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Using heat flux measurements as additional information to solve inverse heat conduction problems 
was and is still rarely employed. Lot of disadvantages linked to heat flux measurement specificities 
(local disturbance, intrusive measurement, lack of knowledge and proficiency, etc.) make people 
prefer temperature measurements which are well documented and very widespread. Solving inverse 
heat conduction problems with heat flux measurements is quite different than the one which uses 
temperatures and need to be investigated deeply. In this work, this problem is approached through the 
solution of a bioengineering problem consisting in the development of a non-invasive blood perfusion 
probe. The effort here is focused on the development of a methodology for the estimation of time-
dependent blood perfusion from heat flux measurements. The physical probe incorporates a thin heat 
flux sensor, which is placed in contact with the tissue region where the perfusion is to be measured. 
The sensor records the heat flux due to an imposed thermal event, which is achieved by air flow. 
A one-dimensional mathematical model is used to simulate the thermal event occurring at the contact 
region holding between the probe and the tissue. A combined parameter and function estimation 
procedure is developed to estimate simultaneously time-dependent blood perfusion and thermal contact 
conductance between the probe and the tissue. The robustness of the method was demonstrated through 
several test cases using simulated data. The presented examples include various functional changes in 
the time evolution of blood perfusion. Results from this study have shown the feasibility of solving 
inverse problems with heat flux measurements and the two unknowns are estimated with no a priori 
information about their functional forms.
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1. INTRODUCTION

A direct problem in the mathematical modelling of any physical system is to determine the
response of a system, provided that the governing equations, the geometry of the domain of
interest, the complete boundary and initial conditions, the material properties and the sources
acting in the solution domain are given. When one or more conditions for solving the direct
problem are partially or entirely unknown then an inverse problem may be formulated to
estimate the unknowns from specified or measured system responses. The word estimate is
used rather than determine or find because any values found through experimental data for
unknown quantities are of necessity approximations to the true ones. It is well known that
inverse problems are in general unstable in the sense that small measurement errors in the
experimental data may amplify significantly the errors in their solutions [1]. As consequence, the
inverse problems are ill-posed and hence they are more difficult to solve than direct problems.

In recent years, inverse problems have been extensively treated in several branches of
sciences, such as solid mechanics, heat transfer, acoustics and electromagnetic scattering,
electrical impedance tomography, hydrology, remote sensing, etc. The most common approach
is to determine the optimal estimates of the model parameters or/and functions or/and bound-
ary conditions by minimizing a selected measure-to-fit between experimental response of the
system and the model computations.

The physical problem considered here involves a bioengineering problem which consists in
characterizing the blood drainage in animal tissues. Blood perfusion is defined as the blood
volume flow exchange through a given volume of tissue. It refers to the local, multidirectional
blood flow through the capillaries and intercellular space of living tissue. Unlike the bulk
flow of blood through the larger vessels, blood perfusion is considered to be a directionless
quantity at the macroscopic level due to the convoluted nature of the pathways through which it
moves. It is important for normal tissue physiology and is a part of the temperature regulatory
system of the body. Changes in blood perfusion are also associated with a variety of pathologic
processes.

The history of the measurement of local blood perfusion using thermal methods has been
reviewed by several researchers (e.g. References [2, 3]). Most perfusion measurement methods
are based on the clearance of a thermal or chemical marker and require an invasive procedure.
This not only disturbs the tissue to be measured, but causes discomfort and allows for the
possibility of infection. This work is part of an ongoing research effort to develop a clinically
practical, minimally invasive, blood perfusion measurement system. The overall effort includes
the design and development of operational procedures for this system. The key elements of
the system include a mechanism to impose a thermal event to the surface and a sensor
which provides a time-resolved signal representing heat flux. Previous efforts have focused on
estimating perfusion as a constant value. The objective of the work presented here is to develop
an estimation procedure to simultaneously determine the time-dependent blood perfusion and
thermal contact resistance using heat flux measurements from the probe.

A combined parameter and function estimation method based on the minimization of an
objective function containing both computed and measured heat fluxes is used to estimate the
time-dependent blood perfusion and the thermal conductance between the probe and the tissue.
The minimization procedure is achieved by using the conjugate gradient method and the adjoint
state equations; i.e. the gradient of the functional to be minimized is computed by the solution
of the adjoint problem. Note that in the present research, heat flux rather than temperature
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Figure 1. Bioprobe geometry, thermal model, and boundary conditions.

measurements are used in the objective function. This represents a new challenge in the sense
that the theoretical background of solving an inverse problem with heat flux measurements
has not been thoroughly investigated as for the existence, and the uniqueness of the solution
[4–7]. The existence of a solution for such problem may be assured by physical reasoning
and considerations. However, the uniqueness of the solution of inverse problems in general is
more difficult to prove and can only be demonstrated for some special cases [8]. Mathematical
background of such minimization problems, where the partial derivative of the state variable
model is used instead of the state variable itself in the definition of the objective functional,
is well treated in the control theory developed by Lions [9].

2. PROBE DESIGN

It is well known that the goals of a good heat transfer measurement is that it be non-intrusive
to the system that being measured. The basic probe design, used in this study, is described in
several references (e.g. References [2, 10, 11]), and is shown in Figure 1.

In this design, a combination of heat flux and temperature sensors forms the core of the
probe. The heat flux is measured with a thermopile across a thin thermal resistance layer.
The sensors are made with thin-film processes, resulting in small thermal capacitance, which
allows them to accurately follow the change in heat flux and temperature. During operation,
the front side of the probe is in continuous contact with the tissue, and the back side of
the probe is cooled with small jets of air impinging normal to the surface. Velocities of less
than 100 m/s from a low pressure air supply at room temperature are sufficient to generate
heat transfer coefficients in excess of 200 W/m2 K. The probe is small (less than 2.5 cm in
diameter), simple, and lightweight which result in practical use. The theoretical background,
the recommendations for a correct use and installation and the recent technological advances
in heat flux measurements are presented and well detailed in Reference [12].

3. DIRECT PROBLEM

The mathematical model is based on the Pennes bioheat equation [13] to model the effect of
blood perfusion on the tissue temperature in the tissue domain and on the transient heat equation
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to model the effect of cooling the probe region. A schematic representation of the model,
including the probe and the tissue and given boundary conditions is shown in Figure 1. The
heat transfer phenomenon is described mathematically below. For simplicity in demonstrating
the estimation methodology, one-dimensional heat transfer is assumed; however, the estimation
procedure is not limited to this simplified model, as the approach can be used with essentially
any model. Thus, for the tissue (subscript t)

Ct
�Tt(x, t)

�t
= kt

�2
Tt(x, t)

�x2
+ W(t)[Ta − Tt(x, t)], 0<x<a, 0<t � tf (1)

�Tt(x, t)

�x
= 0, x = 0, t>0 (2)

For the interface between the tissue and the probe

kt
�Tt(x, t)

�x
= kp

�Tp(x, t)

�x
, x = a, 0<t � tf (3)

−kt
�Tt(x, t)

�x
= H [Tt(x, t) − Tp(x, t)], x = a, 0<t � tf (4)

and for the probe (subscript p)

Cp
�Tp(x, t)

�t
= kp

�2
Tp(x, t)

�x2
, a<x<b, 0<t � tf (5)

−kp
�Tp(x, t)

�x
= h∞[Tp(x, t) − T∞], x = b, 0<t � tf (6)

The initial conditions are described as

Tt(x, 0) = T i
t , 0 � x � a, t = 0 (7)

Tp(x, 0) = T i
p , a � x � b, t = 0 (8)

where Tt(x, t) and Ta are, respectively, the temperature in the tissue domain and the arterial
temperature of the blood, and Tp(x, t) represents the temperature in the probe. The properties,
Ci = �icpi

and ki , (i = t or p) are, respectively, the volumetric specific heat and the thermal
conductivity of the tissue and the probe. The volumetric blood perfusion rate is the product of
the specific heat of the blood and the Pennes blood perfusion term; i.e. W(t) = cpb�(t). The
heat transfer coefficient, h∞, is a result of the cooling air impingement on the back side of the
probe, and a finite contact conductance, H , is assumed between the tissue and the probe, and
is described by Equations (3) and (4). Finally, metabolic heat generation in the tissue region
is neglected in this work.

