/2 ≤ C
(Kα,p0(g))1/2 T α/2

Nα/2
.

(2) Non regular grid π(β), β ∈ (0, 1). Taking N sufficiently large to ensure |π(β)| ≤

18



πthreshold, one has

(

EP

∣

∣

∣E∆Γ
N (g, π(β))

∣

∣

∣

2 )1/2 ≤











































































C
(Kα,p0(g))1/2 T α/2

N
α
2β

if β ∈ (
α

2
, 1),

C
(Kα,p0(g))1/2 T α/2

N

√

log(1 +N) if β =
α

2
,

C
(Kα,p0(g))1/2 T α/2

N
if β ∈ (0,

α

2
).

Before proving these results, we give few comments.

(1) The use of irregular grids crucially helps to increase the convergence rate of the

tracking error, for any fractional regularity α ∈ (0, 1], up to the rate N .

(2) For the regular grid, in general the estimate (2.21) of the rate of convergence

Nα/2 is tight for α < 1 (because the estimate (2.20) is tight, see the discussions in

Geiss and Hujo (2007) and Gobet and Makhlouf (2008)). In addition, it coincides

with the rate of convergence of the Delta hedging strategy: in other words, for

non-smooth payoffs, the DGHS used with regular grids does not improve the

rate of convergence of the tracking error. This is confirmed by our numerical

results in Section 3.

(3) In the case α = 1, our estimate (2.21) is not optimal. Indeed, for Call options,

from Brodén and Wiktorsson (2008) we expect the rate to be equal to N3/4.

For smoother payoffs (say C3
b , leading also to α = 1), the first three spatial

derivatives of u are bounded and our computations lead to a convergence rate

equal to N (see the estimates (2.8)).

Hence, the case α = 1 is a singular point, for which the convergence rate may go

from N1/2 to N . Tight estimates on (EP

∣

∣

∣E∆Γ
N (g, π(1))

∣

∣

∣

2
)1/2 can not be given only

by assuming g ∈ L2,1: presumably, an extra condition on ∇g would be necessary.

We leave this issue for further investigations.
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Proof of Theorem 6. Put T
i,(3)
l,m,n(r) = ū

(3)
l,m,n(r) + R

i,(3)
l,m,n(r) and define f : τ 7→

∫ τ
ti

∫ t
ti

∫ s
ti

EP

∣

∣

∣T
i,(3)
l,m,n(r)

∣

∣

∣

2
drdsdt. The Taylor expansion of order 2, with integral remain-

der term, of the function f(.) between τ = ti and τ = ti+1 gives

∫ ti+1

ti

∫ t

ti

∫ s

ti
EP

∣

∣

∣T
i,(3)
l,m,n(r)

∣

∣

∣

2
drdsdt =

1

2

∫ ti+1

ti
(ti+1 − t)2

EP

∣

∣

∣T
i,(3)
l,m,n(t)

∣

∣

∣

2
dt.

Then, from Theorem 3 and Corollary 5, one obtains

EP

∣

∣

∣E∆Γ
N (g, π(β))

∣

∣

∣

2 ≤ C
N−1
∑

i=0

∫ t
(β)
i+1

t
(β)
i

(

t
(β)
i+1 − t

)2 Kα,p0(g)

(T − t)3−α
dt.(2.22)

The term i = N − 1 in the above summation is equal to

(2.23) C
∫ T

T−t
(N,β)
N−1

Kα,p0(g)

(T − t)1−α
dt =

CKα,p0(g)

α

T α

Nα/β
,

where we have used T − t
(N,β)
N−1 = T

N1/β . Furthermore, it is known (see Gobet and

Makhlouf (2008)) that

sup
i=0...N−1

sup
t∈[t

(β)
i ,t

(β)
i+1)





t
(β)
i+1 − t

(T − t)1−β



 ≤ T β

βN
.

From this, (2.22) and (2.23), it follows that

EP

∣

∣

∣E∆Γ
N (g, π(β))

∣

∣

∣

2
≤ CKα,p0(g)

α

T α

Nα/β

+ CKα,p0(g)
( T β

βN

)2
∫ t

(N,β)
N−1

0
(T − t)2−2β dt

(T − t)3−α
.(2.24)

To complete the proof, note that it remains to upper bound the above integral in the

three cases β ∈ (α/2, 1], β = α/2 and β ∈ (0, α/2). Denote by I the second term in

the r.h.s. of (2.24).

(1) If β > α/2, the function f : t 7→ (T−t)2−2β

(T−t)3−α is not integrable at t = T and we

easily derive

I ≤ CKα,p0(g)
( T β

βN

)2 T α−2β

(2β − α)N (α−2β)/β
= CKα,p0(g)

T α

β2(2β − α)

1

N
α
β
.
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(2) If β = α/2, the function f is still not integrable at t = T and we obtain

I ≤ CKα,p0(g)
( T β

βN

)2
log(N1/β).

(3) If β < α/2, the function f is integrable and it gives

I ≤ CKα,p0(g)
( T β

βN

)2 T α−2β

(α− 2β)
= CKα,p0(g)

T α

β2(α− 2β)

1

N2
.

2

3 Numerical Results

In this section, we present some experiments of Delta and Delta-Gamma hedging

strategies, of both a European Call option (g(S) = (S−K)+) and a European digital

Call option (g(S) = 1S≥K) on a single asset (d = 1). The two payoff functions belong

respectively to L2,1 and L2, 1
2
. In our experiments, we rely on the known explicit

formulas for the prices of these two options. In the following tests, we take r = 2%,

µ = 1%, σ = 25%, s1
0 = 100, T = 1 year and K = 100. The additional hedging

instrument is a Call with strike K0,1 = 100 and maturity T2 = 1.25 year. All the

experiments are carried out with 10000 simulations under the historical probability.

