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The aim of this paper is to compare several plastic yield criteria to show their relevance on the prediction of springback behavior for a AA5754-0 

aluminum alloy. An experimental test similar to the Demeri Benchmark Test [Demeri MY, Lou M, Saran MJ. A benchmark test for springback simulation 

in sheet metal forming. In: Society of Automotive Engineers, Inc., vol. 01-2657, 2000] has been developed. This test consists in cutting a ring specimen 

from a full drawn cup, the ring being then split longitudinally along a radial plan. The difference between the ring diameters, before and after splitting, 

gives a direct measure of the springback phenomenon, and indirectly, of the amount of residual stresses in the cup. The whole deep drawing process of a 

semi-blank and numerical splitting of the ring are performed using the finite element code Abaqus. Several material models are analyzed, all considering 

isotropic and kinematic hardening combined with one of the following plasticity criteria: von Mises, Hill’48 and Barlat’91. This last yield criterion has 

been implemented in Abaqus. Main observed data are force–displacement curves during forming, cup thickness according to material orientations and 

ring gap after splitting. The stress distributions in the cup, at the end of the drawing stage, and in the ring, after springback, are analyzed and some 

explanations concerning their influence on springback mechanisms are given.

1. Introduction

Aluminum alloys are increasingly used in the automotive

industry, with an average increase of 6% per year, due to

environmental norms concerning the decrease of carbon

dioxide releases. Thus, automotive industries, as well as tool

makers, have to work with these types of material. As the

mechanical design of parts and tools is almost entirely based on

finite element simulation, there is a need for specific constitutive

laws, specially concerning the initial anisotropy. Moreover,

springback prediction presents a higher impact on tool design,

since the yield stress over Young’s modulus ratio is smaller than

for steel.

In the field of metal forming at room temperature such as deep

drawing or hemming, finite element simulation is nowadays

widely used to design parts and tools with dedicated codes like

PamStamp or Autoform. But, here there seems to be a gap

between knowledge found in the scientific literature concerning

the development of constitutive laws for aluminum alloys and

day-to-day use in finite element codes. This gap comes essentially

from the difficulty to identify material parameters with increasing

complex models.

Springback prediction is also an urgent demand from tool

makers, in order to avoid too many experimental trial steps before

achieving the correct final shape of the part. It is now well

established that modeling the behavior of metals during loading

and reverse loading improves springback predictions. Kinematic

hardening is then introduced in most industrial finite element

codes, though its use is highly dependent on parameter identifica-

tion (e.g. [2,3]).

For the numerical simulation of sheet metal forming processes,

appropriate hardening model and plastic yield criterion that

properly describe material behavior at large strain is needed. An

accurate description of the mechanical behavior is very important,

especially for springback analysis. Over the years, a lot of yield

functions have been introduced to describe the initial plastic

anisotropy of sheet metals, e.g. a review of the anisotropic yield

criteria can be found in [4]. The main difficulty is to take into

account both the different stress levels at different orientations to

the RD (rolling direction) and also the anisotropy coefficients ra.

The most commonly used yield criterion is still Hill’s anisotropic

quadratic yield function (Hill’48). But, the Hill’48 criterion is often
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criticized for its application to metals with low r-values such as

aluminum alloys (e.g. [5–9]). Another widely used yield function

is the Barlat’91 yield criterion [10], which is a six-component yield

function involving a linear transformation of the stress state

(recently extended in [9,11]). In general, with this yield criterion,

there was a satisfactory correlation with the experimental data

(e.g. [7,12,13]).

In the recent years, several experimental tests have been

developed for springback characterization, like draw-bend

and flanging tests [14]. However, while those tests are preferred

in understanding certain aspects of springback, they are not

truly deep drawing operations as is usually seen in industrial

stamping operations. In the last few years, one test has

received an increasing amount of attention: the split-ring test,

following Demeri test procedure [1]. This test provides a simple

effective benchmark for correlative forming and springback

predictive capabilities with experimental measures [14–20]. The

experimental procedure consists in the deep drawing of a

cylindrical cup, the cutting of a ring in the mid-section of

the cup and then a splitting of the ring to let it open up. The

splitting operation relieves the internal stresses and creates

a large springback; therefore, the ring opening can reach

high values, which reduces the experimental gap. Residual

stresses in the cup exist because different locations in the cup

have accumulated different magnitudes of plastic strain

during draw-bend-unbend process. The through-thickness resi-

dual stresses predicted at the end of the forming process are

responsible for the bending momentum that changes the shape of

the split ring.

The aim of this paper is to investigate the capability of different

yield criteria, with both isotropic and mixed hardening, to

represent the behavior of an aluminum alloy during a forming

process and springback evolution using the split-ring test. To test

the accuracy of these constitutive models, finite element simula-

tions were carried out using Abaqus [21] and compared with well-

established experimental results. All simulations were performed

with a fixed set of numerical parameters in order to mainly

investigate the influence of the constitutive model on springback

prediction.

