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Abstract: In this note, we provided an improved way of constructing a Lyapunov-

Krasovskii functional for a linear time delay system. This technique is based on the

reformulation of the original system and a discretization scheme of the delay. A hierarchy

of Linear Matrix Inequality based results with increasing number of variables is given and

is proved to have convergence properties in terms of conservatism reduction. Examples

are provided which show the effectiveness of the proposed conditions.
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1. INTRODUCTION

During the last decades, stability of linear time delay

systems have attracted a lot of attention, see (Moon

et al., 2001; Park, 1999; Xu and Lam, 2005; Fridman

and Shaked, 2002a) and references therein. The main

approach relies on the use of a Lyapunov Krasovskii

functional or a Lyapunov Razumikhin function. It

leads to the so called delay dependent criteria which

are expressed in terms of LMIs (linear matrix in-

equalities) and then easily solved using dedicated

solvers. Generally, all these approach have to tackle

with two main difficulties. The first one is the choice

of the model transformation which is closely related

to a choice of Lyapunov Krasovskii functional, see

(Kolmanovskii and Richard, 1999) for a complete

classification. The second problem lies on the bound

of some cross terms which appears in the derivative

of the Lyapunov functional, see (Park, 1999; Moon et

al., 2001; Gu et al., 2003). The present paper brings

a contribution to the first issue: by appropriate redun-

dant modeling it introduces new types of Lyapunov

Krasovskii functionals.

The methodology may be seen as similar to that in

(Peaucelle et al., 2005) and (Ebihara et al., 2005).

In these papers, parameter-dependent Lyapunov func-

tions for robust analysis are exhibited by means of

redundant system modeling using higher order times

derivatives of the state. Most efficient for robustness

problems, this approach is adapted here for time-delay

systems. It is shown that introducing redundant differ-

ential equations shifted in time by a fractions of the

time-delay allows to build new Lyapunov Krasovskii

functionals that reduce the conservatism in searching

for the maximal delay such that the system is asymp-

totically stable. As in formulated in (Gu et al., 2003,

page 165) the present results are part of the implicit

model transformation based methods.

An important feature of the present contribution is to

build an infinite sequence of Lyapunov functionals and

associated delay-dependent problems. Each problem

of the sequence corresponds to a choice of an integer

r that defines the discretization of the delay in r in-

tervals of same length. For growing discretizations the

problems are shown to have conservatism reduction

properties. The building of sequences of conserva-

tive problems with convergence properties can also be

found in (Bliman, 2002) and (Gu, 1997; Gu, 2001).

In the first paper, the key idea is quite similar to

ours but amounts to taking multiples of the delay

while we discretize the delay. Moreover, the results of

(Bliman, 2002) are relevant for delay-independent sta-



bility while we consider the delay-dependent case. As

for the discretization scheme of Gu, a detailed com-

parison is needed and it could not find its place in the

present paper due to space limitations. But note that

similarities exist (constant matrices of the Lyapunov

functional on each discretization interval) as well as

differences (we exhibit non integrated quadratic terms

that depend on discretized values of the state).

All results are formulated in terms of Linear Matrix

Inequalities (LMIs) and a particular attention is paid to

formulating these results the most efficiently, that is,

without introducing extra useless decision variables.

In this, we follow methodologies based on Finsler

lemma (Skelton et al., 1998) known to be very effec-

tive in robust control (De Oliveira and Skelton, 2001)

and that has been already used for the study of time

delay systems in the delay independent case (Castelan

et al., 2003) and in the delay dependent case (Suplin et

al., 2004)). As in these papers, we demonstrate that the

approach is relevant not only for stability analysis of

perfectly known models, but easily extends to robust

stability analysis. Two such extensions are exposed:

one in the quadratic stability framework, that is with

Lyapunov functionnals that do not depend on the un-

certain parameters; and the second taking advantage

of parameter-dependent Lyapunov functionals.

The paper is organized as follows. In section 2, we

derive a first conservative result for delay-dependent

stability analysis. Although it is derived by means

of known techniques, the result is totally new at our

knowledge. Methodology for extension to robust anal-

ysis close this section. Then, in section 3 we expose

the first step of our discretization scheme and prove

that is does reduce the conservatism at the expense of

an augmentation of the number of decision variables.

The following section 4 gives the general result for a

discretization of the delay in r intervals. Section 5 is

devoted to numerical experiments that illustrated the

effectiveness of the approach.

independent is proposed.