Comparison of the order of L2-convergence. For the figures 1 and 2, the sim-

ulations are made with N = 12, 25, 50, 100, 200, 400, 800 rebalancing dates, following

different β’s, i.e. different time nets. Note that, in practice, N = 12, N = 25 and

N = 50 correspond approximately to a monthly, fortnightly and weekly rebalancing

respectively.

Log-log plots. These figures are the log-log plots of the second moment of the track-
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Delta-Gamma hedging of a CALL
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Delta hedging of a CALL

Fig. 1. For a Call: at the top (Delta hedging strategy), log(EP|E∆
N (g, π(β))|2) vs log(N). At

the bottom (Delta-Gamma hedging strategy), log(EP|E∆Γ
N (g, π(β))|2) vs log(N).

Delta hedging Delta-Gamma hedging

Beta 1.00 0.50 1.00 0.50

Expected order 0.50 0.50 0.75 1.00

see Zhang see Geiss see Brodén and (up to a log factor)

(1999) (2002) Wiktorsson (2008) see our Theorem 6

Empirical order 0.49 0.49 0.68 0.95

Table 1

For a Call: order of convergence of the L2-norm of tracking errors (EP|EN (g, π(β))|2)1/2.

ing error versus the number of rebalancing dates (i.e. log(EP|EN(g, π(β))|2) versus

log(N)). We observe that they give straight lines, suggesting that not only upper
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Delta-Gamma hedging of a DIGITAL CALL
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Delta hedging of a DIGITAL CALL

Fig. 2. For a digital Call: at the top (Delta hedging strategy), log(EP|E∆
N (g, π(β))|2) vs

log(N). At the bottom (Delta-Gamma hedging strategy), log(EP|E∆Γ
N (g, π(β))|2) vs log(N).

bounds are available but presumably expansion results are also valid in these cases.

The resulting slopes of the log-log plots represent twice the convergence order of

(EP|EN (g, π(β))|2)1/2: these empirical convergence orders are reported in Table 1 for

the Call and in Table 2 for the digital Call.

Theoretical order of convergence. In these tabulars, we also indicate the convergence

order that one can expect from theoretical estimates, together with the reference.

Empirical order of convergence. The high convergence orders are not accurately esti-

mated, possibly because of the relatively large statistical error due to simulations.

Generally speaking, we notice that the rate of the Delta-Gamma tracking error is

better than that of the Delta tracking error. However, when β = 1 (equidistant time

net), there may be no significative difference between the two rates: consider for in-
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Delta hedging Delta-Gamma hedging

Beta 1.00 0.50 1.00 0.50 0.25

Expected 0.25 0.50 0.25 0.50 1.00

order see Gobet and (up to a log see our see our (up to a log

Temam (2001) factor) see Theorem 6 Theorem 6 factor) see

Geiss (2002) our Theorem 6

Empirical 0.24 0.40 0.25 0.49 0.88

order

Table 2

For a Digital Call: order of convergence of the L2-norm of tracking errors

(EP|EN (g, π(β))|2)1/2.

stance the digital Call (see Table 2). This shows the advantage of hedging at non

equidistant rebalancing dates when the fractional regularity index α of the payoff

function is smaller than 1.

Furthermore, the smaller β, the better the rate of convergence of the tracking error,

either for the hedging of the Call or for that of the digital Call. However, one should

not take β too small since the time net points become too close to each other near

the maturity, which might cause numerical instabilities in the simulations or might

lead to unrealistic trading dates. From Tables 1 and 2, observe that one obtains ap-

proximately the right convergence order for the L2-norm of tracking errors (order 1/2

with Delta hedging and order 1 with Delta-Gamma hedging) by taking the critical

threshold for β, i.e. α for Delta hedging and α
2

for Delta-Gamma hedging.
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Fig. 3. Distributions of the tracking errors for a Call

Comparison of convergence in distribution. Figures 3 and 4 show, for each

option and for different β’s, the histogram of the tracking error, superposed to the

Gaussian density with mean zero and variance equal to the observed empirical vari-

ance of the error. It is obtained for N = 1000 trading dates. This comparison is aimed

at checking two features:

(1) is the asymptotic distribution Gaussian? the answer is generally no, as it can be

easily observed in the figures. Additionally, it is known (cf Gobet and Temam

(2001), Hayashi and Mykland (2005)) that the limiting distribution is not Gaus-

sian but mixed Gaussian. Hence, we should consider the Gaussian distribution

with the right variance as a benchmark and not as the true distribution: this

representation helps to answer the next item.

(2) do the convergence rates in L2 and in distribution differ? In introduction, we

mention that it can happen.

When β > α
2

with Delta-Gamma hedging and β > α with Delta hedging, one notices

from Figures 3 and 4 that the empirical distribution of the tracking error and the

related Gaussian distribution seem to be not in the same scale, which corroborates

the fact that the convergence in L2 and in distribution hold at different rates.
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Fig. 4. Distributions of the tracking errors for a Digital Call

4 Proofs

4.1 Proof of Theorem 3.

Decomposition (2.15). It is clear that the definition of δl
ti

given by (2.12) ensures

that T
i,(1)
l (ti) = 0 for any l = 1...d, where T

i,(1)
l (t) is defined by (2.14). Thus T

i,(1)
l (t) =

∫ t
ti

dT
i,(1)
l (s), t ∈ [ti, ti+1). Applying Itô’s rule and using Lemma 2, one obtains

dT
i,(1)
l (t) =

d
∑

m=1

T
i,(2)
l,m (t)dWm

t ,
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with

T
i,(2)
l,m (t) = ū

(2)
l,m(t) + σlū

(1)
l (t)1m=l − δl

ti
σ2

l S̄
l
t1m=l

−
∑

0≤j<k≤d

δj,k
ti

(

C̄
j,k,(2)
l,m (t) + σlC̄

j,k,(1)
l (t)1m=l

)

.