2. Constitutive equations

To achieve objectivity in large deformation continuum me-

chanics, the co-rotational moving frame [22–24] has been chosen

to formulate the constitutive equations. This local objective frame

is defined such as the local spin tensor is equal to zero which leads

to the definition of the rotation matrix Q from the sample frame

to the co-rotational frame:

_Q ¼ �QX and Q ðt¼0Þ ¼ 0 (1)

with X the spin tensor.

Stress and strain tensors are expressed in this co-rotational

frame and the splitting of the deformation in elastic e
e and

(visco)plastic evp parts is assumed:

e ¼ e
e þ e

vp (2)

Rates are defined by the Jaumann derivative, which correspond to

the derivative in the co-rotational frame.

Elasticity is assumed isotropic:

r ¼ Ce
: e

e (3)

where r defines the co-rotated Cauchy stress tensor, Ce the

elastic modulus tensor, which depends on Lamé’s coefficients l

and m.

2.1. Yield criterion description

In the following, vectors ~1, ~2 and ~3 are co-linear, respectively,

to the tensile direction (RD), the transverse direction (TD) and the

normal direction (ND) to the sheet plane.

The yield surface is defined by fðr;R;XÞ ¼ 0 which depends on

the Cauchy stress tensor r, a scalar internal variable R which

represents isotropic hardening and a tensorial internal variable X

for the kinematic hardening. Introducing the equivalent stress s̄,
this yield surface can also be defined by

fðr;R;XÞ ¼ s̄ðr;XÞ � R ¼ 0 (4)

Elasticity is defined within the condition fo0, and there is:

� yield, when f ¼ 0 and qf=qr : _r40

� or elastic unloading, if f ¼ 0 and qf=qr : _rp0.

Within the general framework of non-associated plasticity, the

generalized normality rule gives the strain rate tensor Dp:

Dp ¼ _w
qf

qr
or Dp ¼ _w

qf

qr0
(5)

where _w is a scalar and r
0 the deviatoric stress tensor.

In this study, different yield criteria and hardening laws are

tested in order to check their influence on the prediction of deep

drawing and springback:

(1) von Mises yield criterion with isotropic strain hardening

referred to as vonMises,

(2) von Mises yield criterion with combined isotropic hardening,

kinematic hardening and viscous part, referred to as

vonMisesþ KH,

(3) Hill’48 yield function with isotropic hardening or with

combined isotropic and kinematic hardening and viscous

part, referred to as Hill48� evp and Hill48� evpþ KH,

respectively,

(4) and finally, Barlat’91 yield criterion with isotropic hardening

or with combined isotropic and kinematic hardening and

viscous part, referred to as Barlat91 and Barlat91þ KH,

respectively.

The vonMises yield function is directly used in Abaqus standard

code with an elastoplastic approach. The vonMisesþ KH, Hill48�

evp and Barlat91 (with or without kinematic hardening (KH))

models are implemented via a user’s material [25] Abaqus

subroutine (Umat) within an elasto-viscoplastic framework. These

models are detailed in the next paragraph.

2.1.1. Hill’48 yield function

The quadratic yield function proposed by Hill [26] is a widely

used anisotropic yield function. It is also known as Hill’48 to

distinguish it from later models. In this yield function three

orthogonal planes of symmetry are presumed, leading to three

principal axes of anisotropy. Using the effective stress tensor

r
X ¼ r� X, the Hill yield function can be written as

f ¼ HðsX
11 � sX

22Þ
2 þ GðsX

11 � sX
33Þ

2 þ FðsX
33 � sX

22Þ
2 þ 2NsX

12

2

þ 2MsX
13

2
þ 2LsX

23

2
¼ s̄2 (6)

with the subscripts 1, 2 and 3 referring to the principal axes of

orthotropy.

F, G, H, L, M and N are the six material parameters that depend

on the flow stress under uniaxial and shear loading in the

principal directions, respectively. This criterion implicitly assumes

that hydrostatic stress states do not lead to plastic yielding.
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2.1.2. Barlat’91 yield criterion

The Barlat’91 yield criterion [10] is derived from the one

proposed by Hershey [27] and Hosford [28]. This criterion was

developed for anisotropic materials and gives a good representa-

tion of yield surfaces calculated with polycrystalline models when

the parameter mb ¼ 6 and 8 for BCC and FCC materials,

respectively. It is also interesting to note that this function

reduces to the von Mises criterion for mb ¼ 2 and 4 and to the

Tresca criterion formb ¼ 1 and1. The Barlat’91 yield function f is

given by

f ¼ jS1 � S2j
mb þ jS2 � S3j

mb þ jS3 � S1j
mb ¼ 2s̄mb (7)

where Si¼1;2;3 are the eigenvalues of the deviatoric tensor S

obtained by a linear transformation of the effective stress tensor:

