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ABSTRACT

The multifractal properties of rain are investigated within the framework of universal multifractals. The

database used in this study includes measurements performed over several months in different locations by

means of a disdrometer, the dual-beam spectropluviometer (DBS). An assessment of the effect of the rain–

no rain intermittency shows that the analysis of rain-rate time series may lead to a spurious break in the

scaling and to erroneous parameters. The estimation of rain multifractal parameters is, therefore, performed

on an event-by-event basis, and they are found to be significantly different from those proposed in scientific

literature. In particular, the parameter H, which has often been estimated to be 0, is more likely to be 0.53,

thus meaning that rain is a fractionally integrated flux (FIF). Finally, a new model is proposed that simulates

high-resolution rain-rate time series based on these new parameters and on a simple threshold.

1. Introduction

Rain is a complex and highly intermittent phenome-

non and therefore difficult to model and even to mea-

sure. During the past decades, thanks to advances in the

turbulence theory and in the description of multiplicative

cascades, various models based on scale invariance and

multifractals have been proposed (see, e.g., Veneziano

et al. 1996; Over and Gupta 1996; Mazzarella 1999;

Deidda 2000). These models open the way to a realistic

description of rain, since it is not possible to dissociate

rain from atmospheric turbulence. In this paper, we

focus on the universal multifractals framework and

more specifically on the fractionally integrated flux (FIF)

model developed by Schertzer and Lovejoy (1987, 1997).

This model was chosen because of its strong links to

turbulence theory and because most multiplicative pro-

cesses tend to resort to it. It has been applied successfully

to a wide variety of phenomena, from cloud radiance

(Lovejoy and Schertzer 2006) to ocean color (Lovejoy

et al. 2001), or to financial assets (Schmitt et al. 1999).

As far as rain is concerned, this model has been tested

against experimental data measured by rain gauges,

meteorological radars [see Lilley et al. (2006) for a re-

view], or—more recently—remote sensing (Lovejoy

et al. 2008). Surprisingly, although this type of data is

useful in general climatologic or weather statistical

studies, very little is known in scientific literature about

high-resolution rain-rate time series retrieved from

disdrometer measurements. The latter provide individ-

ual drop data, thus leading to a large number of ex-

plored time scales and overcoming some limitations of

others’ instruments—namely, the uncertainty affecting

rain-rate retrieval in satellite and radar measurements

and the variability of the sampling frequency of stan-

dard rain gauges due to the integrating effect of the

tipping bucket (de Lima 1998). In this paper, measure-

ments from the dual-beam spectropluviometer (DBS)

developed at the Centre d’étude des Environnements

Terrestre et Planétaires (CETP) are analyzed. The da-

tasets include rain-rate time series covering several

months from three different locations. The experiments

are described in section 4, and the multifractal analysis

techniques are presented in section 5.

Rain-rate time series have already been extensively

studied within the universal multifractals framework,

and many authors have reported similar results [typi-

cally H ’ 0, a ’ 0.5–0.7, and C1 ’ 0.4–0.6, using daily

accumulations in Tessier et al. (1993, 1996), Hubert

et al. (1993), Ladoy et al. (1993), and Fraedrich and

Larnder (1993), or using accumulations during about

10 min in de Lima and Grasman (1999), de Lima (1998),
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and Hubert et al. (2002)]. However, when looking at

high-resolution DBS data, a break in the scaling is ob-

served at higher frequencies. This deviation from the

model [previously pointed out by Fraedrich and

Larnder (1993), Pathirana et al. (2004), and Onof et al.

(1996)] leads to the following question: do smaller time

scales have different scaling properties from larger time

scales? In this paper, we investigate the possibility that

this problem may not be due to physical reasons but to

an artifact related to rain–no rain intermittency. Rain-

rate time series include many no-rain periods with zero

rain rates, which universal multifractals are not de-

signed to model, and as suggested by Schmitt et al.

(1998), the effect of this rain–no rain intermittency on

the estimation of the universal multifractals model pa-

rameters has to be taken into account. This effect will

indeed be shown to possibly lead to an artificial scaling

at low resolutions and thus to biased multifractal pa-

rameters (section 3). The data are, therefore, analyzed

on an event-by-event basis to avoid this difficulty (sec-

tion 6). Long rain-rate time series that include rain–no

rain intermittency (section 7) will also be analyzed to

better characterize the effect of rain–no rain intermit-

tency. Using the new parameters found and on a simple

threshold, a new model that simulates high-resolution

rain-rate time series will be presented (section 8) as well

as the properties of the corresponding synthetic time

series (section 9).

2. The fractionally integrated flux model

The FIF model is based on the concept of multipli-

cative cascades that had been suggested by Richardson

(1922) in the context of turbulence and notably de-

veloped by Kolmogorov (1941), Yaglom (1966), and

Mandelbrot (1974). According to this model, the kinetic

energy injected into the system at a large scale is

transferred by a conservative multiplicative process to

smaller and smaller scales and finally dissipated as heat.