In Equation (4), H represents the thermal contact conductance which is the inverse of the
contact resistance (H = 1/R). In this problem under investigation, thermal contact conductance
H is assumed constant while the blood perfusion is a time-dependent function, W(t).
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In the direct problem associated with the physical problem described above, the thermophys-
ical properties Ci , ki (i = t or p), thermal conductance H , blood perfusion rate W(t), external
convection coefficient h∞, external air temperature T∞ as well as the arterial temperature Ta,
initial and boundary conditions, are known. The objective of the direct problem is then to
determine the transient temperature field in the two regions; i.e. the tissue and the probe.

The solution of the direct problem given in Equations (1)–(8) is obtained numerically by
using the finite difference method with a pure implicit scheme in time [14]. The numerical
solution may show an oscillatory behaviour at the contact interface due to the significant
difference between the material characteristics of the probe and the tissue. To overcome this
instability, the Fourier number, resulting from the time and space subdivision and defined as

Fo = ��t

(�x)2
(9)

should be the same for the two mediums, where �t and �x represent the time and space steps.
Then, a stable numerical solution of the direct problem is obtained by setting

Fo = �t�t

(�xt)2
= �p�t

(�xp)2
(10)

for the two mediums. Thermal diffusivities �t and �p are set constants and imposed by the
nature of the two regions in contact. The time evolution is often preferred to be the same for
the two regions which exclude any choice on the time step �t . Only the space grid size offers
the possibility to be chosen so that the condition (10) will be satisfied. Practically as the probe
has a thin thickness, its space grid �xp can be easily chosen and then �xt will be deduced as
a function of �xp, �t , �t and �p.

4. INVERSE PROBLEM

For the inverse problem considered here, the constant thermal conductance H and the time-
dependent blood perfusion W(t) are regarded as two unknowns, while the other quantities
appearing in the formulation of the direct problem described above are assumed to be known
precisely.

The additional information needed in the simultaneous estimation of the parameter H and
the function W(t) is available from the readings of a heat flux sensor installed on the inner
side of the probe (the sensor is a part of the probe) which is in imperfect thermal contact with
the tissue region (Figure 1). Since it is desirable for the probe to be non-invasive, the heat
flux measurement is performed outside the tissue domain.

In several methods, inverse problems are solved by minimizing a residual functional J based
on the ordinary least square norm and coupled with some stabilizing technique used in the
iterative phase of the estimation procedure. The sum of the squared residuals between the mea-
sured data and the responses of a model simulating the physical problem under picture defines
the least square norm in the space where the unknown quantities belong to. For continuous
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measured data, the residual functional is written as follows:

J (H, W)=
∫ tf

0
[qc(a, t; H, W) − qm(a, t)]2 dt (11)

where qc(a, t; H, W) and qm(a, t) are, respectively, the computed and measured heat flux at the
interface between the probe and the tissue while tf denotes the final time. The computed heat
flux is obtained from the solution of the direct problem by using estimates for the conductance
H and blood perfusion W(t). This inverse problem deals with a combined parameter and
function estimation. Note that this approach differs from common parameter and/or function
estimation used to estimate thermal properties in the sense that another different type of
measurements is used, namely heat flux, whereas typically temperatures are used.

As detailed in References [5, 7, 15], the solution of an inverse problem with the conjugate
gradient method involves the following basic steps: with a given initial guess of the unknowns
to be recovered, (a) solve the direct problem, (b) calculate the residual functional, (c) check
the stopping criterion, if satisfied, stop; otherwise continue, (d) solve the adjoint problem,
(e) compute the gradient equation and the corresponding descent direction, (f) solve the vari-
ation problem, (g) increment the unknowns and go back to step (a). Details associated with
each of these steps follow, along with an outline of the computational algorithm.

To estimate the constant thermal conductance H and the transient blood perfusion W(t), we
introduce the vector of unknowns U defined as

UT = [H, W1, W2, . . . , Wnt ] (12)

where the superscript T denotes the transpose, Wi is the value of the blood perfusion at time
ti , i.e. Wi = W(ti), and nt is the total number of time steps used in the solution of the direct
problem. We recall that the time domain [0, tf ] is divided into equally spaced sub-intervals,
equal to �t , when solving the direct problem.

In this case, the total number of unknowns to be recovered by the solution of the inverse
problem is M = 1 + nt . The minimization of the functional (11) by utilizing the conjugate
gradient method is built as follows [16]:

U(s+1) = U(s) + �(s)D(s), s = 1, 2, . . . (13)

where the superscript s is the iteration number, �s is the descent parameter vector given by
�T = [�1, �2], where the subscripts 1 and 2 correspond to H and W . This is known as vectorial
form of the descent parameter and is usually used when more than one unknown is to be
recovered at once [17]. At each iteration, the two components �1 and �2 are solutions of the
following linear algebraic system:

2∑
j=1

bjk�j = ck where k = 1, 2 (14)

The elements bjk and ck of the linear algebraic system are given by

bjk =
∫ tf

0
�qk(a, t)�qj (a, t) dt

ck = −
∫ tf

0
[qc(a, t; H, W) − qm(a, t)]�qk(a, t) dt

(15)
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The two variables �qi(a, t) (i = 1, 2) are the heat flux variation at the interface resulting from
the solution of the two following variation problems (i = 1, 2):

Ct
�V i

t (x, t)

�t
= kt

�2
V i

t (x, t)

�x2
− W(t)V i

t (x, t) + Yi(x, t), 0<x<a, 0<t � tf (16)

�V i
t (x, t)

�x
= 0, x = 0, 0<t � tf (17)

kt
�V i

t (x, t)

�x
= kp

�V i
p (x, t)

�x
, x = a, 0<t � tf (18)

−kt
�V i

t (x, t)

�x
= H [V i

t (x, t) − V i
p (x, t)] + Zi(t), x = a, 0<t � tf (19)

Cp
�V i

p (x, t)

�t
= kp

�2
V i

p (x, t)

�x2
, a<x<b, 0<t � tf (20)

−kp
�V i

p (x, t)

�x
= h∞V i

p (x, t), x = b, t>0 (21)

with the initial conditions

V i
t (x, 0) = 0, 0 � x � a, t = 0 (22)

V i
p (x, 0) = 0, a � x � b, t = 0 (23)

where the source terms Yi(x, t) and Zi(t) are given by

Yi(x, t) =
{

0 for i = 1 (H)

�W(t)[Ta − Tt(x, t)] for i = 2 (W(t))
(24)