Now, as in the one-dimensional case (see paragraph 2.1.1), we can check that the

definitions of δj,k
ti given by (2.10) (resp. (2.11)) ensure that T

i,(2)
l,m (ti) = 0 for 1 ≤ l 6=

m ≤ d (resp. 1 ≤ l = m ≤ d) (in the previous cancellations, we strongly use that the

price function Cj,k depends on S only through the variables Sj and Sk). We apply

once again Itô’s rule and Lemma 2 to obtain

dT
i,(2)
l,m (t) =

d
∑

n=1

T
i,(3)
l,m,n(t)dW n

t

for t ∈ [ti, ti+1), with

T
i,(3)
l,m,n(t) = ū

(3)
l,m,n(t) + σmū

(2)
l,m(t)1n=m + σlū

(2)
l,m(t)1n=l

+
(

σlū
(2)
l,n(t) + σ2

l ū
(1)
l (t)1n=l

)

1m=l

− δl
ti
σ3

l S̄
l
t1n=m=l(4.1)

−
∑

0≤j<k≤d

δj,k
ti

(

C̄
j,k,(3)
l,m,n (t) + σmC̄

j,k,(2)
l,m (t)1n=m + σlC̄

j,k,(2)
l,m (t)1n=l

)

−
∑

0≤j<k≤d

δj,k
ti

(

σlC̄
j,k,(2)
l,n (t) + σ2

l C̄
j,k,(1)
l (t)1n=l

)

1m=l.

Substituting the expression (2.12) for δl
ti

in line (4.1) above, and rearranging the

different terms, one readily obtains (2.16).

Estimate (2.17). The required estimate is computed under the historical proba-

bility P. Note that an estimation of the L2-norm under the risk-neutral measure Q

is straightforward using the Itô isometry.
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Writing dW l
t = dŴ l

t +λldt in (2.13) yields (using the inequality (a+b)2 ≤ 2(a2 +b2))

EP

∣

∣

∣E∆Γ
N (g, π)

∣

∣

∣

2 ≤ 2EP

∣

∣

∣

∣

∣

N−1
∑

i=0

d
∑

l=1

∫ ti+1

ti
T

i,(1)
l (t)dŴ l

t

∣

∣

∣

∣

∣

2

+ 2( sup
l=1...d

λ2
l )EP

∣

∣

∣

∣

∣

N−1
∑

i=0

d
∑

l=1

∫ ti+1

ti

∣

∣

∣T
i,(1)
l (t)

∣

∣

∣ dt

∣

∣

∣

∣

∣

2

.

One can apply Itô’s isometry to the first term ((Ŵt)t being a P-Brownian motion)

and Cauchy-Schwartz inequality to the second to obtain

(4.2) EP

∣

∣

∣E∆Γ
N (g, π)

∣

∣

∣

2 ≤
(

2 + 2Td( sup
l=1...d

λ2
l )
)

N−1
∑

i=0

d
∑

l=1

∫ ti+1

ti
EP

∣

∣

∣T
i,(1)
l (t)

∣

∣

∣

2
dt.

Now, since T
i,(1)
l (t) =

∑d
m=1

∫ t
ti
T

i,(2)
l,m (s)dWm

s and T
i,(2)
l,m (s) =

∑d
n=1

∫ s
ti
T

i,(3)
l,m,n(r)dW

n
r

with T
i,(3)
l,m,n(r) = ū

(3)
l,m,n(r) + R

i,(3)
l,m,n(r), using the same arguments as above, we show

that

EP

∣

∣

∣T
i,(1)
l (t)

∣

∣

∣

2 ≤c

d
∑

m=1

∫ t

ti
EP

∣

∣

∣T
i,(2)
l,m (s)

∣

∣

∣

2
ds,

EP

∣

∣

∣T
i,(2)
l,m (s)

∣

∣

∣

2 ≤c

d
∑

n=1

∫ s

ti
EP

∣

∣

∣T
i,(3)
l,m,n(r)

∣

∣

∣

2
dr.

Plugging these inequalities into (4.2) leads to (2.17). 2

4.2 Proof of Proposition 4.

Estimate (2.18). It is part of the statement of the following lemma.

Lemma 7 For 1 ≤ l,m, n ≤ d and 0 ≤ t < T ,

EP

∣

∣

∣ū
(1)
l (t)

∣

∣

∣

2 ≤ C
Vt,T (g)

(T − t)
,(4.3)

EP

∣

∣

∣ū
(2)
l,m(t)

∣

∣

∣

2 ≤ C
Vt,T (g)

(T − t)2
,(4.4)

EP

∣

∣

∣ū
(3)
l,m,n(t)

∣

∣

∣

2 ≤ C
Vt,T (g)

(T − t)3
.(4.5)
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Proof of Lemma 7. For 1 ≤ l ≤ d, set X l
t := lnSl

t and Xt := (X1
t , ..., X

d
t ):

this defines the log-price process. We define the function v(t, X) for t ≥ 0 and

X = (X1, ..., Xd) ∈ Rd by v(t, X) = u(t, eX1
, ..., eXd

). Then v(t, Xt) = u(t, St).