More generally, this type of process can be modeled by

(i) uniformly distributing a given quantity during a given

interval; (ii) splitting this interval into subintervals; (iii)

assigning these subintervals the original given quantity

multiplied by a random variable whose law does not

depend on scale; and (iv) repeating steps (ii) and (iii)

iteratively. By construction, such processes exhibit in-

teresting scale invariance properties and to describe

them, it is necessary to introduce the concept of fractal

dimension.

a. The fractal dimension and codimension

The definition of the fractal dimension based on the

box-counting method will be recalled here [see Falconer

(2003) for more details and the classical example of

Cantor dust and other definitions of the fractal dimen-

sion]. Assume an observation period of duration T in-

cluding rain periods and drought periods. Then split this

original interval into contiguous subintervals of length

Dt (here and throughout, the scale is given by Dt and the

resolution by the number of subintervals l 5 T/Dt).

Next, count the number of subintervals nrain(l) where

rain is present. If this number is a power law of reso-

lution, then the rain process is fractal and the power

law exponent Df is its fractal dimension (here and

throughout, ; stands for equality within slowly varying

and constant factors):

nrain(l) ; lDf . (1)

The fractal dimension and the fractal codimension are

related to each other by the following equation in a one-

dimensional embedding space:

Cf 5 1�Df . (2)

The fractal codimension is an interesting concept, be-

cause it characterizes the probability that a randomly

chosen subinterval Il contains rain:

Pr (Il includes rain) 5
nrain(l)

l
; l�Cf . (3)

For the rain-rate process Df ’ 0.8, Lavergnat and Golé

(1998) found 0.82 for time scales ranging from 1022 to

105 min, and Hubert and Carbonnel (1989) found 0.8 for

time scales ranging from 1 day to 45 yr.

b. Singularities and multifractals

The concept of fractal dimension is restricted to en-

sembles and therefore to the binary case rain or no rain.

To study the scale invariance properties of a process

whose intensities vary across a whole range of possible

values, the multifractal formalism must be introduced.

The idea is that the fractal dimension is not unique but

rather depends on the intensity that is used to define the

ensemble. Moreover, the scale-dependent notion of in-

tensity has to be left aside, and the scale invariant

concept of singularity (denoted g) has to be used in-

stead. The intensity related to a given singularity is the

gth power of resolution l, so that when the scale varies,

the intensity is modified but not the singularity. The

basic equation of the ‘‘codimension multifractal for-

malism’’ is as follows [see Schertzer et al. (2002) for a

detailed introduction to multifractal processes and mul-

tiplicative cascades]:

Pr (Fl . lg) ; l�c(g), (4)
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where Fl is the process at resolution l and c(g) the

fractal codimension related to the singularity g. Since

the probability density is related to the statistical mo-

ments of Fl by the Mellin transform, Eq. (4) can

equivalently be written (Schertzer et al. 2002, section

4.2) as

hFl
qi; lK(q), (5)

where ,�. is the mean operator, q the order of the

moment, and K(q) the so-called moment scaling func-

tion. Here, K(q) and c(g) are linked to each other via

the Legendre transform, which is a one-to-one relation

(Parisi and Frisch 1985):

K(q) 5 maxg [qg � c(g)], c(g) 5 maxq [qg �K(q)].

(6)

Here, K(q) is a convex function, and it can easily be

shown that K(0) 5 0 and K(1) 5 0. The latter property

is a consequence of the assumption of conservation,

namely, that the mean of the process is a constant M

regardless of resolution,

8l, hFli5 M. (7)

The notion of conservative process is derived from tur-

bulence theory, according to which the energy flux de-

nsity between smaller and smaller eddies is assumed to

be constant down to the dissipation scale. Multiplicative

cascades with a constant mean are, therefore, called

conservative cascades.

c. Universal multifractals and fractional integration

By densifying the cascade, that is, by increasing the

number of multiplicative steps between the inner and

the outer scales of the cascade, it has been shown

(Schertzer and Lovejoy 1997) that multifractal cascades

generally tend toward a universal class of processes

called universal multifractals, whose moment scaling

function K(q) can be described by only two parameters

(a and C1),

K(q) 5
C1

a� 1
(qa � q). (8)

Here, C1 is the fractal codimension of the level pro-

viding the dominant contribution to the mean of the

process; a describes how rapidly the fractal codimension

varies with the singularity (a varies from 0 to 2; a 5 0 is

the monofractal case; and a 5 2 is the lognormal case).