Zi(t) =
{

�H [Tt(a, t) − Tp(a, t)] for i = 1 (H)

0 for i = 2 (W(t))
(25)

In the iterative process expressed by Equation (13), D(s) represents the descent direction vector
which is given by

D(s) = −J′(s) + �(s)D(s−1) (26)

where J′ is the gradient vector of J (U) and the parameter �s is given by

�(s) = 〈J′(s) − J′(s−1), J′(s)〉
〈J′(s−1), J′(s−1)〉 , �(0) = 0 (27)

7



where 〈 , 〉 is the scalar product defined in the working space. The above expression is known
as Polak–Ribière version of the conjugate gradient method [16]. Using the grid function
representation of the blood perfusion (Wi = W(ti)), the gradient of the residual functional
(11) is given by the vector

J′T = [J ′
H , J ′

W1
, . . . , J ′

Wnt
] (28)

For the simultaneous estimation of H and W(t) and assuming the grid function representation
of W(t), it can be shown that the components of the vector J′ have the following analytical
expressions:

J ′
H =

∫ tf

0
[Tt(a, t) − Tp(a, t)][[qc(a, t; H, W) − qm(a, t)] − [Pt(a, t) − Pp(a, t)]] dt (29)

J ′
Wi

= J ′
W(ti) =

∫ a

0
[Ta − Tt(x, ti)]Pt(x, ti) dx, i = 1, . . . , nt (30)

where nt is the total number of time steps in the solution of the direct problem. The two
gradients of the functional J are derived and will be estimated in the space of squared
integrable functions, named L2. In the appendix we present the methodology used to derive
analytically the gradient expressions. The variables Pt(x, t) and Pp(x, t) are solution of the
adjoint problem which is defined by the following set of equations:

−Ct
�Pt(x, t)

�t
= kt

�2
Pt(x, t)

�x2
− W(t)Pt(x, t), 0<x<a, 0 � t<tf (31)

�Pt(x, t)

�x
= 0, x = 0, 0 � t<tf (32)

kt
�Pt(x, t)

�x
= kp

�Pp(x, t)

�x
, x = a, 0 � t<tf (33)

−kt
�Pt(x, t)

�x
= H [Pt(x, t)−Pp(x, t)]−2H [qc(x, t)−qm(x, t)], x = a, 0 � t<tf (34)

−Cp
�Pp(x, t)

�t
= kp

�2
Pp(x, t)

�x2
, a<x<b, 0 � t<tf (35)

−kp
�Pp(x, t)

�x
= h∞Pp(x, t), x = b, 0 � t<tf (36)

with the final conditions

Pt(x, t) = 0, 0 � x � a, t = tf (37)

Pp(x, t) = 0, a � x � b, t = tf (38)
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Parametrization of W(t): In some cases, the time evolution of the blood perfusion can be
parametrized in the following way:

W(t) =
m∑

i=1
wiBi (t) (39)

The functions Bi (t) can be any trial functions (cosine, polynomials, B-splines, etc.) used to
approximate the unknown function form of the blood perfusion W(t). In this special case, the
total number of unknowns to be recovered by the solution of the inverse problem becomes
M = 1 + m and the unknown vector U is given by

UT = [H, w1, w2, . . . , wm] (40)

By introducing the parametric representation, one can show that the components of the gradient
vector J′ with respect to those of blood perfusion change and will be expressed as

J ′
wi

=
∫ tf

0

∫ a

0
Bi (t)[Ta − Tt(x, t)]Pt(x, t) dx dt, i = 1, . . . , m (41)

while the gradient component with respect to H , J ′
H remains the same as expressed by

Equation (29). Also, the variation of W(t) used in Equation (24) changes and will be given
by

�W(t) =
m∑

i=1
diBi (t) (42)

where di are the components of the descent vector D with respect to blood perfusion function.
One beneficial point of the parametric representation is the reduction of the number of unknowns
to be estimated. The parametric representation is recommended when the unknown W(t) has
a relatively smooth time evolution. In this case, the estimation procedure does not change in
its algorithmic form but it takes place in the space of real parameters Rm (estimation of set
of parameters) instead of function space.

Stopping criterion: In the absence of noise, the iterative process, Equation (13), is repeated
until each component of the vector U satisfies the following stopping criteria:∣∣∣∣∣u

(s+1)
i − u

(s)
i

u
(s+1)
i

∣∣∣∣∣ � �1, i = 1, . . . , M (43)

where �1 is a small number (10−4–10−6). In the event that the input heat flux values are
given with errors, the iterative process is stopped in accordance with the residual criterion or
discrepancy principle [7], i.e. upon fulfilment of the following condition:

J (U) � �2 (44)

where �2 is given by

�2 =
∫ tf

0
�2 dt = �2 tf (45)
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It represents the integrated error of the measured data and having a constant standard
deviation �. Many iterative methods exhibit a self-regularizing property in the sense that early
termination of the iterative process has a regularizing effect [18]. In the iterative regularization
method, the iteration index s plays the role of the regularizing parameter � used in Tikhonov’s
method [19], and the stopping rule (J (U) � �2) plays the role of the parameter selection method.
Physically speaking, the solution is assumed to be sufficiently accurate and close to the exact
one when the difference between measured and estimated heat flux is of the order of magnitude
of the measurement errors.

Minimization algorithm: By using a given initial guess for H(0) and W(0)(t), the minimization
procedure can be implemented following this scheme:

1. Solve the direct problem given in Equations (1)–(8).
2. Knowing the computed and measured heat flux qc(a, t) and qm(a, t), solve the adjoint

problem given in Equations (31)–(38).
3. Knowing the temperature field Ti(x, t) and the adjoint variable Pi(x, t), compute the

components of the gradient vector: Equations (28)–(30).
4. Knowing the gradient components, compute the descent direction by using Equations (26)

and (27).
5. Knowing the two source terms Yi(x, t) and Zi(t), solve twice the variation problem given

in Equations (16)–(23), i.e. the first time with Y1(x, t) and Z1(t), the second time with
Y2(x, t) and Z2(t).

6. Knowing the computed heat flux qc(a, t), the measured heat flux qm(a, t), and the two
heat fluxes variations �q1(a, t) and �q2(a, t), compute the components of descent vector:
Equations (14) and (15).

7. Increment the two unknowns H and W(t) as shown in Equation (11).
8. Check convergence using formula (43) or (44). If satisfied stop, otherwise go back to

step (1).

At each iteration, we must solve three problems, the direct, the adjoint and the variation
problem (twice in this special case). As these problems are similar, we can use the same numer-
ical algorithm to perform this resolution. The three different problems are solved numerically
using the finite difference method [14].

5. SIMULATED EXPERIENCE

In this section, we describe the simulated experiments used to evaluate the inverse methodology.
These simulated experiments are presented in the form of five test cases, described below. The
input data used in the direct problem are shown in Table I. The subscripts (t) and (p) designate,
respectively, the tissue and the probe.

The direct, variation, and adjoint problems are solved with finite-difference method with an
implicit discretization in time. The spatial domain was subdivided with nx = nx1 + nx2, while
nt time steps are used to advance the solution from 0 to tf . The following data were taken for
all the test cases presented here

a = 0.01 m, b − a = 0.005 m, tf = 30 s, �1 = 10−5

Fot = Fop = 100, nt = 121, nx1 = 523, nx2 = 11
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Table I. Input parameters and properties for direct problem.