For notation simplicity, (eX1
, ..., eXd

) will be denoted by eX . For 1 ≤ l,m, n ≤ d,

∂1
l v(t, X) = eXl

∂1
l u(t, e

X),

∂2
lmv(t, X) = eXl

eXm

∂2
lmu(t, e

X) + eXl

∂1
l u(t, e

X)1m=l,

∂3
lmnv(t, X) = eXl

eXm

eXn

∂3
lmnu(t, e

X) + eXl

eXm

∂2
lmu(t, e

X)(1n=l + 1n=m)

+ eXl

eXn

∂2
lnu(t, e

X)1m=l + eXl

∂1
l u(t, e

X)1n=m=l.

Previous relations yield

eXl

∂1
l u(t, e

X) = ∂1
l v(t, X),

eXl

eXm

∂2
lmu(t, e

X) = ∂2
lmv(t, X) − ∂1

l v(t, X)1m=l,

eXl

eXm

eXn

∂3
lmnu(t, e

X) = ∂3
lmnv(t, X) − ∂2

lmv(t, X)(1n=l + 1n=m)

− ∂2
lnv(t, X)1m=l + 2∂1

l v(t, X)1n=m=l.(4.6)

We only prove (4.5), the proof is exactly the same for (4.3) and (4.4).

From (4.6), we readily get

EP

∣

∣

∣ū
(3)
l,m,n(t)

∣

∣

∣

2 ≤ 16 sup
1≤j≤d

|σj|6e−2rt
(

EP

∣

∣

∣∂3
lmnv(t, Xt)

∣

∣

∣

2
+ EP

∣

∣

∣∂2
lmv(t, Xt)

∣

∣

∣

2

+ EP

∣

∣

∣∂2
lnv(t, Xt)

∣

∣

∣

2
+ EP

∣

∣

∣∂1
l v(t, Xt)

∣

∣

∣

2 )

.(4.7)

Now, write v(t, x) = e−r(T−t)
∫

Rd g
(

· · · , exl+(r− 1
2
σ2

l )(T−t)+σly
l
, · · ·

)

p(t, x;T, y)dy, where

p(t, x;T, y) denotes the transition density function of the d-dimensional Q-Brownian

motion W . Thus we can explicitly differentiate this Gaussian density with respect to

29



any component of x, and show that

∂1
l v(t, Xt) = e−r(T−t)EFt

Q

(

g(ST )H
(1)
t,T

)

,

∂2
lmv(t, Xt) = e−r(T−t)EFt

Q

(

g(ST )H
(2)
t,T

)

,

∂3
lmnv(t, Xt) = e−r(T−t)EFt

Q

(

g(ST )H
(3)
t,T

)

(this is the usual representation of Greeks using Malliavin calculus weights, see

Fournié et al.(1999)). In the one dimensional case (d = 1), one has:

H
(1)
t,T =

WT −Wt

T − t
,

H
(2)
t,T =

(WT −Wt)
2

(T − t)2
− 1

T − t
,

H
(3)
t,T =

(WT −Wt)
3

(T − t)3
− 3

WT −Wt

T − t
.

In our more general setting, the random variables H
(1)
t,T ,H

(2)
t,T and H

(3)
t,T are independent

of Ft, have zero mean and satisfy to the following estimates (for q > 1):

EFt
Q

∣

∣

∣H
(i)
t,T

∣

∣

∣

q ≤ Cq

(T − t)i q
2

, 1 ≤ i ≤ 3.(4.8)

To pass to P-conditional expectations, we introduce Zt = dQ

dP
|Ft the Radon-Nikodym

density of Q w.r.t. P on Ft. Therefore, using the zero-mean property of the weights

H
(i)
t,T , one can write

∂1
l v(t, Xt) = e−r(T−t)EFt

Q

[(

g(ST ) − EFt
P g(ST )

)

H
(1)
t,T

]

= e−r(T−t)EFt
P

[

(

g(ST ) − EFt
P g(ST )

)

H
(1)
t,T

ZT

Zt

]

,

∂2
lmv(t, Xt) = e−r(T−t)EFt

P

[

(

g(ST ) − EFt
P g(ST )

)

H
(2)
t,T

ZT

Zt

]

,

∂3
lmnv(t, Xt) = e−r(T−t)EFt

P

[

(

g(ST ) − EFt
P g(ST )

)

H
(3)
t,T

ZT

Zt

]

.
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Thus, using (4.8) (together with the standard inequality EFt
P

∣

∣

∣

ZT

Zt

∣

∣

∣

q ≤ Cq, for q > 1)

and applying Cauchy-Schwartz inequality, one readily obtains

∣

∣

∣∂1
l v(t, Xt)

∣

∣

∣

2 ≤ C
EFt

P

∣

∣

∣g(ST ) − EFt
P g(ST )

∣

∣

∣

2

T − t
,

EP

∣

∣

∣∂1
l v(t, Xt)

∣

∣

∣

2 ≤ C
Vt,T (g)

(T − t)
.(4.9)

Similarly,

EP

∣

∣

∣∂2
lmv(t, Xt)

∣

∣

∣

2 ≤ C
Vt,T (g)

(T − t)2
, EP

∣

∣

∣∂3
lmnv(t, Xt)

∣

∣

∣

2 ≤ C
Vt,T (g)

(T − t)3
.(4.10)

Then, (4.9), (4.10), together with (4.7), yield (4.5). 2

Estimate (2.19). According to (2.16), one can write

R
i,(3)
l,m,n(t) = Ū (2)(t) + Ū (1)(t) −

∑

0≤j<k≤d

(

ŪC,j,k,(3)(t) + ŪC,j,k,(2)(t) + ŪC,j,k,(1)(t)
)

,

with

Ū (2)(t) :=
(

σmū
(2)
l,m(t)1n=m + σlū

(2)
l,m(t)1n=l + σlū

(2)
l,n(t)1m=l

)

,

Ū (1)(t) := σ2
l

(

ū
(1)
l (t) − S̄l

t

S̄l
ti

ū
(1)
l (ti)

)

1n=m=l,

ŪC,j,k,(3)(t) := δj,k
ti C̄

j,k,(3)
l,m,n (t),

ŪC,j,k,(2)(t) := δj,k
ti

(

σmC̄
j,k,(2)
l,m (t)1n=m + σlC̄

j,k,(2)
l,m (t)1n=l + σlC̄

j,k,(2)
l,n (t)1m=l

)

,

ŪC,j,k,(1)(t) := σ2
l δ

j,k
ti

(

C̄
j,k,(1)
l (t) − S̄l

t

S̄l
ti

C̄
j,k,(1)
l (ti)

)

1n=m=l.