In general, geophysical processes are not stationary

and an additional fractional integration is required,

which leads to the following expression for the rain-rate

process (see the appendix for a formal definition of frac-

tional integration):

DR(Dt)j j’ Fl Dtj jH , (9)

where DR(Dt) is the rain-rate gradient over time lags of

length Dt and where parameter H is related to the de-

gree of smoothness. When Fl is a conservative cascade,

the process is referred to as a fractionally integrated flux

[see Gagnon et al. (2006) for a comparison with classical

models, such as the fractional Brownian motion or frac-

tional Lévy motion]. Combining Eqs. (9) and (5), the

qth-order structure function of the rain-rate process can

be written as

h DR(Dt)j jqi; l�z(q), (10)

where z(q) is known as the structure function exponent

and has the following form:

z(q) 5 qH �K(q). (11)

3. The effect of rain–no rain intermittency

By definition, the FIF model cannot generate zero-

value periods, because it is a fractional integration of a

multiplicative cascade with strictly positive multiplica-

tive increments. Therefore, it is not clear whether it

would be possible to perform a multifractal analysis of

time series that include rain–no rain intermittency. This

section shows that the effect of rain–no rain intermit-

tency may strongly affect the estimation of the universal

multifractals model parameters.

As for the estimation of H, the effect of the rain–no

rain intermittency can be understood by considering

that, for Dt sufficiently long, if R(t) 6¼ 0, the probability

of having R(t 1 Dt) 5 0 is close to 1 and therefore

h DR(Dt)j ji’ hRi. (12)

Thus, for Dt sufficiently long, the first-order structure

function does not depend on Dt, and H is found to be 0.

Concerning the estimation parameters of the sta-

tionary cascade (a and C1) with the moment scaling

function K(q), a simplified case may be considered.

Since rain events have a limited extension in space and

time, assume that, at a sufficiently long time scale Dt, the

successive averaging operations performed to recon-

struct the conservative cascade are roughly similar to

the degeneracy of a rectangular function (a function

equal to zero everywhere except over an interval of

duration Dt). Let Qlmax be the rectangular function

at resolution lmax 5 T/Dt and ulmax the level of the
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rectangle itself. When Qlmax is degraded to resolution

lmax/2 by averaging pairs of contiguous values, since the

rectangle is surrounded by zeros, its level falls to

ulmax/2 5 ulmax
/2. (13)

If this operation is repeated n times, Eq. (13) can be

generalized to

ulmax/2n 5 ulmax
/2n. (14)

Then, the qth-order moments of the rectangular func-

tion at resolution lmax/2n are easily calculated because,

at all scales, only one value is not zero. This value is the

level of the rectangle umax/2n raised to the qth power

and divided by the resolution lmax/2n:

hQlmax/2n
qi5 (ulmax

/2n)q

lmax/2n
. (15)

Modifying Eq. (15) to make the scaling explicitly appear

leads to

hQlmax/2n
qi5 ulmax

lmax

� �q

.
lmax

2n

� �q�1

. (16)

Then, by taking the logarithm of both sides and since

l [ lmax/2n,

hQl
qi; lq�1. (17)

Consequently, a scaling is found and the corresponding

moment scaling function is

K(q) 5 q� 1. (18)

A comparison between Eq. (18) and the theoretical

form of K(q) given by Eq. (8) leads to a 5 0 and C1 5 1.

This simplified example shows that, at low resolutions,

rain–no rain intermittency may result in an artificial

scaling, with a close to 0 and C1 close to 1. To avoid this

artifact, the multifractal analysis of the spectropluvio-

meter data will be performed on an event-by-event basis

in section 6.

4. Measurements

The rain rate has been measured by means of a DBS

(Delahaye et al. 2006). The DBS is more accurate than a

previously used instrument, the optical spectropluvio-

meter (OSP; Hauser et al. 1984), because it comprises

two closely spaced flat optical beams and an increased

catchment surface (100 against 50 cm2 for commercial

instruments). With this instrument, false detections due

to air turbulence can be reduced and raindrops as small

as 0.3 mm can be detected unambiguously by verifying

that each drop actually crosses both beams. In the lab-

oratory, the instrument’s accuracy for particle diame-

ters is 1% for bias and 3% for standard deviation. This

accuracy has also been tested in the outside turbulent

atmosphere with beads larger than 1 mm. For smaller

diameters, calibration can only be performed indoors.

The DBS also provides an accurate estimation of the

vertical velocity of raindrops. Its outputs are raindrop

diameters, velocities, and times of arrival (in millisec-

onds). These outputs were transformed into rain-rate

time series sampled at 1 s. However, the retrieved rain

rate is not accurate with a 1-s integration time, and the

time series have to be resampled at a longer sampling

period, typically 60 s (see sections 5a and 6 for more

details). The standard deviations of the rain-rate esti-

mation error are 31% and 4% for sampling periods

of 1 and 60 s, respectively, but the error is much larger

for smaller rain rates (Mallet and Barthès 2009).

The experimental dataset (Table 1) comprises three

subsets collected in different climatic areas: Paris [Site

Instrumental de Recherche par Télédétection Atmo-

sphérique (SIRTA) experimental site, France], Iowa

City [Disdrometer Evaluation Experiment (DEVEX)

campaign, United States; Krajewski et al. 2006], and

Djougou [African Monsoon Multidisciplinary Analyses

(AMMA) campaign, Benin]. The latter corresponds

to the African monsoon period and is characterized by

strong rain events.