Component Parameter Value Units

Ct 3770 J/m3 ◦C
kt 0.50 W/m ◦C
cpb 3770 J/kg ◦C

Tissue �(t) 1–100 kg/m3 s
Ta 37 ◦C
T i
t 32 ◦C

Cp 1 768 900 J/m3 ◦C
Probe kp 177 W/m ◦C

T i
p 20 ◦C

h∞ 250 W/m2 ◦CBoundary
T∞ 20 ◦C

Note: The blood perfusion rate �(t) is assumed to vary from 1 to
100 according to the functions associated with each of the test cases.

Simulated measurements: The simulated measurements of heat flux are obtained from the
solution of the direct problem at the sensor location, by using a priori prescribed values for the
unknown parameter and function to be recovered simultaneously. Then, exact value of thermal
contact conductance H is taken as 1000 W/m2 K for all the examples shown in this study. The
time evolution of blood perfusion is given by

W(t) = cpb�(t) (46)

where cpb is the constant specific heat of the blood, and �(t) is a function characterizing the
time dependence of the blood perfusion.

The solution of the direct problem by using the known parameter and function provides the
exact (errorless) heat flux measurements qx(a, ti), i = 1, . . . , nt . Note that real measurements
generally contain errors. Therefore, measurements containing random errors are simulated by
adding a white noise (error term) to qx(a, ti) in the form

qm(a, ti) = qx(a, ti) + � � (47)

where qm(ti) is the simulated measurements of heat flux, qx(ti) is the exact heat flux (errorless),
� is the standard deviation of the measurement errors, � is a random variable with normal
distribution, zero mean and unitary standard deviation. For the 99% confidence level the random
number � belongs to the interval ] − 2.576<�< + 2.576[. This variable is generated with the
subroutine DRRNOR of the IMSL library [20]. The use of simulated measurements obtained
in such a way can be very helpful and gives insights into understanding the physics of the
problem under picture as for the model adequacy, the solution stability with respect to errors,
and the optimal design of the experiment. In this case, the inverse problem solution procedure
shall be able to estimate the values a priori prescribed for the two unknowns.

Inverse problem solution: We now consider the inverse problem of estimating the parame-
ter H and the function W(t) by the conjugate gradient method. In all presented test cases,
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the initial guesses for the unknown parameter H and for the unknown function W(t) were
taken as

H(0) = 100, W(0)(t) = 0

Estimation error: To quantify the relative error of the estimation procedure, the following
definitions are introduced:

�H =
∣∣∣∣H − H̄

H̄

∣∣∣∣ × 100% (48)

is the computation error for thermal conductance H , and

�� =
∫ tf

0 [�̄(t) − �(t)]2 dt∫ tf
0 [�̄(t)]2 dt

× 100% (49)

is the estimation error for blood perfusion function. The over-bar designates the exact parameter
or function under hand. Another measure of the accuracy of recovered perfusion, since the true
value is known, is the root-mean-square error which is defined as

	� =
[

1

nt

nt∑
i=1

[�x(ti) − �(ti)]2
]1/2

(50)

where �(ti) is the estimated blood perfusion function at time ti , �x(ti) is the exact blood
perfusion used to generate the simulated heat flux measurements at time ti , and nt is the total
number of measurements.

Since the gradient equation relative to blood perfusion, see expressions (37)–(38), is null
at the final time, the initial guess used for �(tf) is never changed by the iterative procedure,
generating instabilities on the solution in the neighbourhood of final time tf . One approach
to overcome such difficulties is to consider a parametric representation of the unknown func-
tion to be estimated, i.e. the blood perfusion �(t). This is accomplished through the use of
Equation (39) where the basis functions are chosen as spline functions B


i (t). 
 designates the
order of the spline which can take the value 1, for a constant spline function, 2 for a linear
spline function, 3 for a parabolic spline function, or 4 for a cubic spline function. More details
on the derivation and the use of spline functions can be found in Reference [21].

Four test cases, representing different functional variations for perfusion, used to evaluate the
estimation procedure are analysed below. Two analysis of the simulated data are discussed for
each test case. In the first analysis the blood perfusion and thermal conductance are estimated
using exact data while the second analysis is performed using noisy data. In each analysis,
blood perfusion is recovered in its two representations (i.e. parametric and non-parametric
form), and a brief comparison between them is presented. Parametric form means that the
blood perfusion is approximated by means of Equation (39). Non-parametric form designates
the grid function representation; i.e. we have as many blood perfusion unknowns as time nodes
(see Equation (12)).

Table II summarizes the results obtained for the simultaneous estimation of thermal con-
ductance and blood perfusion, estimation error, computing time, and number of iterations, as
applied to the cases shown in Figures 2–10. All computations were performed on a Pentium
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Table II. Results obtained from simulated test cases, with two measurement
level errors � = 0 and � = 120.

Data Test Representation Estimated �H �� 	� Iterations
error case form H (W/m2 K) (%) (%) (kg/m3 s) number

Parametric 1000.00 0.00 0.00 0.01 221
1 Grid function 999.84 0.01 0.99 4.60 42

Parametric 999.99 0.00 0.00 0.01 41
2 Grid function 1000.02 0.02 0.25 4.57 43

�= 0 Parametric 1000.00 0.00 0.00 0.06 119
3 Grid function 999.86 0.01 0.42 3.74 26

Parametric 1000.11 0.01 3.62 4.43 20
4 Grid function 999.99 0.00 0.00 0.11 78

Parametric 1003.17 0.31 0.99 3.49 13
1 Grid function 997.28 0.27 5.38 8.31 8

Parametric 1003.21 0.32 0.62 5.20 7
2 Grid function 975.26 2.47 4.21 14.53 5

�= 120 Parametric 1001.41 0.14 0.50 3.11 12
3 Grid function 995.20 0.47 3.22 7.94 6

Parametric 999.37 0.06 4.80 5.09 9
4 Grid function 998.77 0.12 10.19 7.43 9
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Figure 2. Results of test case 1, obtained with errorless data. Comparison between exact
and recovered blood perfusion profile obtained with grid and parametric representation.

Parametric form is built with 
 = 4 and m = 16.

Platform. Two different levels of measurements errors considered for numerical analysis in-
cluded � = 0 (errorless) and � = 0.01 qmax, where qmax is the maximum measured heat flux at
the interface between the tissue and the probe.
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Figure 3. Results of test case 1, performed with noisy data. Comparison between exact and recovered
blood perfusion profile obtained with grid and parametric representations. Parametric form of blood

perfusion is built with 
 = 4 and m = 9.
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Figure 4. Test case 2: Comparison between exact and recovered profile of blood perfusion obtained
with errorless data and for both its representation: grid and parametric.

Test case 1: Smooth variation.
In the first test, the time evolution of blood perfusion follows a sinus function and was assumed
to vary according to the following expression:

W(t) = cpbWo[3 + sin(3�t/tf) + cos(3�t/tf) + sin(6�t/tf) + cos(6�t/tf)] (51)
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Figure 5. Test case 2: Comparison between exact and recovered profile of blood perfusion obtained
with noisy data and for both representation of blood perfusion: grid and parametric forms.
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Figure 6. Test case 3: Comparison between exact and recovered profile of blood perfusion obtained
with errorless data and for both its representation: grid and parametric forms.