Then,

EP

∣

∣

∣R
i,(3)
l,m,n(t)

∣

∣

∣

2 ≤c

(

EP

∣

∣

∣Ū (2)(t)
∣

∣

∣

2
+ EP

∣

∣

∣Ū (1)(t)
∣

∣

∣

2
)

+ sup
0≤j<k≤d

(

EP

∣

∣

∣ŪC,j,k,(3)(t)
∣

∣

∣

2
+ EP

∣

∣

∣ŪC,j,k,(2)(t)
∣

∣

∣

2
+ EP

∣

∣

∣ŪC,j,k,(1)(t)
∣

∣

∣

2
)

.(4.11)
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Let us upper bound each term appearing in (4.11). From Lemma 7, one has

EP

∣

∣

∣Ū (2)(t)
∣

∣

∣

2 ≤ 3C(σ2
l + σ2

m)
Vt,T (g)

(T − t)2
,(4.12)

EP

∣

∣

∣Ū (1)(t)
∣

∣

∣

2 ≤ 2σ4
l EP

∣

∣

∣ū
(1)
l (t)

∣

∣

∣

2
+ 2σ4

l EP

(∣

∣

∣ū
(1)
l (ti)

∣

∣

∣

2
E
Fti
P

∣

∣

∣

∣

∣

S̄l
t

S̄l
ti

∣

∣

∣

∣

∣

2
)

≤c EP

∣

∣

∣ū(1)
n (t)

∣

∣

∣

2
+ EP

∣

∣

∣ū(1)
n (ti)

∣

∣

∣

2

≤c
Vt,T (g)

(T − t)
,(4.13)

where we have used the fact that E
Fti
P

∣

∣

∣

∣

S̄n
t

S̄n
ti

∣

∣

∣

∣

2

= EP

∣

∣

∣

∣

S̄n
t

S̄n
ti

∣

∣

∣

∣

2

≤ C.

To handle the terms ŪC,j,k,(1)(t), ŪC,j,k,(2)(t), ŪC,j,k,(3)(t) in (4.11), we need extra

intermediate results, that we present as lemmas.

Lemma 8 For 1 ≤ l,m, n ≤ d and 0 ≤ t < T , one has

EP

∣

∣

∣ū
(1)
l (t)

∣

∣

∣

2p0 ≤ C
EP |g(ST )|2p0

(T − t)p0
, EP

∣

∣

∣ū
(2)
l,m(t)

∣

∣

∣

2p0 ≤ C
EP |g(ST )|2p0

(T − t)2p0
.

The proof of this lemma is very similar to that of Lemma 7. One has just to substitute

the L2p0-norm for the L2-norm and EP |g(ST )|2p0 for Vt,T (g). We skip details.

Lemma 9 For 0 ≤ j < k ≤ d, (l,m, n) ∈ {(j, j, j), (j, j, k), (j, k, k), (k, k, k)}, p > 1

and 0 ≤ ti ≤ t < ti+1 ≤ T , one has

(4.14) EP

∣

∣

∣

∣

∣

∣

C̄
j,k,(2)
l,m (t)

C̄
j,k,(2)
l,n (t)

∣

∣

∣

∣

∣

∣

p

≤ C.

Proof of Lemma 9. Estimate (4.14) is a direct consequence from (A.3), (A.4),

(A.5), together with 1√
T2−t

≤ 1√
T2−T

and the fact that

(4.15) EP

∣

∣

∣Sj
t

∣

∣

∣

q
+ EP

∣

∣

∣Sj
t

∣

∣

∣

−q ≤ Cq

for 0 ≤ j ≤ d, t ∈ [0, T ] and q > 0. 2
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Lemma 10 For 0 ≤ j < k ≤ d, (l,m, n) ∈ {(j, j, j), (j, j, k), (j, k, k), (k, k, k)} and

p > 1, there exists a positive constant πthreshold (which depends on p, T and T2) such

that, for any time net whose size |π| ≤ πthreshold and for any 0 ≤ ti ≤ t < ti+1 ≤ T ,

EP

∣

∣

∣

∣

∣

∣

C̄
j,k,(2)
l,m (t)

C̄
j,k,(2)
l,m (ti)

∣

∣

∣

∣

∣

∣

p

≤ C,(4.16)

EP

∣

∣

∣

∣

∣

∣

C̄
j,k,(3)
l,m,n (t)

C̄
j,k,(2)
l,m (ti)

∣

∣

∣

∣

∣

∣

p

≤ C.(4.17)

Proof of Lemma 10. We only detail the proof of (4.16), the proof of (4.17) is

similar. The proof is divided into two steps. We first establish intermediate controls,

then we complete the proof.