5. Multifractal analysis techniques

This section describes the analysis tools needed to

perform the multifractal analysis. Each technique is il-

lustrated based on an example derived from a strong

rain event observed on 12 July 2002 during the DEVEX

experiment in Iowa (Fig. 1).

a. Power spectrum analysis

The power spectrum is a useful tool to decide whether

the process is scaling or not. If scaling is present, the

power spectrum, plotted in a log–log graph, should be

a straight line. Then, it has to be decided whether the

TABLE 1. Experimental datasets.

Experiment Location Duration Date

SIRTA Paris, France 3 months 1 Apr–30 Jun 2000

DEVEX Iowa, United States 4 months 1 Apr–31 Jul 2002

AMMA Djougou, Benin 2 months 15 Jul–15 Sep 2006
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process is a stationary cascade or a FIF. This can be

easily done by considering the spectral slope b: if the

process is a stationary cascade, then, as a consequence of

the Wiener–Khintchine theorem, the theoretical slope

is

b 5 1�K(2)) b , 1. (19)

Therefore, if b .1, the process cannot be stationary. An

additional fractional integration is required, which leads

to the FIF model with the following theoretical slope:

b 5 1 1 2H �K(2). (20)

The power spectrum of the 12 July 2002 event is pre-

sented in Fig. 1. For this particular event, b is found to

be 1.72, and the process is therefore a FIF.

The limits of the power spectrum scaling are also

important, because they indicate the maximum and

minimum scales over which it is meaningful to perform

a multifractal analysis. For the 12 July 2002 event, the

spectrum is clearly leveling off at frequencies above 1/64

Hz (Fig. 1) and therefore the time series has to be av-

eraged over 32-s time lags to keep only the scaling part

of the power spectrum. This is a fundamental feature

because, in the case of a FIF, the multifractal analysis

depends on the gradient of the process at the finest time

scale [see Eq. (21)], which therefore would have no

physical meaning with a very noisy process.

b. Structure function analysis

Parameter H can be derived by means of Eq. (20).

However, generally, the power spectrum’s slope cannot

be determined with sufficient accuracy. Another possi-

bility is to use the first-order structure function: Eqs.

(11) and (8) show that for q 5 1, the structure function

exponent simplifies to z(1) 5 H. The first-order struc-

ture function as a function of the time lag Dt (in a log–

log graph) is, therefore, a straight line with a slope of H.

Using this method, H is found to be 0.53 for the 12 July

2002 event (Fig. 2).

c. Moment scaling analysis

To check the scaling of the statistical moments of Fl

[Eq. (5)] and to estimate the values of a and C1, the

multiplicative cascade Fl has to be retrieved over a wide

range of scales. This is done first by deducing Fl at the

finest scale (denoted Flmax) from the rain-rate time series,

and then by reconstituting the multiplicative cascade at

longer time scales [see Gagnon et al. (2006) for an in-

structive example]. Theoretically, the first step requires an

H-order fractional differentiation of the rain-rate process.

However, since H ’ 0.5, an adequate approximation

(Lavallée et al. 1993) is to take the absolute value of the

gradient at the finest time scale Dtmin (i.e., the highest

resolution lmax), which is normalized to have M 5 1:

DR(Dtmin)j j
Dtmin

DR(Dtmin)j j
Dtmin

� � ’ Flmax
. (21)

The multiplicative cascade is then reconstituted at

longer time scales by consecutive averagings of pairs of

FIG. 1. Rain event observed in Iowa on 12 Jul 2002. (top) Original

rain-rate time series sampled at 1 Hz, (middle) power spectrum with

corresponding fit and (bottom) rain rate averaged over 32-s time

lags.

FIG. 2. First-order structure function of the rain event observed in

Iowa on 12 Jul 2002 with corresponding fit.
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contiguous values. Finally, the statistical moments are

calculated at each scale and plotted in a log–log graph as

functions of the scale. According to Eq. (5), these

functions should be straight lines with slopes equal to

K(q), where q is the order of the moment. Such straight

lines are indeed found for the 12 July 2002 event (Fig. 3,

top), so that the corresponding moment scaling function

K(q) can be estimated (Fig. 3, bottom).

d. Estimation of a and C1

The multifractal parameters a an C1 can be estimated

using the moment scaling function K(q) given in Eq. (8).