The parameter Wo was taken as 10. This case represents the easiest test. The smoothness of
the perfusion function gives more flexibility to the estimation procedure and does not present
any difficulty in its parametrization choice. Few parabolic or cubic basis functions are sufficient
to represent correctly the time variation.
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Figure 7. Test case 3: Comparison between exact and recovered profile of blood perfusion obtained
with noisy data and for both its representation: grid and parametric forms.
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Figure 8. Test case 3: Comparison between exact and recovered profile of blood perfusion obtained
with noisy data and parametric form.

16



0 10 20 30
0

20

40

60

B
lo

od
 p

er
fu

si
on

Exact profile
Recovered profile (grid form)
Recovered profile (parametric form)

Figure 9. Estimated blood perfusion profile for test case 4 in its two representations: parametric and
non-parametric forms. The presented results are obtained with exact data.
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Figure 10. Comparison between the reconstructed blood perfusion profiles with the exact one obtained
with and without its parametrization form. The presented results are obtained with noised data.

Figure 2 displays the recovered blood perfusion profile obtained with errorless data for both
representations, i.e. non-parametric and parametric form. As expected the grid representation
(non-parametric form) presents some deficiency at the beginning and at the end due to the null
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end-condition of gradient equation. Otherwise the estimation is very good over the remaining
time interval. The estimation results obtained with a parametric form of blood perfusion are in
excellent agreement with exact profile over all the time interval. As reported in Table II, the
estimation error, for both unknowns are good in general and better when the blood perfusion is
parametrized. The estimation error is less than 0.01% for both unknowns. Despite a relatively
high iteration number, which results in a greater computation time, the recovered H and W(t)

function coincide precisely with their exact values.
Figure 3 shows the results of the inverse analysis for the first test case with a measurement

error of � = 120 W/m2. This standard deviation represent 1% error with respect to the maximum
heat flux at the interface. The results of perfusion when it is estimated in the non-parametric
form exhibits relatively high noise randomly scattered about the exact profile. The parametric
representation reduces drastically this noise and the recovered profile presents approximately
the same time evolution as the exact one. Numerical simulations have that the best results are
obtained when the perfusion is parametrized with cubic spline function (
 = 4) and using nine
basis functions (m = 9). By using parametric form the estimation error of perfusion is reduced
five times while the estimation error of thermal conductance remains of the same order of
magnitude. Greater noise level cannot be checked here because the inverse problem solution
tends to show instabilities that have approximately the amplitude of test case variation itself.

Test case 2: Linear and constant variation.
The time-dependent blood perfusion for test case two is a combination of triangular ramp and
a short constant part. Analytically, the second test case is described by

W(t) = cpbWo ×

⎧⎪⎪⎨
⎪⎪⎩

0.60t + 1 for 0<t � tf/2

−0.55t + 18.33 for tf/2<t � 3 tf/4

5 for 3tf/5<t � tf

(52)

The parameter Wo is chosen as 10. Looking to Figure 4 where the results are displayed, no
difficulties to underline in the estimation procedure when it is applied with errorless data. The
estimation results for both unknowns are nearly exact with a straight advantage to those obtained
with the parametric representation of blood perfusion. As shown in Table II, the estimation
error is null when the estimation is performed with parametric form of blood perfusion. In this
case, a combination of linear spline functions, 
 = 2, was found to be the best approximation
with an optimal number m of 11 basis functions. With this choice, the estimation error was
less than 1% for both unknowns, i.e. thermal conductance and blood perfusion. By choosing

 = 1 (constant function) and m = 121 as key parameters for the basis functions in Equation
(39), which means we have as many basis functions as time nodes, we get precisely the same
results obtained without using parametric form of the blood perfusion. We should mention here
that the choice of 
 = 1, the basis functions are reduced to set of constants.

Figure 5 illustrates the effects of the same standard deviation � = 120 W/m2, used in the
first test case, on the accuracy of the estimates for both representation of blood perfusion. The
results obtained with non-parametric form of perfusion show the same perturbations observed
in the first test case. These perturbations are randomly scattered around the exact profile which
means that the estimation procedure is able to recover the general tendency of the time variation
of blood perfusion but fails to recover it precisely due to the inherent ill-posed character of
inverse problems. The error of recovered thermal conductance is very acceptable. An optimal
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number of seven (m = 7) linear spline function (
 = 2) was used to parametrize blood perfusion
in this case.

Test case 3: Constant and sinusoidal variation.
As a third example, the blood perfusion is assumed to be constant over two short time intervals
at the beginning and at the end and to have a sinus time variation between them, i.e. over the
remaining time interval. This variation is assumed to vary in the following form:

W(t) = cpbWo ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 for 0<t � tf/5

2 + sin

[
2�(t − tf/5)

3tf/5

]
for tf/5<t � 4tf/5

2 for 4tf/5<t � tf

(53)

The parameter Wo is taken as 10. Here again the estimation procedure does not encounter
any difficulty in recovering precisely the two unknowns when the errorless data are used.
With the parametric form of perfusion, the estimation error is null for both unknowns. Due
to the discontinuities of the first derivative of this function at the connecting points with its
constant parts, the best parametric form was found by considering constant or linear spline
function as basic function in Equation (39). This above statement is still valid when errorless
measurements are used in the solution of the inverse problem. The presented results in Figure 6
were obtained with 31 linear spline functions, i.e. 
 = 2, and m = 31. As expected, the recovered
blood perfusion in parametric form is more accurate than the one obtained without parametric
representation (grid form). Here again the iteration number and computation time increase with
the parametric form.

The recovered blood perfusion profile in its two forms (parametric and non-parametric) is
displayed in Figure 7. These results were obtained with noisy data having the same standard
deviation � = 120 W/m2. The best parametric form was obtained by considering six parabolic
spline functions (
= 3, m = 6). With the parametric form, the estimation error is reduced to
less than 1% for both unknowns while the iteration number is doubled for this test case. The
right parametrization of perfusion was difficult to find in this special case due to the two
inflexion points present in the profile. Acceptable results, shown in Figure 8, were obtained
with 16 constant spline functions too.

Test case 4: Double step variation.
The last example deals with a function presenting double step which represents a very strict
test for the inverse analysis. The time-dependent blood perfusion for a double step function
was assumed to vary in the form

W(t) = cpbWo ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/10 for 0<t � tf/5

1 for tf/5<t � 2tf/5

1/10 for 2tf/5<t � 3tf/5

10 for 3tf/5<t � 4tf/5

1/10 for 4tf/5<t � tf

(54)

where Wo was taken as 10. This example represents the hardest test case, among the presented
tests, in the sense that it simulates two abrupt changes, with different amplitude, in the blood
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Figure 11. Comparison of the time evolution of the measured heat flux at the interface between the
probe and the tissue for the four presented test cases.

perfusion during the total experimental period. Figure 9 compares the results of the inverse
solution for both the representation of blood perfusion, parametric and non-parametric form
obtained with errorless data. Here again the estimation procedure works well in recovering
simultaneously the two unknowns. As displayed in Table II, both estimation error are relatively
small. Contrary to the previous examples, the estimated results with non-parametric form of
perfusion are better. Indeed the estimation was nearly perfect for both H and W(t) with
an important iteration number. With the presence of two discontinuities in the profile, the
parametrization was difficult to accomplish. The use of parabolic functions and higher order
will smooth the profile, especially at the sharp corners, and good results cannot be obtained
in this case. This is why the parametrization will be performed with constant functions rather
than linear functions.