S11 ¼ 1
3 cbðs

X
11 � sX

22Þ � bbðs
X
33 � sX

11Þ
� �

S22 ¼ 1
3 abðs

X
22 � sX

33Þ � cbðs
X
11 � sX

22Þ
� �

S33 ¼ 1
3 bbðs

X
33 � sX

11Þ � abðs
X
22 � sX

33Þ
� �

S23 ¼ f bs
X
23

S31 ¼ gbs
X
31

S12 ¼ hbs
X
12 (8)

ab, bb, cb, f b, gb, hb, mb are the material parameters which define

the shape of the yield surface. Following the work of [29], the

eigenvalues of S are expressed with complex numbers, depending

on the coefficients of the characteristic equation of S:

l3 � 3I2l� 2I3 ¼ 0 (9)

where �3I2 and 2I3 are the second and third principal invariants

of S, respectively.

Calculation of the viscoplastic strain increment requires the

knowledge of the gradient of f with respect to the stress tensor

(5). Calculations of these components are given in [29] and will

not be detailed here.

The choice has been made to impose that the initial equivalent

stress is equal to the initial elastic limit in RD, whatever the

anisotropy coefficients. Writing such a condition in the case of a

uniaxial stress state leads to another equation between coeffi-

cients bb and cb such as

1

2

1

3mb
ðj2cb þ bbj

mb þ jbb � cbj
mb þ j � 2bb � cbj

mb Þ

� �

� 1 ¼ 0 (10)

For a given bb value, cb is calculated from this non-linear equation,

solved by using a Newton–Raphson algorithm.

2.1.3. Elasto-viscoplastic behavior

For simplicity’s sake, a viscoplastic potential is used to

determine directly the viscoplastic multiplier _l:

_l ¼
s̄� R

K

� �N

(11)

where N, K are material parameters.

In the case of an isotropic evolution of the yield surface, a

Hocket–Sherby form law has been chosen to describe the work

hardening:

R ¼ ssat � ðssat � s0Þ expð�CRð�̄vpÞnÞ (12)

where �̄vp is the equivalent viscoplastic strain, s0 is the initial

elastic limit in RD, ðssat � s0Þ is the isotropic hardening range and

CR the saturation rate. It should be noted that Eq. (12) leads to a

Voce type evolution when n ¼ 1.

The evolution of the back-stress tensor X is described

with the Armstrong–Frederick law [30] and with a Prager

type contribution, to fully capture both the rapid evolution

of the back-stress just after reloading and its evolution for

larger strains:

X ¼ 2
3ðCX aþ HX e

vpÞ (13)

with

_a ¼ _e
vp

� BX
_̄�
vp
a (14)

where CX=BX determines the intensity of the non-linear kinematic

work hardening and HX is the slope of the linear part of the

kinematic hardening.

The internal variable a is associated to X and �̄vp is the

cumulated viscoplastic strain defined by

�̄vp ¼

Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3
Dp

: Dp

r

dt (15)

3. Material and mechanical characterizations

The studied material is a 5000 series Al–Mg alloy, AA5754-0. It

is often used in the automotive industry for inner body panels.

Cold-rolled sheets are 1mm thick. Their typical composition is

given in Table 1.

To test the sheet samples under different stress and strain

paths, mechanical testings are performed through uniaxial tensile

tests and monotonic and cyclic shear tests (i.e. Bauschinger shear

tests). Local strains are measured using either a longitudinal

extensometer in the case of uniaxial tension or a high resolution

video camera [31]. In this case, three dots are drawn over the

sample surface; the 2D strain tensor is derived from the evolution

of the scalar product of two vectors built from these dots.

Therefore, all components of the planar strain tensor are recorded

during the test. The resolution is 5� 10�3, to be compared to the

resolution of the extensometer of 5� 10�5. Though the resolution

of the optical device is lower, it gives additional information such

as transverse strain in uniaxial tension and a local strain

measurement in shear. Five tests are performed to check the

reproducibility of the results and one is chosen as representative

of the behavior.

Table 1

Composition in weight % of aluminum AA5754-0.

Cu Mn Mg Si Fe Cr Al

p0:10 p0:500 2.60–3.60 p0:400 p0:400 p0:300 93.6–97.3
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Fig. 1. Uniaxial tensile test at 0� , 45� and 90� to RD.
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3.1. Tensile tests

Rectangular samples of 20� 180� 1mm3 are cut at several

orientations to RD (0�, 45� and 90�). The samples are then

machined along the longitudinal dimension to remove the

hardened zone. Logarithmic strain and Cauchy stress are used to

plot stress–strain data. The strain rate is of _� ¼ 10�3 s�1. The

results obtained in the three orientations to RD are very similar

(Fig. 1).