Notations: For a two symmetric matrices, A and B,

A > (≥)B means that A − B is (semi-) positive

definite. AT denotes the transpose of A. 1n and 0m,n

denote the respectively the identity matrix of size n
and null matrix of size n × n. If the context allows

it the dimensions of these matrices are often omitted.

For a given matrix B ∈ ❘
m×n such that rank(B) =

r, we define B⊥ ∈ ❘
n×(n−r) the right orthogonal

complement of B by BB⊥ = 0 and B⊥B⊥T > 0.

The notation diag is used for block diagonal matrices:

diag(A,B, C) =





A 0 0

0 B 0

0 0 C





The Kronecker product of matrices is denoted ⊗ and

is such that 12 ⊗ A = diag(A,A), 13 ⊗ A =
diag(A,A, A).

2. A FIRST RESULT ON STABILITY

Consider the following time delay system:
{

ẋ(t) = Ax(t) + Adx(t − h) ∀t ≥ 0
x(t) = φ(t) ∀t ∈ [−h, 0]

(1)

where x(t) ∈ ❘
n is the instantaneous state, φ is

the initial condition and A,Ad ∈ ❘
n×n are known

constant matrices. xt is the state of the system:

xt(.) :

{

[−h, 0] → Rn

θ 7→ xt(θ) = x(t + θ)

and we denote σφ the solution to the differential equa-

tion with initial conditions φ. The following theorem

gives a first result on the delay dependent stability for

system (1).

Theorem 1. The system (1) is asymptotically stable

for any delay h such that 0 ≤ h ≤ hm if there exists

P > 0, Q > 0, R > 0 of appropriate dimensions

satisfying the following LMI
[

AT P + PAT + Q PAT
d

AT
d P −Q

]

hm

[

AT

AT
d

]

R

[

AT

AT
d

]T

−
1

hm

[

1

−1

]

R

[

1

−1

]T

< 0

(2)

Proof : Define the following Lyapunov-Krasovskii

functional for system (1):

V (xt) = xT (t)Px(t)+
t
∫

t−h

xT (θ)Qx(θ)dθ +

t
∫

t−h

t
∫

s

ẋT (θ)Rẋ(θ)dθds
(3)

Remark that since P,Q,R > 0, we can conclude that

for some ǫ > 0, the Lyapunov-Krasovskii functional

condition V (xt) ≥ ǫ‖xt(0)‖ is satisfied (see (Gu et

al., 2003)). The derivative along the trajectories of (1)

leads to the following equality :

V̇ (xt) = 2xt(t)Pẋ(t) + xT (t)Qx(t)

−xT (t − h)Qx(t − h) + hẋT (t)Rẋ(t)

−

t
∫

t−h

ẋT (θ)Rẋ(θ)dθ
(4)

Using the Jensen’s inequality (see (Gu et al., 2003)

and references therein), the last term can be bounded

as follows :

−

t
∫

t−h

ẋT (θ)Rẋ(θ)dθ < −zT (t)
R

h
z(t)

where z(t) =
t
∫

t−h

ẋ(θ)dθ = x(t)−x(t−h). Therefore

we get V̇ (xt) < ζTM(h)ζ with

ζ =









ẋ(t)
x(t)
x(t − h)
z(t)









, M(h) =











hR P 0 0

P Q 0 0

0 0 −Q 0

0 0 0 −
1

h
R











.



Furthermore, using the extended variable ζ, system

(1) with the extra variable z(t) can be rewritten as

Bζ = 0 where B =

[

1 −A −Ad 0

0 −1 1 1

]

. The original

system (1) is asymptotically stable if for all ζ such

that Bζ = 0, the inequality ζTM(h)ζ < 0 holds.

Using Finsler lemma (Skelton et al., 1998), this is

equivalent to B⊥TM(h)B⊥ < 0, where B⊥ is a right

orthogonal complement of B. Furthermore, it can be

easily seen that M(h) ≤ M(hm) if h < hm, i.e. if

asymptotic stability is proved using this result for a

delay hm then it also holds for any smaller delay.

An admissible value of B⊥ is the following:

B⊥ =

[

AT
1 0 1

AT
d 0 1 −1

]T

(5)

Simple calculations show that B⊥TM(hm)B⊥ < 0

is equivalent to (2), which concludes the proof. �

Remark 1. Instead of using the orthogonal comple-

ment of B, Finsler lemma also states that condition

B⊥TMB⊥ < 0 is equivalent to the existence of

some F ∈ ❘
2n×4n such that the LMI M + FB +

BT FT < 0 holds. Creating such additional variable

F is trivially useless for the considered case: it only

increases the number of variables and constraints in

the LMI problem without reducing anyhow the con-

servatism of the approach. But as demonstrated in

(Peaucelle and Gouaisbaut, 2005) and many others,

such additional ’slack variables’ are of major interest

for robust analysis purpose.