Estimated perfusion profiles in parametric form and non-parametric form with the use of noisy
data are displayed in Figure 10. The results for this test without parametrization, follow the two
pulses but cannot predict correctly the sharp corners. The global time evolution is recovered
with low accuracy around the abrupt changes. Five constant spline functions (
 = 1, m = 5)

were found to be the best approximation for blood perfusion. The choice of m = 5 is suggested
by the fact that the time evolution of perfusion presents 5 equally spaced time intervals over
which the perfusion has a constant value. In other words, this is an exploration of an a priori
information on the perfusion behaviour.

Figure 11 shows measured heat flux at the interface between the probe and the tissue for
the four test cases investigated in this study. Based on the initial temperatures in the probe
and the tissue, the maximum value of this heat flux is about 12 000 W/m2 at time t>0. (This
value is not shown in Figure 11.) The heat flux decreases drastically in short time period which
represents approximately 15% of the total experimental time. Each displayed heat flux profile
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was obtained by adding a white noise of a standard deviation of � = 120 W/m2 to the exact
profile. This standard deviation represents 1% measurement error based on the maximum heat
flux. Numerical simulation show that, as the error increases, the accuracy of the prediction
decreases and the results tend to be unworkable.

In all presented results, the thermal contact conductance H was recovered with high accuracy.
This is probably due to the relatively small deviation in the initial guess of H . In this study,
lower values than 85 W/m2 K as an initial guess of H were checked and they do not give
convergence of the estimation procedure. We should mention here that, with a null initial guess,
the recovered blood perfusion profile is still very acceptable. That means the estimation of blood
perfusion can be performed without using any a priori information on its time evolution.

A general comparison of different results of Table II reveals the following conclusions:

1. The CPU times for parametric form are larger than those for the grid function represen-
tation but are still acceptable. The evaluation of the spline functions during each iteration
is at the origin of the increase.

2. The iteration numbers are higher with parametrization than with the grid function rep-
resentation. Also the iteration numbers are widely reduced when the inverse analysis is
performed with noisy data and they appear to be of the same order of value for all the
presented examples.

3. With errorless data and the parametric form of blood perfusion the root mean square
of perfusion is reduced four hundreds times (400), except for the fourth test case. The
smallest root mean square is observed with smooth function simulating perfusion.

4. By using exact data and the different spline function representations, the estimation error
is null for all the test cases except the fourth test. This estimation error increases when
noisy data are used with the parametrization. The highest error is observed with test case
four for both measurement levels.

The four presented test cases represent extremely difficult time evolutions of the blood perfu-
sion. These cases were chosen to verify the robustness of the estimation procedure. As expected,
it is easier to recover a continuous and smooth function, such as the one given by Equation
(51), than a function containing discontinuities in the first derivative, like the triangular vari-
ation given by Equation (52), or like the constant-sinus variation given by Equation (53),
or like the double step variation given by Equation (54). Physically when the tissue is
under treatment, the temperature changes (increase or decrease) and induces a distention
or shrinkage of the vessel ramifications. As a result there is a smooth variation of blood
perfusion. Also, the same statement can be applied to exclude any abrupt change in
blood perfusion.

6. CONCLUDING REMARKS

An inverse heat conduction problem which uses heat flux measurements has been formulated
and solved. The minimization procedure is conducted by reducing the least square norm between
experimental measured heat flux and its corresponding calculated values from a mathematical
model. This approach differs from common parameter and/or function estimation methods which
uses temperature measurements to solve inverse problems. The minimization problem stated in
this paper is solved iteratively by the conjugate gradient method coupled to the discrepancy
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principle as stopping criterion. The gradient of the least square norm to be minimized is
obtained by means of the adjoint state equations.

As demonstrating example a bioengineering problem is investigated. Indeed, a new combined
experimental and numerical procedure is presented for the simultaneous estimation of time-
dependent blood perfusion and thermal conductance using a non-invasive air-cooled blood
perfusion probe.

To the best knowledge of the authors this is the first time where the conjugate gradient
method using the adjoint state equation approach is used with heat flux measurement instead of
temperatures to estimate simultaneously two unknowns (one parameter and one time-dependent
function). The developed estimation procedure was applied successfully to several shapes of
blood perfusion. A comparison of the recovered data with the exact model showed good
agreement. The obtained results underline the feasibility of the procedure and its capabilities
to recover simultaneously thermal conductance and blood perfusion without using any a priori
information on the unknown transient blood perfusion.

In some cases, the estimated blood perfusion at the beginning and the end of the experiment
did not agree well with the prescribed one used in generating the simulated heat flux. This
deficiency is due to the inherent problem of the null end-condition in the adjoint problem which
generates instabilities on the solution. Efforts are currently underway to address this problem
by considering the appropriate parametric representation of the unknown blood perfusion. The
optimal choice of parameters needed in the parametrization and the reconstruction of blood
perfusion as a temperature function will be examined.

APPENDIX A

A.1. Inverse problem statement

The inverse problem under picture deals with the estimation of two unknowns (one parameter,
one function) in the space of square integrable functions L2. In the variational formulation,
the inverse problem consists in minimizing the discrepancy between computed and measured
values of heat flux expressed by the functional J (H, W) with respect to desired functions
H and W(t). The minimization procedure is repeated iteratively until an acceptable level of
closeness between measurements and computations is reached. The measured heat flux qm(a, t),
cannot be any arbitrary time-dependent function. Indeed, it is strongly connected with the two
unknowns, H and W(t) via the direct heat conduction problem. In other words, we look for the
minimum of the cost function J , while the dynamic equations (1)–(8) describing the space and
temporal evolution of the temperature, act as a set of strong constraints, i.e. they are fulfilled
exactly (equality constraints). Within the domain [0, b] × [0, tf ], the evolution of the model
variables Tt(x, t) and Tp(x, t) are fully controlled by the unknowns H and W(t). The problem
is to find these two unknowns such that the least square distance between model response and
experimental data, i.e. cost function J , is minimized and the constraints fully satisfied. This
problem is well known in the field of the control theory under the name of minimization with
constraints.

To minimize the residual functional with respect to desired unknowns, we use unconstrained
gradient type methods, in particular, the conjugate gradient method [16]. To compute the
residual functional gradient, we use a method based on the theory of calculus of variations.
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Thus, the initial problem of minimization with constraints is transformed to another problem
of minimization without constraints by introducing the Lagrange functional associated to the
direct problem. Then the stationary conditions of Lagrange functional are studied to derive the
analytical form of the gradient. To develop this approach, we need to introduce some basic
calculus of variations.

A.2. Direct problem in variations

Finding the minimum of the residual functional by gradient-type methods requires the derivation
of its gradient which can be accomplished through the two following steps based on the calculus
of variations. First, the computation of its variation when the unknowns will change with a
small amount, and second, inspection of the conditions under which we obtain a stationary
point (saddle point) for the associated Lagrange functional.