The discontinuous effect, observed in Fig. 1, is related to a

dynamic ageing of the alloy, due to interaction between

mobile dislocations and magnesium atoms in solid solution in a

given temperature/strain rate range [32]. Plasticity is localized in

bands which propagate during straining (Portevin–Le Châtelier

effect).

As can be observed in Fig. 1, this material exhibits rather

similar stress levels whatever the orientation to RD. Plastic strain

ratios ra ¼ d�pyy=d�
p
zz are calculated from the volume conservation

in the plastic domain and are plotted in Fig. 2. In this case, ~x

corresponds to the tensile direction, ~y the in-plane perpendicular

direction of the plane and ~z the through-thickness direction.

Table 2 gives the mechanical properties determined from

tensile tests. Young’s modulus is slightly dependent on the

orientation, its average value is 74 430MPa and Poisson’s ratio is

fixed at 0.33, which is a typical value for FCC materials. The mean

anisotropy coefficient, which characterizes the normal anisotropy,

is given by rmedium ¼ ðr0 þ r90 þ 2 r45Þ=4 ¼ 0:68. This value is

significant and therefore the normal anisotropy is important.

The planar anisotropy, characterized by Dr ¼ ðr0 þ r90 � 2 r45Þ=2 ¼

0:14 is also significant.

Another cross-view through the experimental results is given

in Fig. 3. Here, on a uniaxial tensile test, for a specimen at 90� to

RD, the influence of the strain rate is investigated. First, a strain

rate of _� ¼ 10�4 s�1 is used up to a strain of 0.04, followed by a

relaxation during 240 s, then a strain rate of _� ¼ 10�3 s�1 up to

0.08, followed also by a relaxation during 240 s, thirdly a strain

rate of _� ¼ 10�2 s�1 up to 0.12, and finally a strain rate of
_� ¼ 10�3 s�1. At room temperature, it can be seen that the

material behavior is not affected by the strain rate changes.

3.2. Shear tests

A shear device developed for metallic sheets is used [31,33].

Samples are rectangular and the dimensions of the gauge area are

4:5� 50� 1mm (Fig. 4). In the case of thin sheets and for a gauge

length over width ratio higher than 10, the strain is rather

homogeneous in the central zone [34]. The local strain tensor is

measured in the middle of the sample and the shear strain g is

calculated from the components of the strain tensor. Strain

reversal is achieved by moving the mobile grip in the opposite

direction. The strain rate is fixed to _g ¼ 2� 10�3 s�1. Monotonic

uniaxial shear tests are carried out at several orientations to RD:

0�, 45� and 90� (Fig. 5) whereas Bauschinger shear tests are

performed only in RD (Fig. 6).

4. Identification of material parameters

Inverse parameter identification is performed with the dedi-

cated tool SiDoLo [35,36]. The experimental database is composed

of tensile tests at 0�, 45� and 90� to RD including both

stress–strain curves and evolution of the plastic transverse strain

vs the plastic width strain. It also includes shear tests at three

different orientations to RD including monotonic tests as well as

Bauschinger test after a shear pre-strain of 0.1, 0.2 and 0.3 in RD.

Therefore, the database consists of tests with two observable

variables, namely stress and strain components. A different

weighting coefficient is affected for each of these observable

variables, the value of which is chosen according to the

uncertainty on the experimental measures. For the shear stress,

the value of the weighting coefficient is Dsxy ¼ 3MPa and for the

tensile tests, Dsxx ¼ 5MPa and D�xx ¼ 0:005 [8,36,37].

During identification, Young’s modulus and Poisson’s ratio are

fixed to E ¼ 74620MPa and n ¼ 0:33, respectively. Fig. 3 shows

the weak influence of the strain rate so that the viscous

parameters are fixed to K ¼ 4MPa s1=N and N ¼ 5, which leads

to a viscous contribution lower than 1MPa. For all yield criteria,

the initial equivalent stress is equal to the initial elastic limit in

the RD, whatever the anisotropy coefficients. Thus, for the Hill48�

evp yield criterion, parameters G and H verify Gþ H ¼ 1;

parameters L and M are also fixed at 1:5. For the Barlat91 yield

criterion, the relationship between bb and cb given by Eq. (10) is

imposed; parameters f b ¼ gb ¼ 1 and mb ¼ 8 are fixed.

Table 2

Yield stress and Hill plastic strain ratios at several orientations to RD.