However, the analysis of synthetic time series created

with known multifractal parameters shows that a is not

retrieved correctly by directly fitting K(q) (the simula-

tion technique is described in the appendix). A more

sophisticated technique known as double trace moment

(DTM) can improve the accuracy of the estimation (see

Lavallée et al. 1993 for details). For that purpose, the hth

power of Flmax is first computed and the multiplicative

cascade is then reconstituted at larger time scales. The

statistical moments of such a process, Ml(h,q), are

scaling, and their scaling exponent is denoted K(h,q):

FIG. 3. (top) Scaling of moments for the rain event observed in

Iowa on 12 Jul 2002 with q 5 (0, 0.3, 0.6, 0.9, 1.2, 1.5, and 1.8) and

(bottom) corresponding moment scaling function. FIG. 4. (top) Scaling of DTM for the rain event observed in Iowa

on 12 Jul 2002 with h varying (0, 0.3, 0.6, 0.9, 1.2, 1.5, and 1.8) and q

set to 2. (bottom) Scaling function of the DTM.

TABLE 2. Characteristics of the events extracted from the SIRTA dataset.

Date Local time Duration (s) Resolution (s)

Mean rain rate

(mm h21)

Maximum rain rate

(mm h21)

1 Apr 2000 0943 16448 64 0.17 1.22

3 Apr 2000 1806 4160 64 3.12 9.66

4 Apr 2000 1603 8256 64 3.54 11.81

13 Apr 2000 1745 2112 64 0.61 3.02

14 Apr 2000 1305 16448 64 0.68 2.89

25 May 2000 0619 2080 32 0.57 4.29

26 May 2000 1220 2080 32 0.47 1.83

28 May 2000 0006 8224 32 1.01 4.36

30 May 2000 0215 65600 64 1.17 15.83

5 Jun 2000 0126 16448 64 2.17 7.96
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Ml(h, q) ; lK(h,q). (22)

Exponents K(h,q) have the following property in the

framework of universal multifractals:

K(h, q) 5 haK(q). (23)

Therefore, when q has a fixed value (different from the

special case 0 or 1), a log–log plot of K(h, q) as a

function of h should give a straight line with a slope of a.

The scaling of the double trace moments and the cor-

responding scaling function K(h,q) are shown in Fig. 4

for the 12 July 2002 event. The fit of this scaling function

to its linear part leads to a 5 1.69. The classical moment

scaling function K(q) is then fitted according to Eq. (8)

to retrieve C1, which is found to be 0.12.

6. Event-by-event analysis

Since the presence of rain–no rain intermittency may

bias the estimated parameters, it was chosen to avoid

this difficulty by performing the multifractal analysis of

spectropluviometer data on an event-by-event basis. In

this section, 30 rain events were analyzed separately (10

for each of the three datasets, see Tables 2–4). These rain

events were extracted in such a way that all zero values

were excluded. The rain-rate process is thus said to be

apparently uninterrupted, because although there are no

zero values at the resolution at which they are analyzed,

such values would appear if the resolution was increased.

The power spectrum was calculated for each rain

event, and the highest resolution at which the scaling

is valid was determined (so as to avoid flattening the

power spectrum at the highest frequencies). For most

events, a 64-s averaging time was used. However, for

certain events, a 32-s averaging time was sufficient. The

leveling off of the power spectrum occurring at higher

frequencies could be because the sampling frequency

exceeds the inner scale of the multiplicative cascade

(i.e., the dissipative scale in the turbulence framework).

However, Lovejoy and Schertzer (2008) have shown

that rain becomes decoupled from atmospheric turbu-

lence at a spatial scale of 1 m. Since most of the drops

are falling faster than 1 m s21 (Gunn and Kinzer 1949),

the rain-rate process should at least scale up to the 1-s

time scale. A more realistic explanation could be that,

when the rain rate is calculated with an integration time

that is too short, the number of raindrops detected by

the instrument is too small and the measurement is not

representative of the process (although the DBS has

been designed with a relatively large catchment surface

TABLE 3. Same as Table 2 but for the DEVEX dataset.

Date Local time Duration (s) Resolution (s)

Mean rain rate

(mm h21)

Maximum rain rate

(mm h21)

9 May 2002 0140 8256 64 3.90 16.75

11 May 2002 1518 8256 64 1.34 7.10

15 May 2002 2201 4160 64 1.21 4.09

2 Jun 2002 0920 8256 64 1.36 5.56

4 Jun 2002 1246 2112 64 22.64 91.77

11 Jun 2002 0811 8256 64 3.28 29.51

8 Jul 2002 2336 1056 32 36.9 107.06

11 Jul 2002 0423 8256 64 8.17 47.81

11 Jul 2002 1410 8224 32 1.54 6.14

12 Jul 2002 0113 8224 32 16.14 83.07

TABLE 4. Same as Table 2 but for the AMMA dataset.