To compute the direct problem in variations (or the variation problem), the unknowns H

and W(t) are perturbed simultaneously by an amount denoted ��H and ��W(t), that is

H� = H + � �H (A1)

W�(t) = W(t) + � �W(t) (A2)

Thence, the temperature undergoes the variations ��Tt(x, t) and ��Tp(x, t) respectively, which
can expressed as

Tt�(x, t) = Tt(x, t) + ��Tt(x, t)= Tt(x, t) + �Vt(x, t) (A3)

Tp�(x, t) = Tp(x, t) + ��Tp(x, t)= Tp(x, t) + �Vp(x, t) (A4)

where � is a small real number and, as a subscript, � refers to the perturbed variables. The
variation problem is obtained by introducing the following limiting process [7, 22]:

D�H,�WT (x, t)= lim
�−→0

O�(H�, W�) − O(H, W)

�
(A5)

where O�(H�, W�) and O(H, W) are the operator forms of the direct problem, Equations
(1)–(8), written by introducing the perturbed variables, Equations (A1)–(A4), and unperturbed
variables in the direct problem. Application of the above limiting process gives the ‘common’
direct problem in variations expressed by

Ct
�Vt(x, t)

�t
= kt

�2
Vt(x, t)

�x2
− W(t)Vt(x, t) + �W(t)[Ta − Tt(x, t)] (A6)

kt
�Vt(a, t)

�x
= kp

�Vp(a, t)

�x
(A7)

− kt
�Vt(a, t)

�x
= H [Vt(a, t) − Vp(a, t)] + �H [Tt(a, t) − Tp(a, t)] (A8)
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Cp
�Vp(x, t)

�t
= kp

�2
Vp(x, t)

�x2
(A9)

− kp
�Vp(b, t)

�x
= h∞Vp(b, t) (A10)

with the initial boundary conditions

Vt(x, 0) = 0, 0 � x � a (A11)

Vp(x, 0) = 0, a � x � b (A12)

The above variation problem will be used in the study of the stationary conditions of the
augmented Lagrange functional given in Equations (A18) and (A19) in the next section.

Since the present work deals with the estimation of two unknowns, two direct problems
in variations are required to compute the descent vector components, see Equations (13)–(15).
They are derived, in a similar way, by considering variations in the two unknowns each at a
time. In order to derive the first direct problem in variations resulting from the perturbation in
H , we apply the following limiting process [7, 22]:

D�H T (x, t)= lim
�−→0

O�(H�) − O(H)

�
(A13)

where O�(H�) and O(H) are the operator forms of the direct problem, Equations (1)–(8),
written by introducing the perturbed variables, Equations (A1), (A3), and (A4), and unperturbed
variables in the direct problem. Application of the above limiting process gives the first direct
problem in variations expressed by Equations (16)–(23) where the subscript of the source terms
Yi(x, t) and Zi(x, t) is taken as i = 1. Second-order terms in the above limiting process are
neglected.

The same procedure is used for the derivation of the second direct problem in variations
resulting from the perturbation of the blood perfusion W(t). Perturbed variables, i.e. Equations
(A2)–(A4) are introduced in the direct problem to form the perturbed operator O�(W�). From
the outcome result we subtract the unperturbed operator O(W) and applying the precedent
limiting process, as shown by Equation (A13), that is

D�WT (x, t)= lim
�−→0

O�(W�) − O(W)

�
(A14)

which leads to the second direct problem in variations given in Equations (16)–(23) where the
subscript of the source terms Yi(x, t) and Zi(x, t) is taken as i = 2.

Once the direct problems in variations are established, the next step is to calculate the
variation of the functional to be minimized J (H, W) denoted �J (H, W). This can be done
with the following limit process:

�J (H, W) = lim
�−→0

J�(H�, W�) − J (H, W)

�

= 2
∫ tf

[qc(a, t; H, W) − qm(a, t)]�qc(a, t; H ; W) dt (A15)
0 
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The heat flux at the interface x = a can be easily deduced from the direct problem in variations.
First we recall that the computed heat flux at the interface can be expressed analytically by
the following formula

qc(a, t; H, W) = −kt
�Tt(a, t)

�x

= −kp
�Tp(a, t)

�x

= H [Tt(a, t) − Tp(a, t)] (A16)

Similarly we can show that the heat flux variation, due to the perturbation of H and W(t),
can be expressed as

�qc(a, t; H, W) = −kt
�Vt(a, t)

�x

= −kp
�Vp(a, t)

�x

= H [Vt(a, t) − Vp(a, t)] + �H [Tt(a, t) − Tp(a, t)] (A17)

These expressions represent the thermal conditions at the contact interface in the direct problem
in variations established in Equations (16)–(23). The above equations contain a source term
which is proportional to the temperature jump present in the direct problem statement.

A.3. Adjoint problem and gradient equations

To compute the gradient of the residual functional J , and the adjoint problem, the Lagrange
functional is introduced. The non-null equations (1), (3), (4), (5), and (6) in the direct problem
are multiplied by different Lagrange multipliers and the resulting expression is integrated over
the correspondent time and space domains. Then the result is added to the functional J (H, W)

to yield to the following augmented functional (Lagrange functional):

L=
∫ tf

0
[qc(a, t; H, W) − qm(a, t)]2 dt

+
∫ a

0

∫ tf

0

[
kt

�2
Tt(x, t)

�x2
+ W(t)[Ta − Tt(x, t)] − Ct

�Tt(x, t)

�t

]
Pt(x, t) dt dx

+
∫ tf

0

[
kt

�Tt(a, t)

�x
− kp

�Tp(a, t)

�x

]
Q(t) dt

+
∫ tf

0

[
H [Tt(a, t) − Tp(a, t)] + kt

�Tt(a, t)

�x

]
U(t) dt
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+
∫ b

a

∫ tf

0

[
kp

�2
Tp(x, t)

�x2
− Cp

�Tp(x, t)

�t

]
Pp(x, t) dt dx

+
∫ tf

0

[
h∞ [Tp(b, t) − T∞] + kp

�Tp(b, t)

�x

]
S(t) dt (A18)

where Pt(x, t), Pp(x, t), Q(t), U(t), and S(t) are denoted the Lagrange multipliers. Then
the stationary conditions of the Lagrange functional are investigated. First let us write the
variational form of the above functional, that is

�L= 2
∫ tf

0
[qc(a, t; H, W) − qm(a, t)]�qc(a, t; H, W) dt

+
∫ a

0

∫ tf

0

[
kt

�2
Vt(x, t)

�x2
−W(t)Vt(x, t)+�W(t)[Ta−Tt(x, t)]−Ct

�Vt(x, t)

�t

]
Pt(x, t) dt dx

+
∫ tf

0

[
kt

�Vt(a, t)

�x
− kp

�Vp(a, t)

�x

]
Q(t) dt

+
∫ tf

0

[
H [Vt(a, t) − Vp(a, t)] + �H [Tt(a, t) − Tp(a, t)] + kt

�Vt(a, t)

�x

]
U(t) dt

+
∫ b

a

∫ tf

0

[
kp

�2
Vp(x, t)

�x2
− Cp

�Vp(x, t)

�t

]
Pp(x, t) dt dx

+
∫ tf

0

[
h∞Vp(b, t) + kp

�Vp(b, t)

�x

]
S(t) dt (A19)

In the above equation the x integration operation acting on the temperature variation variables
Vt(x, t) and Vp(x, t) are passed onto the corresponding adjoint variables Pt(x, t) and Pp(x, t)

using integration by parts as follows:

∫ a

0

�2
Vt(x, t)

�x2
Pt(x, t) dx = Pt(a, t)

�Vt(a, t)

�x
− Pt(0, t)

�Vt(0, t)

�x

− Vt(a, t)
�Pt(a, t)

�x
+ Vt(0, t)

�Pt(0, t)