Orientation/RD 0� 45� 90�

E (MPa) 74620 75050 73620

Rp0:2 (MPa) 107.6 105.5 107.0

ra 0.82 0.61 0.68

relaxation time of 240s
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Fig. 3. Strain rate influence on uniaxial tensile test at 90� to RD.
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Material parameters are given in Tables 3–5 for the different

yield criteria. The label ‘‘þKH’’ is added if the kinematic hardening

is also taken into account in the constitutive modeling. Identified

curves show good agreement on anisotropy for tensile and shear

test simulations. The identification results for all criteria are very

similar and only the results for the Barlat91 criterion with or

without kinematic hardening (Figs. 7 and 8, respectively) are

presented. These figures show that the material exhibits only a

weak kinematic contribution to the hardening. Taking into

account this contribution mainly influences the behavior upon

reloading. Whatever the yield criterion, the kinematic contribu-

tion, described with a saturation Voce type equation and a linear

term, evolves very rapidly with equivalent plastic strain to the

saturation value. This rapid evolution at the onset of plastic

yielding influences significantly the initial yield stress.

4 7

0

1
3

2

5

10

Fig. 4. Experimental device for the shear test: (a) schematic view of the device, (b) grips system (in red) with specimen (in blue). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Monotonic shear test results at 0� , 45� and 90� to RD.
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Table 3

Material parameters corresponding to vonMises and vonMisesþ KH yield criteria

and error function value at the end of the inverse analysis procedure.

Isotropic hardening Mixed hardening

s0 ¼ 87:3MPa s0 ¼ 51:3MPa CX ¼ 9997:5MPa

ssat ¼ 264:6MPa ssat ¼ 197:3MPa BX ¼ 150:4

CR ¼ 14:9 CR ¼ 11:23 HX ¼ 99:9MPa

n ¼ 0:980 n ¼ 1

error ¼ 533:8 error ¼ 280:9

Table 4

Material parameters corresponding to Hill48� evp and Hill48� evpþ KH yield

criteria and error function value at the end of the inverse analysis procedure.

Isotropic hardening Mixed hardening

s0 ¼ 88:6MPa s0 ¼ 55:3MPa CX ¼ 9692:8MPa

ssat ¼ 269:3MPa ssat ¼ 208:7MPa BX ¼ 156:0

CR ¼ 14:9 CR ¼ 11:3 HX ¼ 99:4MPa

n ¼ 0:969 n ¼ 1

Hill’48 parameters

F ¼ 0:6979 F ¼ 0:9660

G ¼ 0:5511 G ¼ 0:5943

H ¼ 0:4489 H ¼ 0:4057

N ¼ 1:5445 N ¼ 1:6701

error ¼ 412:2 error ¼ 146:2
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Projections of the yield surfaces in the plane syy � sxx are

plotted in Fig. 9 by using quantities normalized by the initial yield

stress in RD. The yield stress under balanced biaxial stress

conditions was not determined experimentally, leading to the

shape of the yield surface uncertain in this region of the stress

space. The parameter identification results could be improved by

means of experimental data concerning this equibiaxial stress

state [37–41].

The identification procedure is based on the minimization of a

error function with a gradient type algorithm. This function is

defined in the least square sense. The error function value at the

end of the inverse analysis procedure is also presented in Tables

3–5. These values are function of initial parameters and give an

information on the best yield criteria parameters for a given

hardening law (i.e. isotropic hardening or kinematic hardening).

Taking into account the kinematic hardening reduces these errors.

These results also show that the Barlat91 criterionwith or without

kinematic hardening leads to the lowest values of the error

function.

A comparison between different yield criteria when taking

anisotropy coefficient into account is presented in Figs. 10 and 11,

for r0 and r90, respectively. As whole, there is a good description of

the experimental results. The material behavior presents a weak

Table 5

Material parameters corresponding to Barlat91 and Barlat91þ KH yield criteria

and error function value at the end of the inverse analysis procedure.

Isotropic hardening Mixed hardening

s0 ¼ 91:7MPa s0 ¼ 55:4MPa CX ¼ 9348:2MPa

ssat ¼ 276:7MPa ssat ¼ 209:9MPa BX ¼ 141:6

CR ¼ 14:3 CR ¼ 10:9 HX ¼ 86:6MPa

n ¼ 0:983 n ¼ 0:999

Barlat’91 parameters

ab ¼ 1:1136 ab ¼ 1:2853

bb ¼ 1:0362 bb ¼ 1:1002

cb ¼ 0:9627 cb ¼ 0:8913

hb ¼ 0:9961 hb ¼ 0:9977

error ¼ 367:4 error ¼ 132:5
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dependence on the orientations to RD for the stress level but a

significant one regarding the r-ratios values. For this reason, the

modeling of the stress–strain curves in tensile and shear tests can

be well predicted by the von Mises criterion, but the modeling of

strain effects (such as thickness variation) needs the use of a more

complex criterion.