Assume that the system matrices are not precisely

known but belong to a given convex set of finitely

many vertices (also called polytope of matrices). The

set of possible values of the matrices may be parame-

terized using barycentric coordinates as:

[

A(λ) Ad(λ)
]

=
N
∑

i=1

λi

[

A[i] A
[i]
d

]

(6)

where λi ≥ 0 are positive and their sum is one:
∑N

i=1 λi = 1. The matrices with subscripts [i] are

called the vertices. Based on the result of Theorem

1, proving robust asymptotic stability for the resulting

uncertain system can be achieved by finding parameter

dependent matrices P (λ), Q(λ) and R(λ) such that

(2) holds for all admissible values of λ. This may

not be done in general due to the infinite number of

admissible values for λ, but two relaxations may be

stated.

Theorem 2. The uncertain system combining (1) and

(6) is robustly asymptotically stable if any of the

following LMI conditions hold

(i) There exist P > 0, Q > 0, R > 0 unique over

all uncertainties such that the LMI (2) holds for

all N vertices.

(ii) There exist polytopic matrices

P (λ) =

N
∑

i=1

λiP
[i]

Q(λ) =

N
∑

i=1

λiQ
[i] , R(λ) =

N
∑

i=1

λiR
[i]

with positive definite vertices (P [i] > 0,...) and a

unique F such that the LMIs

M[i] + FB[i] + B[i]T FT < 0

hold for all N vertices.

Moreover, condition (ii) is allways satified if (i) holds.

The proof is omitted for space limitation reasons and

because it is now classical in the robust analysis con-

text. The purpose of Theorem 2 is to illustrate that

all results of the present paper can be easily extended

to the robust analysis of polytopic uncertain systems.

Moreover, the extensions correspond to two major ap-

proaches of robust control theory: (i) corresponds to

the quadratic stability framework in which the matri-

ces defining the Lyapunov functional are unique over

all uncertainties; (ii) corresponds to the slack variables

framework that first allowed to search for polytopic

parameter-dependent Lyapunov functionals. See for

example (Peaucelle et al., 2000) for details on this

subject.

In the following, robustness issues will no longer be

detailed, but similar results may be easily derived.

3. A FIRST STEP TO A DISCRETIZATION

SCHEME

To our knowledge the result of Theorem 1 is a new for-

mulation of existing equivalent results. The detailed

comparison is left for a specific paper (Gouaisbaut and

Peaucelle, 2006). Here, we aim at developing further

the methodology used in the previous section to derive

less conservative results.

The key idea is that since Theorem 1 proves asymp-

totic stability for all delays 0 ≤ h ≤ hm, then this

property should also hold for hm/2. Introducing the

half delay into the system should improve the knowl-

edge on the system and hence the results.

Theorem 3. System (1) is asymptotically stable for

any delay h such that 0 ≤ h ≤ hm if there exists

P2 > 0, Q21 ≥ 0, Q22 > 0, R21 ≥ 0, R22 > 0 ∈
❘

2n×2n satisfying the following LMI :

B⊥T
2 M2(hm)B⊥

2 < 0 (7)

where B⊥
2 is an orthogonal complement of :

B2 =













1 12 ⊗ A 0 12 ⊗ Ad 0 0

0 −1 1 0 1 0

0 −1 0 1 0 1

0

[

0 1

0 0

] [

−1 0

0 1

] [

0 0

−1 0

]

0 0















and M2(h) =










h

2
R21 + hR22 P2 0 0

P2 Q21 + Q22 0 0

0 0 −Q2 0

0 0 0 −R2











with

Q2 = diag(Q21, Q22) , R2 = diag(
2

h
R21,

1

h
R22) .

