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Abstract

A new approach for for estimating the acoustic pressure in the near field of a mi-
crophone based on non-intrusive direct measurement of acoustic particle velocity is
proposed.

This method enables the estimation of the acoustic pressure inside a domain
located in front of the microphone membrane. The acoustic pressure is calculated
using the acoustic particle velocity on the frontiers of this domain and a physical
model based on the Green function of the system.

Results are obtained using the acoustic velocity measured with Particle Image
Velocimetry (PIV) in front of a microphone excited with a plane wave inside a
rectangular waveguide. They show that the diffraction of the plane wave by the
microphone leads to an increase of the acoustic pressure on the microphone edge in
the order of magnitude of 0.1 dB.

Key words: PIV, pressure estimation, acoustic particle velocity measurement,
integral formulation.
PACS: 43.20.Ye, 43.58.Kb, 43.58.Vb, 43.58.Fm

1 Introduction

Over the years, several methods have been developed for microphone calibra-
tion (for a review see [1]). These methods can be classified into two sorts : (i)
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relative calibration which provides an estimate of the sensitivity of a micro-
phone as a function of a reference sensitivity and (ii) absolute calibration [2]
which leads to an estimation of the sensitivity without any reference micro-
phone.

For absolute calibration, the reciprocity technique is usually used which pro-
vides a typical precision of around 0.05 dB in an enclosed field configuration.
In a free field configuration, this technique has been adapted [3,4] and stan-
dardized [5]. Nevertheless, free field absolute calibration suffers from numerous
problems which are not resolved at present: the location of the acoustic center
of the microphone is crucially important [6], the generation of standing waves
between the different microphones perturbs the measurements and, generally,
external reflections disturb the acoustic field in the vicinity of the microphone.

Microphone calibration using non-intrusive optical techniques such as Laser
Doppler Velocimetry is proposed by some authors. These studies are mainly
conducted in enclosed field conditions, more precisely in waveguides excited
with plane waves. Two approaches are used.

On the one hand, authors consider that the impedance of the medium is
known and measure the acoustic velocity at a single point. This supposes that
the boundary conditions of the medium are perfectly known. We call it the
”global approach”. In this case, the acoustic pressure can be estimated at
the measurement point thanks to the impedance. Acoustic pressure can also
be estimated elsewhere using a propagation model of the system under study.
Taylor [7], MacGillivray [8,9] and Koukoulas et al [10] use this approach. First
results are encouraging: Taylor [7] shows that this method is accurate within
±0.03 dB at 500 Hz, Mac Gillivray et al [8,9] reach an accuracy of around
0.1 dB and Koukoulas et al [10] propose an accuracy of 0.2 dB at 170 Hz.

On the other hand, authors consider a volume of fluid and measure the acoustic
velocity on the volume boundaries. A propagating model of the fluid enables
the estimation of the acoustic pressure everywhere in the volume. We call this
the ”local approach”. For plane waves a slice of fluid is considered and the
acoustic velocity measured at two points to estimate the acoustic pressure in
the middle of the slice. Degroot et al [11] use this approach and show that using
a (u−u) probe with two LDV measurements provides a minimum uncertainty
on the pressure estimation of 0.013 dB for frequencies of 1360 Hz and 680 Hz.

The approaches described above for enclosed field calibration could be used
in a free field. The first (global) approach only requires the measurement of
the acoustic velocity at a single point but also requires that the impedance
of the fluid for free field conditions is known. This can only be the case if
the boundary conditions of the system are perfectly known, for example in a
semi-infinite domain which can be reproduced with a semi anechöıc chamber.
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The second (local) approach does not require the boundary conditions of the
system under study to be known but instead the acoustic velocity must be
measured at a number of locations near the microphone membrane, in order
to estimate the acoustic pressure on the membrane.

The local approach requires the characterization of the acoustic nearfield of a
structure by LDV or other non-intrusive techniques. Previous work has been
done by Gazengel et al [12], who measure the acoustic particle velocity in
front of a loudspeaker to characterize its acoustic radiation in a free field
using the LDV technique. Schedin et al [13] propose measuring the acoustic
particle velocity in the vicinity of a plate using two-reference-beam double-
pulsed holographic interferometry and Moreau et al characterize the acoustic
field in a waveguide boundary layer using LDV and PIV techniques [14].

In this paper, we propose a preliminary study for calibrating microphones in
free field conditions using a non-intrusive measurement technique and the lo-
cal approach described above. Section two presents the general method used
for estimating the acoustic pressure on the microphone membrane using the
acoustic velocity measured at many locations near the membrane. Section
three presents the experimental study of the acoustic field in the close vicinity
of a microphone. In this section, the acoustic particle velocity is measured
using a PIV technique. In the fourth section, a 2D model of the acoustic field
near the microphone in derived using the Green function of the volume under
study. Finally, the acoustic pressure field is estimated in front of the micro-
phone membrane using the measured acoustic velocity and some discussion is
given.