5. Experimental procedure

5.1. Deep drawing test

An experimental device has been used to draw cylinder

cups; the dimensions of the tools and the blank are defined in

Fig. 12 [6]. A blankholder adjusted on the punch diameter and

allowing for force control has been developed for this study. The

blankholder force is maintained by eight screws with Belleville

washers stacked both parallel and in series. Force washers are also

used to control the blankholder pressure during all the drawing

stages.

Experiments are carried out at room temperature on a tensile

test machine Instron 8803 of 500 kN maximum load capacity.

The blankholder force imposed is 24kN and the drawing

speed is 0:5mms�1. Blanks are lubricated on both sides at the

beginning of the process (Yushrio Former FD-1500) and cups are

drawn down to a punch displacement of 60mm. At the end of

forming, outer diameter of the cups is 104.5mm and the height is

around 46mm. Experimental curves are representative of

the average values of three tests. The experimental force–

displacement curves of the punch are presented in Fig. 13.

Maximum force obtained during forming is near 54kN with a

maximum error of 7%.

The thickness distributions in the cup wall, measured using a

3D measuring machine at 0�, 45� and 90� to RD, are presented in

Fig. 14. The presented results are selected among all experimental

results to be representative of the thickness distribution. All

directions present a thinning in the cup’s bottom, which comes

from the stretching of the sheet at the beginning of the drawing.

Conversely, thickening occurs in the cup’s top due to a

circumferential compression stress state under the blankholder.

The thickness distributions at 45� and 90� are similar, but

different from the one in RD. The cups were measured at a

number of points along their height giving the wall inner and

outer profiles (Fig. 15). This shape is due to the gap between the

die and the punch which produces a stretching and curvature of

the blank.

5.2. Split-ring test

Rings from the formed cups are cut by machining at 15mm from

the cup bottom. The rings are 20mm high and have an ideal internal
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diameter of 100mm before splitting (Fig. 16). The rings are then split

along the axial direction in RD to allow for opening up and

springback, as shown in Fig. 17. The amount of change in the ring’s

diameter is a measure of the residual stresses released and,

consequently, of springback. Experimental springback data consist

of ring gap G measured along straight lines connecting the two ends

of the split rings using a 3D measuring machine. The experimental

value of G ¼ 64mm is average value obtained after six tests (the

lowest value is 60mm and the greatest 64.5mm). It has to be

noticed that due to the non-homogeneity of through-thickness stress

distribution, the rings are no longer cylindrical after springback.

6. Numerical results

To test the influence of the constitutive models, simulations of

the forming, ring trimming and springback after splitting are

performed using Abaqus and compared with the above-presented

experimental results. The Hill48� evp, Barlat91 yield criteria,

with or without kinematic hardening, are implemented via the

User Interface Material Umat, whereas Abaqus Standard is used for

the vonMises criterion.

The geometry of the blank and the tools is axisymmetric.

However, due to the operation of ring cutting, an axisymmetric 2D

analysis cannot be performed. A 3D analysis, with 8-node finite

elements with linear interpolation, modeling only the deep

drawing of a half blank is achieved. The chosen element is the

C3D8I in which incompatible deformation modes are added as

internal to the degrees of freedom in displacement [21]. This

element is in the field of enhanced assumed strain formulation

which showed its advantages in several applications (i.e. [42–44]).

In all simulations of this paper, the FE mesh is identical and

composed of 6510 elements with three layers in the thickness and

2170 elements in the sheet plane (Fig. 18). The type and the

number of elements and nodes were first optimized in a

parametric study.

The blank is subdivided into three parts at the beginning

of the numerical simulation to allow for ring cutting. A symmetry

boundary condition is defined along the global X-axis; the

global Z-axis is parallel to the punch displacement direction.

Analytical rigid tools are used. The blankholder force is

kept constant at 12kN during the drawing stage and the

blank is drawn down to 60mm. The friction coefficient used

is 0.18.

At the end of deep drawing a first springback is predicted due

to the removal of the drawing tools, by tools displacement. After

this operation, ring cutting is performed by removing useless

parts using the �Model change option in Abaqus [21]. This option

removes parts of the mesh which do not form the ring. Just prior

to the removal step, Abaqus stores the forces/fluxes that the
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Fig. 16. Schematic representation of the ring cut from the deep-drawn cup. (a)

Position of the cut in the wall (b) the ring before splitting with an ideal internal

diameter of D0 ¼ 100mm and (c) the ring after splitting and springback. G is the

measured gap produced in the split ring due to springback.

Fig. 17. From left to right, experimental drawn cup, cut rings and springback after splitting.