Step 1. In the following, q is a real number greater than p. One has

dj,k
1 (t, St) =

1

σj,k

√
T2 − t

ln

(

Sk
t

Kj,kS
j
t

)

+
1

2
σj,k

√

T2 − t

=
1

σj,k

√
T2 − t

(

ln sk
0 + (µk −

1

2
σ2

k)t+ σkŴ
k
t

)

− 1

σj,k

√
T2 − t

(

lnKj,k + ln sj
0 + (µj −

1

2
σ2

j )t+ σjŴ
j
t

)

+
1

2
σj,k

√

T2 − t

=
1

σj,k

√
T2 − t

(

σj,kŴ
j,k
t −mj,k(t)

)

,

where σj,k is defined by (A.2), and

σj,kŴ
j,k
t := σkŴ

k
t − σjŴ

j
t ,

mj,k(t) :=
1

σj,k

√
T2 − t

(

ln
sk
0

sj
0Kj,k

+
(

µk − µj +
1

2
σ2

j −
1

2
σ2

k

)

t

)

+
1

2
σj,k

√

T2 − t.

Note that (Ŵ j,k
t )t is a P-Brownian motion. We will denote e−

q
2 |dj,k

1 (t,St)|2 by φj,k,q(t).

Then,

E
Fti
P

(

φj,k,q(t)
)

=

√
2πσj,k

√
T2 − t√

q
E
Fti
P







√
q√

2πσj,k

√
T2 − t

exp−
(

σj,kŴ
j,k
t −mj,k(t)

)2

2
(

σj,k

√
T2 − t

)2
/q







=

√
2πσj,k

√
T2 − t√

q
(fX ∗ fY )(mj,k(t) − σj,kŴ

j,k
ti ),
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where fX and fY are the respective probability density functions of two indepen-

dent random variables X and Y having normal distributions N
(

0;
(σj,k

√
T2−t)

2

q

)

and

N
(

0; σ2
j,k(t− ti)

)

. Therefore,

E
Fti
P

(

φj,k,q(t)
)

=

√
2πσj,k

√
T2 − t√

q
fX+Y (mj,k(t) − σj,kŴ

j,k
ti )

= c(ti, t) exp
−q

(

σj,kŴ
j,k
ti −mj,k(t)

)2

2
(

σ2
j,k(T2 − t) + qσ2

j,k(t− ti)
)

with

c(ti, t) :=
σj,k

√
T2 − t

√

σ2
j,k(T2 − t) + qσ2

j,k(t− ti)
,

which is uniformly bounded by 1. Then

E
Fti
P

(

φj,k,q(t)
)

φj,k,q(ti)
= c(ti, t)e

ϕ(ti,t,Ŵ
j,k
ti

),

where, for 0 ≤ ti ≤ t ≤ ti+1 ≤ T and y ∈ R,

ϕ(ti, t, y) :=
−q

(

σj,ky −mj,k(t)
)2

2
(

σ2
j,k(T2 − t) + qσ2

j,k(t− ti)
) +

q
(

σj,ky −mj,k(ti)
)2

2σ2
j,k(T2 − t)

= c2(ti, t)y
2 + c1(ti, t)y + c0(ti, t),

and c2(ti, t), c1(ti, t), c0(ti, t) are uniformly bounded and deterministic, with

c2(ti, t) :=
q

2(T2 − t)
− q

2 (T2 − t+ q(t− ti))
.

Then, the quantity EP

[

E
Fti
P (φj,k,q(t))

φj,k,q(ti)

]

is finite (and uniformly bounded also) for all

ti ≤ t ≤ ti+1 ≤ T if and only if

(4.18) c2(ti, t) −
1

2ti
< 0, ∀ti ≤ t ≤ ti+1 ≤ T.

From the expression of c2(ti, t) taken at t = ti+1, we see that, with a mesh size

|π| ≥ (ti+1 − ti) large enough, the condition (4.18) may fail. A sufficient condition on
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|π| is |π| ≤ (T2−T )2

Tq2 := πthreshold. Indeed, under this condition, we have

c2(ti, t) =
2q2(t− ti)

4(T2 − t) (T2 − t+ q(t− ti))
<

2q2|π|
4(T2 − T )2

≤ 1

2T
≤ 1

2ti
.

Step 2. Now, it is clear from (A.3), (A.4) and (A.5), together with (4.15) that, for

(l,m) ∈ {(j, j), (j, k), (k, k)}, one can apply Hölder’s inequality to obtain

EP

∣

∣

∣

∣

∣

∣

C̄
j,k,(2)
l,m (t)

C̄
j,k,(2)
l,m (ti)

∣

∣

∣

∣

∣

∣

p

≤ C

(

EP

(

φj,k,q(t)

φj,k,q(ti)

))
p
q

= C



EP





E
Fti
P

(

φj,k,q(t)
)

φj,k,q(ti)









p
q

(where 1 < p < q), which has just been shown to be finite under the condition above

on the time net size. The lemma is proved. 2

Completion of the upper bounds of (4.11). Let 0 ≤ j < k ≤ d.

If j 6= 0, use (2.10) to obtain

EP

∣

∣

∣ŪC,j,k,(3)(t)
∣

∣

∣

2
= EP

∣

∣

∣δj,k
ti C̄

j,k,(3)
l,m,n (t)

∣

∣

∣

2
= EP

∣

∣

∣

∣

∣

∣

ū
(2)
j,k(ti)

C̄
j,k,(3)
l,m,n (t)

C̄
j,k,(2)
j,k (ti)

∣

∣

∣

∣

∣

∣

2

≤
(

EP

∣

∣

∣ū
(2)
j,k(ti)

∣

∣

∣

2p0
) 1

p0





EP

∣

∣

∣

∣

∣

∣

C̄
j,k,(3)
l,m,n (t)

C̄
j,k,(2)
j,k (ti)

∣

∣

∣

∣

∣

∣

2q






1
q

,

where p0 and q are conjugate real numbers. Thus, from Lemma 8 and Lemma 10,

and for a time net π whose size is sufficiently small, we readily obtain

EP

∣

∣

∣ŪC,j,k,(3)(t)
∣

∣

∣

2 ≤ C

(

EP |g(ST )|2p0
) 1

p0

(T − t)2
.
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If j = 0, by using (2.11) we derive