2 General formulation of the acoustic pressure field in the vicinity

of a microphone membrane

In this section, a microphone excited with a plane wave is studied. An analyt-
ical development of the pressure field is proposed, considering a fluid domain
(air) located in front of the microphone membrane (see Fig. 1). Acoustic pres-
sure inside this volume can be estimated at the position (r, θ, z) = (~w, z) by
means of measurement of normal velocity on the volume boundaries with an
integral formulation.

The system under study (see Fig. 1) is an air fluid column with length L and
a circular section of radius ra. The circular sections (S1, S2) and the surface of
the fluid column S3 are subjected respectively to the normal acoustic velocities
vn1

, vn2
and vn3

. As described in Fig. 1 and according to experimental results
presented in section 3, the normal acoustic velocities vn1

and vn2
are chosen to

be uniform on the circular section and vn3
is considered to vary on the section
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Fig. 1. Studied volume in front of the microphone.

A general integral formulation of the acoustic pressure in the volume V is
proposed hereafter.

In the frequency domain the acoustic pressure p(~r, t) is written as

p(~r, t) = p(~r)ejωt, (1)

where ω is the acoustic pulsation defined by ω = 2πf . In the linear acoustic
approximation and in the case of a perfect fluid, the acoustic propagation in
the air fluid column V , is given by

(∆ + k2)p(~r) = 0, (2)

where k = ω/c0 is the wave number and c0 is the sound celerity. The boundary
conditions associated with eq. (2) are written

∂p(~r)

∂n
= −jωρvn1

(r) for r ∈ (0, ra), θ ∈ (0, 2π), z = 0, (3)

∂p(~r)

∂n
= −jωρvn2

(r) for r ∈ (0, ra), θ ∈ (0, 2π), z = L, (4)

∂p(~r)

∂n
= −jωρvn3

(r) for r = ra, θ ∈ (0, 2π), z ∈ (0, L), (5)

where ρ is the air density and ∂/∂n = ∂n is the normal derivative to the
surface S. The acoustic pressure field p(~r) in the volume V (described by the
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closed surface S) is written, in this integral form, as []

p(~r) =
∫∫∫

V
G(~r, ~r0)f(~r0)dV0 +

∫∫

S
[G(~r, ~r0)∂n0p(~r0) − p(~r0)∂n0G(~r, ~r0)] dS0,

(6)
where the function f(~r0) describes the sources distributed inside the volume
V and G(~r, ~r0) is the Green function defined by the follonwing equation

(∆ + k2)G(~r, ~r0) = −δ(~r − ~r0) in V, (7)

and the boundary conditions on the surface S. In eq. (7), δ(~r−~r0) is the Dirac
distribution. The boundary conditions for the Green function are chosen as

∂n0
G(~r, ~r0) = 0 for r ∈ (0, ra), θ ∈ (0, 2π), z = 0, (8)

∂n0
G(~r, ~r0) = 0 for r ∈ (0, ra), θ ∈ (0, 2π), z = L, (9)

∂n0
G(~r, ~r0) = 0 for r = ra, θ ∈ (0, 2π), z ∈ (0, L), (10)

to allow a description of the acoustic pressure field as a function of the acoustic
velocity on the boundaries. Using eqs. (7), (8), (9) and (10), eq. (6), without
any sources (f(~r0) = 0), is written

p(~r) =
∫∫

S
G(~r, ~r0)∂n0p(~r0)dS0. (11)

Eq. (11) combined with eqs. (3), (4) and (5) leads to the following expression
for the acoustic pressure in the volume V

p(~r) = −jωρ
∫∫

S
G(~r, ~r0)vn0

dS0 = −jωρ
∑

i

∫∫

Si

G(~r, ~r0)vni
dSi, (12)

where i = 1, 2 and 3. Knowing the acoustic velocity on the surface S1, S2 and
S3 and the Green function of the system, the acoustic pressure can determined
in the volume V with the eq. (12).