Fig. 18. Mesh used during the simulation and region in red corresponding to the

ring. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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region to be removed is exerting on the remaining part

of the model at the nodes on their boundary. These forces

are decreased to zero during the removal step; therefore, the

effect of the removed region on the rest of the model is completely

absent during the end of the computation. The forces are ramped

down gradually to ensure that element removal has a smooth

effect on the model. No further element calculations are

performed for elements being removed, starting from the

beginning of the step in which they are removed. The ring is

finally split by removing a boundary condition of symmetry at one

end of the ring and then springback is calculated by letting the

part relax (Fig. 19).

6.1. Influence of plastic yield criteria on the deep drawing simulation

Figs. 20–27 compare the experimental results with the

numerical simulations with several yield criteria. Numerical

predictions are close to the experimental curves regarding the

drawing process prediction. The punch force–displacement curves

show that experimental and numerical results are in good

agreement for all material models (Figs. 20 and 21). But for all

anisotropy criteria, taking into account of a kinematic contribu-

tion improves the prediction of force evolution during the

process: the maximum punch force is slightly higher with

kinematic hardening but, after a punch displacement of 30mm,

Fig. 19. Example of numerical drawn cup and springback after splitting in using Barlat91 criterion.
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evolution of force during forming process for vonMises, Hill48� evp and Barlat91

criteria without kinematic hardening.
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evolution of force during forming process for vonMisesþ KH, Hill48� evpþ KH
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the punch force evolution is better described with this hardening

law. Moreover, the numerical friction coefficient seems to be

correctly chosen considering the final force stagnation at around

2kN; this stagnation is related to the friction of the top of the cup

on the drawing die. A significant force oscillation can also be

noticed, which is justified by the flow into the die radius zone of

high in-plane size finite elements.

The thickness distributions in RD are shown in Figs. 22 and 23

with or without kinematic hardening, respectively. Predicted

thickness distribution using the Hill48� evp yield criterion is

slightly higher than experimental thickness distribution and than

those obtained with the two other yield criteria. Taking into

account of kinematic hardening (Fig. 23) slightly improves the

quality of the thickness evolution only for Barlat91 criterion.

Simulations using the von Mises model show relatively good

results for the thickness distribution along the RD, whereas

numerical results are not that accurate in the other orientations

(Figs. 24 and 25).

It is important to notice that, before springback, the

cutting operation performed with the element removal option

in Abaqus will not guarantee that all rings will have exactly

the same height. Table 6 presents the ring height obtained

for all the models and the discrepancy to the theoretical

value of 20mm. These results are in agreement with the thick-

ness distributions presented in Figs. 22 and 23 which show

a lower stretching with Hill48-evp criterion. Anyway, ring

height presents a maximum deviation of 5% with this yield

criterion.

Figs. 26 and 27 present the comparison between the experi-

mental wall profile and the predicted one with all yield criteria,

with and without kinematic hardening, respectively. In these

figures, the springback obtained after the removal of the drawing

tools and the positions of the punch and die are shown. There is a

large gap between the punch and the die, thus the top of the wall

has a higher springback. All the criteria give close results but the

numerical wall profile seems to be more vertical. This difference

between numerical and experimental results is mainly induced

during forming stage.
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Fig. 24. Comparison between experimental and numerical results for the
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Fig. 27. Comparison between experimental and numerical results of the wall

profile, for the inner and outer surfaces, at the end of forming process for vonMises,

Hill48� evp and Barlat91 criteria with kinematic hardening.

Table 6

Ring height (in mm) before springback with different yield criteria with or without

kinematic hardening.

Yield criterion Isotropic hardening Isotropic hardeningþ KH

0� 45� 90� 0� 45� 90�

vonMises 19.42 19.42 19.42 19.37 19.37 19.37

Hill48� evp 19.32 19.22 19.24 19.15 19.25 19.19

Barlat91 19.66 19.48 19.41 19.6 19.4 19.26
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6.2. Influence of plastic yield criteria on the springback prediction

Table 7 presents experimental and numerical results for the

ring openings. Springback predictions are relatively different from

experimental values which confirms that springback predictions

in aluminum alloys hardly present good results e.g. [1,20,45].

However, simulation results show that material models and

plastic yield criteria have a large influence on springback

estimation. Generally speaking, using isotropic and kinematic

hardening simultaneously tends to decrease the springback

estimation whereas isotropic hardening leads to higher values.

Considering the yield functions, Barlat91 gives the best prediction

for ring opening while the others are quite far from experimental

data. It is interesting to note that simulations using the Hill48�

evp yield function give the worst results. The low r-value of the

anisotropy coefficients of the AA5754 can explain this bad result

with this yield criterion. This finding, which is similar to those

previously obtained by other authors [5,46], shows that the Hill

transverse anisotropic formulation, while suitable for steels, is

questionable in its applicability towards low r material such as

aluminum.

6.3. Discussion

Residual stresses in the cup exist due to a gradient of

circumferential stresses. These stresses have a key role in the

modeling of springback because their integral over the thickness

yields a non-zero bending moment and thus a shape change.