�x

+
∫ a

0

�2
Pt(x, t)

�x2
Vt(x, t) dx (A20)
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∫ b

a

�2
Vp(x, t)

�x2
Pp(x, t) dx = Pp(b, t)

�Vp(b, t)

�x
− Pp(a, t)

�Vp(a, t)

�x

− Vp(b, t)
�Pp(b, t)

�x
+ Vp(a, t)

�Pp(a, t)

�x

+
∫ b

a

�2
Pp(x, t)

�x2
Vp(x, t) dx (A21)

Similarly, we perform the same integration operation with the time variable t as follows:

∫ tf

0

�Vt(x, t)

�t
Pt(x, t) dx = Pt(x, tf)Vt(x, tf) − Pt(x, 0)Vt(x, 0) −

∫ tf

0

�Pt(x, t)

�t
Vt(x, t) dt

(A22)∫ tf

0

�Vp(x, t)

�t
Pp(x, t) dx = Pp(x, tf)Vp(x, tf) − Pp(x, 0)Vp(x, 0) −

∫ tf

0

�Pp(x, t)

�t
Vp(x, t) dt

(A23)

Introducing these new expressions in the variational form of the Lagrange functional and
distributing the adjoint variables Pt(x, t) and Pp(x, z) and the integration operations, we obtain

�L= 2
∫ tf

0
[qc(a, t; H, W)−qm(a, t)]�qc(a, t; H, W) dt

+ kt

∫ tf

0

[
Pt(a, t)

�Vt(a, t)

�x
−Pt(0, t)

�Vt(0, t)

�x
−Vt(a, t)

�Pt(a, z)

�x
+Vt(0, t)

�Pt(0, t)

�x

]
dt

+ Ct

∫ a

0
[Pt(x, tf)Vt(x, tf) − Pt(x, 0)Vt(x, 0)] dx

+
∫ tf

0

∫ a

0

[
kt

�2
Pt(x, t)

�x2
+ Ct

�Pt(x, t)

�t
− W(t)Pt(x, t)

]
Vt(x, t) dx dt

+
∫ tf

0

[
kt

�Vt(a, t)

�x
− kp

�Vp(a, t)

�x

]
Q(t) dt

+
∫ tf

0

[
H [Vt(a, t) − Vp(a, t)] + �H [Tt(a, t) − Tp(a, t)] + kt

�Vt(a, t)

�x

]
U(t) dt

+ kp

∫ tf

0

[
Pp(b, t)

�Vp(b, t)

�x
−Pp(a, t)

�Vp(a, t)

�x
−Vp(b, t)

�Pp(b, z)

�x
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+ Vp(a, t)
�Pp(a, t)

�x

]
dt + Cp

∫ b

a

[Pp(x, tf)Vp(x, tf) − Pp(x, 0)Vp(x, 0)

]
dx

+
∫ tf

0

∫ a

0

[
kp

�2
Pp(x, t)

�x2
+ Cp

�Pp(x, t)

�t

]
Vp(x, t) dx dt

+
∫ tf

0

[
h∞Vp(b, t) + kp

�Vp(b, t)

�x

]
S(t) dt (A24)

By using the boundary conditions of the two direct problems in variations, Equations (16)–(23),
the variational form of the Lagrange functional is reduced to the following expression:

�L=
∫ a

0

∫ tf

0
[Ta − Tt(x, t)]Pt(x, t)�W(t) dt dx

+
∫ tf

0
[Tt(a, t)−Tp(a, t)][2[qc(a, t)−qm(a, t)]+Pt(a, t)−Pp(a, t)]�H dt (A25)

as long as the adjoint problem, expressed by Equations (31)–(38) is satisfied. When the tem-
peratures Tt(x, t) and Tp(x, t) are solution of the direct problem, and the Lagrange multipliers
Pt(x, t) and Pp(x, t) are solution of the adjoint problem, given in Equations (31)–(38), we
obtain the following identity:

L= J (H, W) ⇔ �L= �J (H, W) (A26)

The variation of the Lagrangian functional is equivalent to the variation of the functional to
be minimized. In what follows, we can determine analytically the gradient of the functional
J (H, W) to be minimized. By definition, and using the directional derivative defined in Equation
(A13), the variation of the functional J (H, W) can be written as

�J (H, W) = lim
�−→0

J (H + ��H, W + ��W) − J (H, W)

�

= lim
�−→0

J (H + ��H, W) − J (H, W)

�

+ lim
�−→0

J (H, W + ��W) − J (H, W)

�

= 〈J ′
H , �H 〉 + 〈J ′

W, �W 〉 (A27)

As we are only dealing with the linear parts of the variational form of J (H, W), we can write
in the right-hand side of the above equation, the gradient of the sum is equal to the sum of
the gradients. Mathematically speaking, the variation �J (H, W) is known also as the Fréchet
derivative. J ′

H and J ′
W are the gradients of J (H, W) with respect to the heat conductance H

and the blood perfusion W(t), respectively. Here 〈·, ·〉 represents the defined scalar product of
the working space. The working space can be R (real parameters), L2(0, tf) (Hilbert space)
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or Wi
2, i = 1, 2 (Sobolev space) which characterize the dimensionality of the problem under

investigation and the associated scalar product. Briefly, in the Hilbert space case L2 of square
integrable functions, a function f (t) defined in a domain [c, d] should satisfy the following
properties:

∫ d

c

[f (t)]2 dt<∞ (A28)

The function f (t) is said to be bounded. The associated inner scalar product 〈· , ·〉 of two
functions f (t) and g(t) in such functional space is defined by

〈f (t), g(t)〉L2 =
∫ d

c

f (t)g(t) dt (A29)

where f (t) and g(t) are both defined in L2(c, d) space. The norm of a function f (t) belonging
to L2(0, tf) space is a special case of the defined scalar product and given by

‖f (t)‖L2 =
[∫ tf

0
[f (t)]2 dt

]1/2

(A30)

In our case we are working in the Hilbert space L2(0, tf) and the least square norm established
in the residual functional J (H, W) is similar to the definition given in Equation (A30). From
the above definition of the directional derivative given in Equation (A27), the scalar product,
i.e. Equation (A29), and the identity equation (A26), the variation of the objective functional
J (H, W) can be written in the following different forms:

�J (H, M) = 〈J ′
H , �H 〉 + 〈J ′

W, �W 〉

=
∫ tf

0
J ′

H �H dt +
∫ tf

0

∫ a

0
J ′

W�W(t) dx dt

=
∫ tf

0
[Tt(a, t) − Tp(a, t)][2[qc(a, t) − qm(a, t)] + Pt(a, t) − Pp(a, t)]�H dt

+
∫ tf

0

[∫ a

0
[Ta − Tt(x, t)]Pt(x, t) dx

]
�W(t) dt (A31)

From the precedent equations and by a simple comparison of the different forms of the right-
hand side, one can identify the analytical expression of the gradients J ′

H and J ′
W in Hilbert space

L2(0, tf) as given by Equations (29) and (30). The details to derive the describing equations for
other possible function spaces are presented in References [6, 7]. These two references provide
an excellent support to derive the describing equations for a gradient-type methods to solve
multi-dimensional linear and non-linear inverse heat conduction problems. As presented in the
previous sections, the problem is formulated as an infinite dimensional minimization problem.
The optimization problem could be transformed in finite-dimensional form by considering a
parametric representation of the unknown W(t) to be estimated.
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