Proof : Consider system (1). It may as well be written

for any θ such that 0 ≤ θ ≤ h as follows
{

ẋ(t + θ) = Ax(t + θ) + Adx(t + θ − h) ∀t ≥ 0
x(t + θ) = σφ(t + θ) ∀t ∈ [−h, 0]

(8)

where σφ is the solution to (1). Choose θ = h
2 and

consider the artificially augmented system:
{

ẋ(t +
h

2
) = Ax(t +

h

2
) + Adx(t −

h

2
)

ẋ(t) = Ax(t) + Adx(t − h)
(9)

with accordingly defined initial conditions. Introduc-

ing the augmented instantaneous state

x2(t) =

(

x(t +
h

2
)

x(t)

)

the differential equations (9) write as:

ẋ2(t) = (12 ⊗ A)x2(t) + 0x2(t −
h

2
)

+(12 ⊗ Ad)x2(t − h)
. (10)

Define the extended variable

ζ2 =























ẋ2(t)
x2(t)

x2(t −
h

2
)

x2(t − h)

x2(t) − x2(t −
h

2
)

x2(t) − x2(t − h)























.

Taking into account all interactions between the ele-

ments of ζ2, the system (9) can be modeled as con-

strained to the null space of B2, that is B2ζ2(t) = 0.

We now consider the following Lyapunov-Krasovskii

functional:

V2(x2t) = xT
2 (t)P2x2(t)

+

2
∑

i=1

t
∫

t− ih

2

xT
2 (θ)Q2ix2(θ)dθ

+

2
∑

i=1

t
∫

t− ih

2

t
∫

s

ẋT
2 (θ)R2iẋ2(θ)dθds

(11)

Using the same idea developed in the proof of Theo-

rem 1, we get that the derivative of (11) is such that:

V̇ (x2t) ≤ ζT
2 M2ζ2

Using Finsler lemma, and similar arguments as in the

proof of Theorem 1, conditions (7) imply that system

(9) is asymptotically stable. For any initial conditions,

the whole state x2t converges asymptotically to zero.

Its components xt converge as well. The initial system

(1) is asymptotically stable. �

For deriving the result of Theorem 3 we have taken

advantage of the implicit model transformation (Gu et

al., 2003, page 165) that extends the information on

the state xt to an interval of width 2h. The functional

(11) can therefore be seen as a new Lyapunov func-

tional for (1) with an implicitly augmented informa-

tion on the state.

At the expense of increasing the number of decision

variables and constraints, Theorem 3 gives a new

conservative result for the same problem as Theorem

1. More precisely the number of decision variables

has been increased from 3
2n(n + 1) in Theorem 1 to

5n(2n + 1) in Theorem 3. This should go along with

a reduction of the conservatism to be acceptable and

indeed we get the following result.

Proposition 1. Let hm the maximum allowed solution

of the problem (2), then hm is also a solution of (7).

Proof : Let hm and P,Q,R solution of problem (2),

and define

P2 =

[

P 0

0 P

]

, Q22 =

[

Q 0

0 Q

]

, R22 =

[

R 0

0 R

]

Q21 = 0 , R21 = 0 .

Take the right orthogonal of B2 such as

B⊥

2 =









12 ⊗ AT
1

[

0 0

1 0

]

0

[

1 0

− 1 1

]

1

12 ⊗ AT
d 0

[

0 1

0 0

]

1

[

0 −1

0 0

]

−1









T

.

It appears that inequality (7) is nothing but (2) re-

peated twice on the diagonal. �

4. THE GENERAL CASE

In the previous section a new result, less conservative

than the first one, is obtained by means of augmen-

tation of the state variables introducing a half delay.

This methodology is now generalized by discretizing

r times the interval [−h 0].

Given a strictly positive integer r, we introduce the

followings reals:
{

h0 = 0

hi =
ih

r
∀i ∈ {1, . . . , r}

(12)

where h is the delay of system (1). We have the

following property :
{

hr = h
hi+j = hi + hj , ∀(i, j) ∈ {1, . . . , r}

(13)



Using equation (8) with θ = {h0 . . . hr−1}, original

system (1) is equivalent to :

ẋr(t) =

r
∑

i=0

Adixr(t − hi)

with the augmented state:

xr(t) =











x(t + hr1
)

...

x(t + h1)
x(t + h0)











∈ ❘
nr

and the augmented system matrices,

Ad0 = 1r ⊗ A , Adr = 1r ⊗ Ad ,
Adi = 0nr, ∀i ∈ {1, . . . r − 1} .

With these notations the next Theorem exposes the

generalization of Theorem 3 to the case of 1/r dis-

cretization of the delay.

Theorem 4. Let any positive integer r. System (1) is

asymptotically stable for any delay h such that 0 ≤
h ≤ hmr if there exists Pr > 0, Qri > 0, Rri >
0,∀i ∈ {1, . . . , r} ∈ ❘

rn×rn satisfying the following

LMI :

B⊥T
r Mr(hm)B⊥

r < 0 (14)

where B⊥
r is the orthogonal complement of Br =

































1 −Ad0 −Ad1 −Ad2 . . . −Adr 0 0 . . . 0

0 −1 1 0 . . . 0 1 0 . . . 0

0 −1 0 1 . . . 0 0 1 . . . 0

...
...