Therefore, to further investigate the origin of the springback,

stress distribution through the thickness before cutting and after

springback is analyzed. The radial, tangential and axial stresses in

the cylindrical frame defined in Fig. 16(b) are examined.

A local coordinate system has been defined in the numerical

model. The variation of stresses between the inner and outer skins

of the blank along the cup circumference is shown in Fig. 28,

before trimming and after springback, for the von Mises yield

criterion without kinematic hardening. Observed nodes are in the

mid-height of the cut ring and depend on the angle to RD. It is

observed that the cylindrical cup presents residual stresses only in

the tangential and axial directions. Tangential and axial stress

gradients between inner and outer skins are significant whereas

the radial stress one is close to zero. It is shown that radial stresses

are not affected by cutting and splitting operations whereas

tangential and axial stresses are. Trimming and splitting the ring

release the residual stresses that modify the shape of the part. The

non-symmetrical distribution of tangential stresses between the

wall surfaces induces springback and the opening of the ring.

Concerning the axial stresses, the same phenomenon appears and

induces a conical shape of the ring after splitting.

Figs. 29 and 30 focus on the tangential stress variation through

the thickness of the cup for all criteria, in the mid-height of the cut

ring before springback. Results are presented at 90� to RD.

Thickness 0 corresponds to the interior part of the cup and

thickness 1 to the exterior part. It is observed that the inner skin is

in a compressive stress state, whereas the outer skin is in tension.

At the end of the drawing operations, the neutral fiber is clearly

located in the tensile stress area. This characteristic stress state

before unloading leads to a large bending moment, hence a large

amount of springback in this region.

Table 7

Springback values (in mm) calculated with different yield criteria with or without

kinematic hardening with C3D8I elements.

Experimental 64

Yield criterion Isotropic hardening Isotropic hardeningþ KH

vonMises 55 48

Hill48� evp 36 29

Barlat91 64 61
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Fig. 31 shows the difference between the tangential stresses

before and after springback presented in Figs. 29 and 30. There is a

through-thickness gradient of the tangential stress variation,

before and after springback. The tangential stress state after

springback is not symmetric to the mid-plane of the sheet. This

asymmetry of the stress state is probably due to the friction along

the die radius which induces a shearing of the blank. Anymore,

classically, the gradient of the tangential stress before and after

cutting follows a quasi-linear evolution through the thickness of

the part.

The variation of the tangential stress gradient between inner

and outer skins as a function of the height in the cup wall is

plotted in Figs. 32 and 33. This evolution follows a straight

line located at 90� to RD. It is interesting to note that the bottom

part of the cup is in a global compressive stress state, which

is in good agreement with the fact that rings cut in this area close

over themselves. The top part of the cup is on the contrary, in

tension, which is also coherent with Xia’s experiments on the

split-ring test [18]. The variation of the tangential stress state

along the cup height is directly linked to the variation of the

opening of the ring according to its cutting height. The tangential

stress state appears to be the main factor that influences

springback.

Figs. 32 and 33 show also a slightly different distribution of the

gradient of the tangential stress when taking kinematic hardening

into account, in particular with Barlat91 criterion, which can

explain the small gap in the prediction of springback. Never-

theless, in this case, the change in the opening is located within

the experimental scatter.

The last parameter examined is the evolution of the equivalent

plastic strain through the thickness of the cup. Fig. 34 presents the

values calculated before and after splitting for yield criteria

without kinematic hardening. This figure shows that the cutting

operations induce only elastic phenomena as the plastic strain

curves before and after splitting are perfectly superposed.

7. Conclusions

In this paper, a detailed experimental and numerical study of

springback using the split-ring test for AA5754-O is proposed. The

whole experimental and numerical process, using the software

Abaqus of the split-ring test is described. Numerical results

provide good correlation with experimental data during the

forming analysis which demonstrates that simulations are able

to predict certain aspects of the forming process fairly well, such

as evolution of force during forming, thickness distributions and

deformation profile. Numerical results, in this case, also show that

the constitutive model has a minor influence on drawing

operations. On the other hand, the springback can hardly be

accurately estimated: the results indicate a higher impact of the

yield criteria than the hardening law. The predicted opening using

von Mises and Hill’48 criteria with kinematic hardening was less

accurate than those obtained using the Barlat’91 model. A detailed

study of the stress distribution in the thickness of the blank shows

that the yield criteria and hardening models are critical in
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in the cup wall for vonMises, Hill48� evp and Barlat91 criteria with kinematic

hardening.
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determining the distribution of the stress in the cup. The

numerical prediction of the tangential stress in the cup wall

seems to explain some observations of the springback mechanism,

but it seems rather difficult to predict the complex strain path

during the forming stage which induces residual stresses.
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