Date Local time Duration (s) Resolution (s)

Mean rain rate

(mm h21)

Maximum rain rate

(mm h21)

21 Jul 2006 2130 4128 16 12.50 95.77

22 Jul 2006 1028 2080 32 4.24 15.27

22 Jul 2006 1200 4128 32 6.73 23.72

5 Aug 2006 1436 2080 16 3.86 14.89

7 Aug 2006 1336 4160 32 34.74 114.47

10 Aug 2008 1548 4160 32 17.40 61.69

14 Aug 2006 1536 2112 16 5.82 31.45

17 Aug 2006 1533 16448 64 1.05 6.57

26 Aug 2006 1458 8256 16 4.63 58.81

31 Aug 2006 1205 8224 16 4.68 27.01

APRIL 2009 D E M O N T E R A E T A L . 499

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/10/2/493/4104840/2008jhm

1040_1.pdf by guest on 14 N
ovem

ber 2020



of 100 cm2 to counter this limitation). Another expla-

nation could be that the vertical velocity of the drops is

affected at higher frequencies by the turbulence due to

the proximity to the earth’s surface. However this point

remains to be investigated.

The event-by-event multifractal analysis led to the

multifractal parameters presented in Table 5. Instead of

the values H ’ 0, a ’ 0.5–0.7, and C1 ’ 0.4–0.6 gen-

erally found in scientific literature (see references cited

in section 1), significantly different values were found,

namely, H ’ 0.53, a ’ 1.7, and C1 ’ 0.13. The fact that

H is not 0 indicates that the process is not a stationary

cascade but rather a nonstationary FIF. Although this

result is consistent with those of Harris et al. (1996) who

used high-resolution rain-rate time series (15-s inte-

gration time), this contradicts most other studies in

which the cascade is found to be stationary. This dif-

ference can be explained by the fact that these studies

used low-resolution data and therefore were restricted

to the flat part of the spectrum observed at the lower

frequencies. The standard deviation of H is large (27%

of its mean value). Therefore, it is not possible to conclude

that H is constant for all rain events. However, H was

difficult to estimate because of its sensitivity to the noise

level and the sample size, which is small in an event-by-

event analysis. Thus, the variability of H might be due to

instrumental reasons and, to decide whether H is constant

or not, it would be interesting to increase the catchment

surface so that finer time scales could be explored.

As to the other parameters, a is large, which means

that the multiplicative cascade is close to the lognormal

case. As expected, the value of C1 is smaller than the one

found in scientific literature, since no rain intermittency

artificially increases the mean level of intermittency.

Note that the values of a and C1 are remarkably similar

regardless of the dataset and that their variability is

small, although the data have been collected in very

different climatic areas (the climate is continental for

Iowa, temperate–oceanic for Paris, and tropical with

monsoon for Djougou).

7. Analysis of long rain-rate time series

In this section, a multifractal analysis of the three rain-

rate time series is performed without extracting individ-

ual events. Since these time series last several months,

they inherently include zero-value periods, so that rain–

no rain intermittency should have an effect.

Figure 5 shows the power spectrum of each time

series. At time scales longer than 1 min, a scaling is

observed up to the 1-h scale (corresponding to 1/7200

Hz in Fig. 5) and then the spectrum becomes flat.

Between the 1-min and 1-h time scales, the spectral

slope was found to be 1.76 for AMMA data, 1.79 for

DEVEX data, and 1.77 for SIRTA data. Figure 6

shows the first-order structure function for each da-

taset and corresponding fits that were performed only

for time lags shorter than 15 min. It was found that

H 5 0.55 for AMMA data, H 5 0.52 for DEVEX data,

and H 5 0.5 for SIRTA data. At larger time intervals,

a flattening is also observed. These results are con-

sistent with the assessment of the effect of rain–

no rain intermittency performed in section 3, because

TABLE 5. Multifractal parameter derived from the event-by-event

analysis.

Experiment H a C1

SIRTA 0.421 6 0.130 1.740 6 0.090 0.131 6 0.051

DEVEX 0.537 6 0.105 1.683 6 0.075 0.130 6 0.024

AMMA 0.621 6 0.092 1.652 6 0.087 0.134 6 0.021

All events 0.526 6 0.132 1.691 6 0.089 0.132 6 0.034

FIG. 5. Power spectrum of the experimental rain-rate time series

and corresponding fits between 1-min and 1-h time scales (corre-

sponding to 1/120 and 1/7200 Hz, respectively). The curves have

been vertically shifted, (top) SIRTA, (middle) AMMA, and (bot-

tom) DEVEX data.
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above a time interval that roughly corresponds to the

typical duration of a rain event (with data sampled

every minute), the first-order structure function flat-

tens and yields H ’ 0.

Figure 7 shows the scaling of moments and the cor-

responding moment scaling function K(q) for the

AMMA dataset. This scaling also exhibits a break and,

if only low resolutions are considered (time scales lon-

ger than 1 h), the parameters are found to be a 5 0.24

and C15 0.63 [note that these values are the same

whether the process is assumed to be a stationary cas-

cade (the multiplicative cascade is reconstructed di-

rectly from the rain rate) or a nonstationary FIF (the

multiplicative cascade is reconstructed from the abso-

lute value of the gradient)]. These parameters are close

to those suggested by other authors who used low-

resolution data (a ’ 0.5–0.7; C1 ’ 0.4–0.6) and consis-

tent with section 3, where it is shown that rain–no rain

intermittency may lower a and increase C1.