EP

∣

∣

∣ŪC,0,k,(3)(t)
∣

∣

∣

2
= EP

∣

∣

∣δ0,k
ti C̄

0,k,(3)
l,m,n (t)

∣

∣

∣

2

= EP

∣

∣

∣

∣

∣

∣

C̄
0,k,(3)
l,m,n (t)

C̄
0,k,(2)
k,k (ti)

ū
(2)
k,k(ti) −

C̄
0,k,(3)
l,m,n (t)

C̄
0,k,(2)
k,k (ti)

∑

1≤j1<j2≤d

C̄
j1,j2,(2)
k,k (ti)

C̄
j1,j2,(2)
j1,j2 (ti)

ū
(2)
j1,j2(ti)

∣

∣

∣

∣

∣

∣

2

≤ 2





EP

∣

∣

∣

∣

∣

∣

C̄
0,k,(3)
l,m,n (t)

C̄
0,k,(2)
k,k (ti)

∣

∣

∣

∣

∣

∣

2q






1
q
(

EP

∣

∣

∣ū
(2)
k,k(ti)

∣

∣

∣

2p0
) 1

p0
(4.19)

+ 2d2





EP

∣

∣

∣

∣

∣

∣

C̄
0,k,(3)
l,m,n (t)

C̄
0,k,(2)
k,k (ti)

∣

∣

∣

∣

∣

∣

2q1






1
q1

(4.20)

× sup
1≤j1<j2≤d



















EP

∣

∣

∣

∣

∣

∣

C̄
j1,j2,(2)
k,k (ti)

C̄
j1,j2,(2)
j1,j2 (ti)

∣

∣

∣

∣

∣

∣

2q2






1
q2
(

EP

∣

∣

∣ū
(2)
j1,j2(ti)

∣

∣

∣

2p0
) 1

p0















,(4.21)

where p0, q, q1 and q2 are positive real numbers such that 1
p0

+ 1
q

= 1
p0

+ 1
q1

+ 1
q2

=

1. Now, we apply Lemma 10 and Lemma 8 for term (4.19), Lemma 10 for term

(4.20) and Lemmas 9 and 8 for term (4.21) to conclude that, for |π| small enough,

EP

∣

∣

∣ŪC,0,k,(3)(t)
∣

∣

∣

2
has the same bound as EP

∣

∣

∣ŪC,j,k,(3)(t)
∣

∣

∣

2
with j 6= 0. Then, for every

0 ≤ j < k ≤ d,

(4.22) EP

∣

∣

∣ŪC,j,k,(3)(t)
∣

∣

∣

2 ≤ C

(

EP |g(ST )|2p0
) 1

p0

(T − t)2
.

The same arguments yield, for every 0 ≤ j < k ≤ d,

(4.23) EP

∣

∣

∣ŪC,j,k,(2)(t)
∣

∣

∣

2 ≤ C

(

EP |g(ST )|2p0
) 1

p0

(T − t)2
.

To handle ŪC,j,k,(1)(t), we need to proceed a bit differently. We take advantage of the
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linear SDE satisfied by ŪC,j,k,(1). Indeed, using (1.11), one has

dŪC,j,k,(1)(t) = σ2
l δ

j,k
ti 1n=m=l



dC̄
j,k,(1)
l (t) − C̄

j,k,(1)
l (ti)

S̄l
ti

dS̄l
t





= σ2
l δ

j,k
ti 1n=m=l

d
∑

m′=1

(

C̄
j,k,(2)
l,m′ (t) + σlC̄

j,k,(1)
l (t)1m′=l

)

dWm′
t

− σ2
l δ

j,k
ti 1n=m=l

C̄
j,k,(1)
l (ti)

S̄l
ti

σlS̄
l
tdW

l
t

= dV̄ C,j,k,(2)(t) + σlŪ
C,j,k,(1)(t)dW l

t ,

where

V̄ C,j,k,(2)(t) := σ2
l δ

j,k
ti 1n=m=l

d
∑

m′=1

∫ t

ti
C̄

j,k,(2)
l,m′ (s)dWm′

s .

Since ŪC,j,k,(1)(ti) = 0, we obtain

(4.24) EP

∣

∣

∣ŪC,j,k,(1)(t)
∣

∣

∣

2 ≤ 2EP

∣

∣

∣V̄ C,j,k,(2)(t)
∣

∣

∣

2
+ 2σ2

l

∫ t

ti
EP

∣

∣

∣ŪC,j,k,(1)(s)
∣

∣

∣

2
ds.

Following the ideas used to establish (2.17), we prove that

EP

∣

∣

∣V̄ C,j,k,(2)(t)
∣

∣

∣

2 ≤c

d
∑

m′=1

∫ t

ti
EP

∣

∣

∣δj,k
ti C̄

j,k,(2)
l,m′ (s)

∣

∣

∣

2
ds.

Then, the same arguments used for the proof of (4.22) and (4.23) yield

EP

∣

∣

∣V̄ C,j,k,(2)(t)
∣

∣

∣

2 ≤c

∫ t

ti

(

EP |g(ST )|2p0
) 1

p0

(T − s)2
ds ≤c

(

EP |g(ST )|2p0
) 1

p0

(T − t)2
|π|.

Therefore, by invoking Gronwall’s lemma in (4.24), we get

EP

∣

∣

∣ŪC,j,k,(1)(t)
∣

∣

∣

2 ≤c

(

EP |g(ST )|2p0
) 1

p0

(T − t)2
|π|.