... 0
. . . 0

... 0
. . . 0

0 −1 0 0 . . . 1 0 0 . . . 1

0 Er1 −Er2 0 . . . . . . . . . . . . . . . 0

0 0 Er1 −Er2 0 . . . . . . . . . . . . 0

...
... 0

. . .
. . . 0 . . . . . . . . .

...

0 0 0 0 Er1 −Er2 0 0 0 0

































(15)

where

Er1 =
[

0(r−1)n,n 1(r−1)n

]

Er2 =
[

1(r−1)n 0(r−1)n,n

]

,

Mr(h) =



















r
∑

i=1

hiRri Pr 0 0

Pr

r
∑

i=1

Qri 0 0

0 0 −Qr 0

0 0 0 −Rr



















(16)

and
Qr = diag(Qr1, . . . , Qrr)

Rr = diag(
1

h1
Rr1, . . . ,

1

hr

Rrr)

The proof follows the same lines as the proof of The-

orem 3 and is therefore omitted for reasons of space

limitation. For the same reasons the next Proposition

is not proved. As for Proposition 1, it follows from

the fact that a thinner discretization of the interval

[−hm 0] reduces the conservatism as long as it in-

cludes the discretization to be compared.

Proposition 2. Let r2 be a multiple of r1 (i.e. r2 =
kr1 for some integer k) and let hmr1

be the maximum

allowed solution of the problem (14) when r = r1,

then hmr1
≤ hmr2

where hmr2
is the maximal allow-

able solution of (14) for r = r2.

This proposition shows that the conservative relax-

ations of the time-delay analysis problem have con-

verging properties when taking thinner discretizations.

This improvement goes along with the augmentation

of the numerical complexity. For the relaxation of

order r the number of decision variables is 1
2 (1 +

2r)rn(rn+1) and LMI constraint (14) is of dimension

2rn × 2rn.

Remark 2. Theorem 4 is formulated using matrices

Adi all set to zero for i = {1 . . . r − 1}. These

correspond to fictive influence of the dicretized delay

on the system dynamics. A by product of this result is

that using the same methodology it is possible to solve

stability analysis of systems with multiple delays as

long as the delays can be written as subdivisions of

the largest one.

5. EXAMPLES

Example 3. Consider the time delay system (1) with

A =

[

−2 0
0 −0.9

]

, Ad =

[

−1 0
−1 −1

]

For this academic example many results were obtained

in the literature. Table 1 summarizes these and com-

pares them to the new results presented in the paper.

hmax is the maximal allowable delay proved by each

method and nb vars. indicates the number of variables

of the associated LMI problem. In all methods hmax

is obtained by a line search.

Table 1. Results for Example 3

Methods hmax nb vars.

(Li and De Souza, 1997) 0.8571 9 non LMI

(Niculescu et al., 1995) 0.99 11

(Moon et al., 2001) 4.3588 16

(Han, 2002) 4.4721 9 or 18

(Fridman, 2002) 4.47 27

(Xu and Lam, 2005) 4.4721 17

(Suplin et al., 2004) 4.4721 38

Theorem 1 4.4721 9

Theorem 3 5.71 50

Theorem 4 r=3 5.91 147

Theorem 4 r=4 6.03 324

Theorem 4 r=5 6.09 605

Theoretical bound 6.17 ∞

Remark 4. The numerical experiments of Table 1

show that Theorem 1 gives similar results to papers



using descriptor system approach and bounding tech-

niques from (Lee et al., 2004) and (Moon et al., 2001).

Investigations to link all these results are developped

in (Gouaisbaut and Peaucelle, 2006).

Example 5. Again an academic example is chosen for

comparison with existing results. It corresponds to an

uncertain time delay system with two vertices

A[1] =

[

0 −0.54
1 −0.43

]

, A[2] =

[

0 0.3
1 −0.5

]

A
[1,2]
d =

[

−0.1 −0.35
0 0.3

] (17)

The robust versions of our results using methodology

(ii) of Theorem 2 are applied and compared to existing

results in Table 2.

Table 2. Results for Example 5

Methods hmax

(Fridman and Shaked, 2002b) 0.782

(Suplin et al., 2004) 0.863

Theorem 1 0.896

Theorem 3 0.897
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