8. Simulation of the rain–no rain intermittency

A new model called ‘‘thresholded FIF’’ is proposed,

which simulates high-resolution rain-rate time series

based on the new parameters and a simple threshold. A

FIF process is first generated with H ’ 0.53, a ’ 1.7, and

C1 ’ 0.13. Then lower values lying below a given

threshold are set to 0. Those above the threshold are

shifted downward by subtracting the threshold value.

The threshold is chosen so that rain–no rain intermit-

tency reproduces the fractal dimension of the rain

‘‘support.’’ Contrary to stationary cascades, the values

of FIF processes do not have an absolute meaning.

Therefore, it is possible to shift them up or down

without breaking the scaling (this operation does not

modify the differentiated process). Note that in this

model, the threshold corresponds to an intensity of the

fractionally integrated cascade, which means that it

does not correspond to a unique singularity of the cas-

cade itself.

9. Analysis of synthetic rain-rate time series

The length of the synthetic time series is set at 32 768

samples. Since the finest scale is 1 min, these time series

simulate the rain-rate process over a period of three

FIG. 6. First-order structure function of the experimental rain-

rate time series and corresponding fits [the curves have been ver-

tically shifted, (top) SIRTA, (middle) AMMA, and (bottom)

DEVEX data].

FIG. 7. Moment scaling function analysis of the AMMA time

series. (top) Scaling of the moment with q 5 (0, 0.3, 0.6, 0.9, 1.2,

1.5, and 1.8) and (bottom) moment scaling function K(q).
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weeks, which may be considered to be the average

lifetime of large-scale structures in the atmosphere. The

parameters are set in accordance with the results given

in section 6 (H 5 0.53; a 5 1.7; C1 5 0.13). The threshold

is set to obtain a fractal dimension of the rain ‘‘support’’

equal to 0.82 [this value has been reported by Lavergnat

and Golé (1998), who also used a spectropluviometer].

It may be noticed that, with these parameters and this

fractal dimension, only 5% of the process is not set to 0,

which corresponds to the rain time percentage observed

in the experimental data (at a 1-min time scale). Figure 8

shows the effect of thresholding on the power spectrum

and on the first-order structure function. The effect of

rain–no rain intermittency is clearly to flatten both

curves at low resolutions. Figure 9 shows that the effect

of the rain–no rain intermittency is to straighten out

K(q) and to cause an artificial break in the scaling of

moments. When K(q) is only estimated on the basis of

the scaling at the lower resolutions, this leads to 0.1 ,

a , 0.5 and 0.4 , C1 , 0.6, depending on the synthetic

time series realization. This is consistent with the pa-

rameters found for long time series (section 7), with the

parameters previously proposed in scientific literature

(section 1) and with the expected effect of rain–no rain

intermittency (section 3).

Moreover, the scale at which the break in the scal-

ing is occurring can be roughly predicted. If there is

no rain–no rain intermittency, the number of inter-

vals during which rain is present decreases as 22n,

where n is the number of consecutive time averagings

of pairs of contiguous intervals (0 corresponds to the

highest resolution). If the rain support is assumed

to have a fractal dimension Df, then this number de-

creases as 22nDf. Therefore, 22nDf 2 22n gives the

approximate value of the number of time intervals that

will be averaged with zero values at step n during the

FIG. 8. (top) Power spectrum and (bottom) first-order structure function of (left) a FIF generated with H 5 0.53,

a 5 1.7, and C1 5 0.13 and (right) the same FIF thresholded such that Df 5 0.82.
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reconstitution of the cascade. If it is assumed that the

effect of rain–no rain intermittency becomes the major

contributor to the scaling when the number of time in-

tervals that are averaged with zero values is equal to the

theoretical number of time intervals without rain–no

rain intermittency, then the scaling should break at step

n such that (22nDf 2 22n) 5 22n. This condition is ac-

tually equivalent to n 5 1/Cf, which provides an esti-

mation of the scale at which the break is expected to

occur. In the case of rain, if we assume Df to be 0.8, this

leads to n 5 5. Since the finest time scale is 1 min, five

consecutive time averagings correspond to a time scale

of 25 5 32 min. It is in agreement with the breaks ob-

served in Figs. 7 and 9 that occur between 32- and

64-min time scales.