Plugging this estimate, the inequalities (4.12), (4.13), (4.22) and (4.23) into (4.11),

we complete the proof of (2.19) and that of Proposition 4. 2
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A Appendix

A.1 Margrabe formula

The following result is the so-called Margrabe formula (cf Margrabe (1978)): it is a

generalization of the Black-Scholes formula, and gives an explicit expression for the

Call and Exchange options.

Proposition 11 (The Margrabe Formula) For t ∈ [0, T2) and positive initial

spot values Sj, Sk, one has

(A.1) Cj,k(t, Sj, Sk) = SkN (dj,k
1 (t, S)) −Kj,kS

jN (dj,k
2 (t, S)),

where N (.) is the cumulative distribution function of the standard Gaussian distri-

bution, and

dj,k
1 (t, S) :=

1

σj,k

√
T2 − t

ln

(

Sk

Kj,kSj

)

+
1

2
σj,k

√

T2 − t,

dj,k
2 (t, S) :=

1

σj,k

√
T2 − t

ln

(

Sk

Kj,kSj

)

− 1

2
σj,k

√

T2 − t,

σj,k :=
√

σ2
j + σ2

k − 2ρj,kσjσk.(A.2)

We note that |dj,k
2 (t, S)|2 = |dj,k

1 (t, S)|2 − 2 ln
(

Sk

Kj,kSj

)

, or equivalently, e−
|dj,k

2
(t,S)|2
2 =

Sk

Kj,kSj e
− |d

j,k
1

(t,S)|2
2 . Then, straightforward computations give the following derivatives

expressions for Cj,k.
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a) For 0 ≤ j < k ≤ d,

∂1
kC

j,k(t, Sj, Sk) = N (dj,k
1 (t, S));

∂2
kkC

j,k(t, Sj, Sk) =
1√

2πσj,k

√
T2 − t

1

Sk
e−

|dj,k
1

(t,S)|2
2 ;(A.3)

∂3
kkkC

j,k(t, Sj, Sk) =
1√

2πσj,k

√
T2 − t

1

|Sk|2
(

−1 − dj,k
1 (t, S)

σj,k

√
T2 − t

)

e−
|dj,k

1
(t,S)|2
2 .

b) For 1 ≤ j < k ≤ d,

∂1
jC

j,k(t, Sj, Sk) = −Kj,kN (dj,k
2 (t, S));

∂2
jjC

j,k(t, Sj, Sk) =
1√

2πσj,k

√
T2 − t

Sk

|Sj|2 e
− |d

j,k
1

(t,S)|2
2 ;(A.4)

∂2
jkC

j,k(t, Sj, Sk) = − 1√
2πσj,k

√
T2 − t

1

Sj
e−

|dj,k
1

(t,S)|2
2 ;(A.5)

∂3
jjkC

j,k(t, Sj, Sk) = − 1√
2πσ2

j,k(T2 − t)

dj,k
2 (t, S)

|Sj|2 e−
|dj,k

1
(t,S)|2
2 ;

∂3
jkkC

j,k(t, Sj, Sk) =
1√

2πσ2
j,k(T2 − t)

dj,k
1 (t, S)

SjSk
e−

|dj,k
1

(t,S)|2
2 ;

∂3
jjjC

j,k(t, Sj, Sk) =
1√

2πσj,k

√
T2 − t

Sk

|Sj|3
(

−1 +
dj,k

2 (t, S)

σj,k

√
T2 − t

)

e−
|dj,k

1
(t,S)|2
2 .

The interest for writing the above derivatives according only to e−
|dj,k

1
(t,S)|2
2 (and not

e−
|dj,k

2
(t,S)|2
2 ) is to clearly see that in the ratio of two derivatives of order 2 or 3,

the exponential terms cancel. For instance,
∂3

jjk
Cj,k(t,Sj ,Sk)

∂2
jk

Cj,k(t,Sj ,Sk)
= 1

σj,k

√
T2−t

dj,k
2 (t,S)

Sj . These

features are crucial in the convergence analysis (see the proof of Proposition 4).

39



A.2 Proof of Lemma 1

• Suppose that g is Lipschitz (including the case of Call/Put payoffs). Then observe

that

Vt,T (g) = EP|g(ST ) − EFt
P (g(ST ))|2 ≤ EP|g(ST ) − g(St)|2

≤ CEP|ST − St|2 ≤ C(T − t)

proving that g ∈ L2,α with α = 1. The first item of Lemma 1 is proved.

• Now, consider g(S) = 1S≥K and a single log-normal asset S. Then, passing to the

log variables, we set

v(t, x) = P(log(ST ) ≥ log(K)| log(St) = x)

= N (
1

σ
√
T − t

log(
ex

Ke−µ(T−t)
) − 1

2
σ
√
T − t).

An application of Itô formula to the P-martingale [v(s, log(Ss)) = PFs(ST ≥ K)]0≤s≤T

leads to

Vt,T (g) =
∫ T

t
EP

( 1

2π(T − s)
e
−( 1

σ
√

T−s
log( Ss

Ke−µ(T−s)
)− 1

2
σ
√

T−s)2
)

ds.

Then, standard computations give Vt,T (g) ≤ ∫ T
t

C√
T−s

ds ≤ C
√
T − t, which shows

that g ∈ L2,α with α = 1/2.

• The stability by summation is obvious. Regarding the stability by product, write

Vt,T (g) = EP|g1(ST )g2(ST ) − EFt
P (g1(ST )g2(ST ))|2

≤ EP|g1(ST )g2(ST ) ± g1(ST )EFt
P (g2(ST )) − EFt

P (g1(ST ))EFt
P (g2(ST ))|2

≤ 2|g1|2∞Vt,T (g2) + 2|g2|2∞Vt,T (g1).

Our statement readily follows from this. 2.
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