The alternative model based on the parameters pre-

viously proposed in scientific literature (H ’ 0; a ’

0.5–0.7; C1 ’ 0.4–0.6) has also been investigated

through simulations. It consists in generating a sta-

tionary bounded cascade (H 5 0; a , 1) and then in

setting to 0 small values that are below a given singu-

larity. It was found that with a 5 0.6 and C150.5, the

FIG. 9. (top) Scaling of the moments with q 5 (0, 0.3, 0.6, 0.9, 1.2, 1.5, and 1.8) and (bottom) moment scaling

function of (left) a FIF generated with H 5 0.53, a 5 1.7, C 15 0.13 and (right) the same FIF thresholded such that

Df 5 0.82.
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singularity corresponding to Df 5 0.8 was very small and

that setting the values below it to 0 had almost no effect

on the scaling. This explains why the effect of rain–no

rain intermittency was generally not considered. Con-

versely, in the model proposed here based on high-

resolution data, the effect on rain–no rain intermittency

is significant because, as previously mentioned, the

threshold does not correspond to a unique small sin-

gularity of the cascade but to a given intensity of the

fractionally integrated cascade. In other words, a dif-

ferentiated ‘‘thresholded FIF’’ is close to a stationary

cascade multiplied by an independent fractal support.

This means that all kinds of singularities may be

set to 0 by the threshold, not only the smallest singu-

larities.

10. Conclusions

The presence of zero-value intervals in analyzed time

series may cause a spurious break in the scaling and a

change in the universal multifractals model parameters.

The multifractal analysis was, therefore, performed on

an event-by-event basis, so that the analyzed process is

apparently uninterrupted. This approach led to new

parameter estimates (H ’ 0.53; a ’ 1.7; C1 ’ 0.13)

significantly different from those previously suggested

in scientific literature (H ’ 0; a ’ 0.5–0.7; C1 ’ 0.4–0.6).

In particular, the rain process is found to be a FIF,

meaning that the multifractal analysis should not be

performed directly on the rain rate but on the absolute

value of its gradient.

A new model has been proposed to simulate high-

resolution rain-rate time series including rain-no rain

intermittency based on these new parameters and on

a simple threshold. The resulting time series correctly

reproduce the parameters that were found for individual

events as well as the break of the scaling due to rain–no

rain intermittency and the fractal dimension of the rain

‘‘support.’’

This study underlines the need for improved analysis

techniques that would be capable of modeling the de-

generacy of the multiplicative cascade due to the aver-

aging with zero values during the reconstitution. More-

over, although the parameters proposed in this study

were estimated from uninterrupted rain periods, they

are also affected by rain–no rain intermittency because

the process is only apparently uninterrupted—that is, the

measurement is actually an average of rain periods and

no rain periods. As a consequence, future analysis

techniques should also take into account the degeneracy

of the fractionally integrated process itself due to

the measurement and relate it to the resolution of the

data.
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APPENDIX

FIF Simulation Technique

FIF processes are simulated following the method

presented in Pecknold et al. (1993). The main steps of

the algorithm are (i) generation of a noise with a Levy

maximally skewed a-stable law; (ii) adequate normali-

zation; (iii) (1 2 1/a)-order fractional integration; (iv)

exponentiation; and (v) H-order fractional integration.

The Mathematica code is available in Schertzer et al.

(2002). Note that this code is designed to generate 2D

fields and has to be slightly modified to generate 1D

time series. It appeared that the time series generated

with this code were not entirely satisfactory, because the

scaling was broken at the highest frequencies (finite-size

effect). However, averaging over 50 sample intervals

was found to be sufficient to remove this break. The

resulting degradation of the synthetic time series has

no influence on the multifractal properties of the pro-

cess, because scaling ensures that neither upscaling nor

downscaling modifies the multifractal parameters. Nev-

ertheless, particular attention must be paid to the mean

absolute value of the gradient [M, defined in Eq. (7)].

Although it does not depend on the time lag Dt over

which the gradient is calculated, it is, however, depen-

dent on the scale at which the rain rate is considered. It

can be shown that the following property is a conse-

quence of Eq. (9) (Jennane et al. 2001):

h DRkn(Dt)j ji5 k Hh DRn(Dt)j ji, (A1)

where n, k are integers, and DRn(Dt) is the rain-rate

gradient derived over a time lag of length Dt from the

rain-rate averaged over n samples. Therefore, if a given

value of M is required, the synthetic time series first has

to be generated with M9 5 M/50H and then averaged

over 50 samples.

Another remark is that the code used here is based

on the left–right symmetric ‘‘Riemann–Liouville’’ frac-

tional integration, which is an unrealistic feature for

temporal time series:

IH
RL f (t) 5

1

G(H)

ðt

�‘

f (t)

t � tj j1�H
dt. (A2)

The correct way to simulate temporal processes (Tessier

et al. 1996) is to use causal ‘‘Liouville’’ fractional inte-

grals:
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IH
L f (t) 5

1

G(H)

ðt

�‘

f (t)

(t � t)1�H
dt. (A3)

However, this does not change the conclusions of this

study.

REFERENCES

Deidda, R., 2000: Rainfall downscaling in a space–time multi-

fractal framework. Water Resour. Res., 36, 1779–1794.

Delahaye, J.-Y., L. Barthès, P. Golé, J. Lavergnat, and J. P. Vinson,
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