3 Experimental characterization of the acoustic velocity field in

the vicinity of a microphone membrane

In this section, the acoustic velocity field is estimated experimentally using
Particle Image Velocimetry (PIV) inside the domain close to the microphone
membrane as shown in figure 1. The microphone is positioned inside a waveg-
uide. PIV has previously been used to study acoustic flow in a waveguide [14].
The acoustic velocity field is measured inside a plane region (laser sheet) of
dimensions 2 ra, L.
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3.1 Experimental set-up

3.1.1 PIV system

The PIV system uses a pulsed Cu-Laser Oxford Lasers LS20−50 with a time
between pulses of 20 µs. The mean power of the laser is 20 W and each pulse
has a duration of 25 − 30 ns with a wavelength of 510.6 nm (green). The
beam from the laser is converted to a light sheet for delivery to the region of
interest. A CCD camera (Sensicam Double Shutter) is used for the acquisition
of the PIV images, with a resolution 1280×1024 pixels. A Berkley Nucleonics
model 500 A pulse generator is used in conjunction with National Instruments
LabVIEW software to allow the capture of PIV image pairs at any phase in the
period of the acoustic cycle. 30 measurements are made at a given phase and
averaged to estimate the velocity field. Cross-correlation and post-processing
are carried out on in-house PIV software.

3.1.2 Acoustic system

The experimental set-up is made up of a JBL 2446H loudspeaker mounted on
a closed Perspex tube (with 10 mm wall thickness) with a length L = 0.5 m
and a square section S = 0.1 × 0.1 m2. The first cut-off frequency is 1720 Hz
(first transverse mode). In the waveguide, a 1 inch B&K microphone is placed
parallel to the guide axis. Fig. (2) shows the acoustic set-up and the PIV
system.

A stationary plane wave with a frequency f = 680 Hz is established in the
waveguide. The microphone membrane is located between a node and an antin-
ode of acoustic velocity to measure a sufficient acoustic velocity amplitude
for PIV. The light sheet position is adjusted so as to graze the microphone
membrane, in a plane corresponding to the diameter of the membrane. The
waveguide is ”seeded” using a SAFEX fog machine. The seeding is introduced
during 3 to 5 seconds and 10 to 15 minutes are required before doing the mea-
surement. The CCD Camera is positioned perpendicular to the light sheet and
focused on the illuminated fog particles. The observation window corresponds
to a rectangular section of the volume under study (dimensions 2ra x L). Mea-
surements are realized for 20 equally spaced phase steps in the acoustic period
(see Fig. 3).
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Fig. 2. Experimental set-up
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Fig. 3. View of the 20 measurement phases during one acoustic period.

3.2 Experimental results

3.2.1 General analysis

The acoustic velocity field measured for the phase 3 of the acoustic period
is shown on the Fig. 4. The z-axis is the guide axis. The dimensions of the
PIV image are 0.02×0.024 m2. This PIV image highlights the evolution of the
acoustic velocity field streamlines at the vicinity of the microphone membrane.
In this representation, the velocity vectors go toward the membrane for a
positive velocity amplitude. The shape of the field lines are approximately
symmetrical around the microphone axis.
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Fig. 4. View of experimental acoustic velocity field in the vicinity of the microphone
for phase 3.

3.2.2 Longitudinal acoustic velocity

Fig. 5 shows the longitudinal acoustic velocity vz as a function of r for z = 0 m
and for z = 0.015 m. In this figure, the microphone membrane is located at
z = 0.015 m. This figure shows that the longitudinal velocity amplitude is
almost constant for z = 0. The acoustic wave can therefore be considered
to be plane at this position (corresponding to surface S1, see Fig. 1) in the
domain under study. However, velocity vn1 shows a variation of ±5.10−3 m.s−1

around the mean value (5.10−2 m.s−1), which introduces an uncertainty in the
pressure estimation.

In the very closed vicinity of the microphone (the region defined by r ∈

[−0.004; 0.004] m and z ∈ [0.013; 0.015] m), the acoustic velocity field vanishes
due to the membrane stiffness. For r = 0, the amplitude of the acoustic veloc-
ity vz decreases from 0.045 m.s−1 (z = 0 m) to 2.10−3 m.s−1 (z = 0.015 m).
Assuming the membrane velocity equals the acoustic velocity at z = 0.015 m,
this result shows that the membrane velocity is very small compared with the
acoustic velocity (ratio ≃ 1/22) measured at z = 0 (15 mm from the mem-
brane). This result should be confirmed by complementary direct measure-
ments of the membrane velocity. In further works, the microphone membrane
velocity should be measured by means of a Laser Vibrometer in order to con-
firm this hypothesis.
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Fig. 5. Acoustic velocity amplitude vz as a function of r for z = 0 m (a) and
z = 0.015 m (b).

3.2.3 Radial acoustic velocity

Figure 6A shows the radial acoustic velocity amplitude vr as a function of r
for z = 0 m and z = 0.015 m. In the very close vicinity of the membrane,
the acoustic velocity amplitude vr increases with r. At z = 0.015 m and for
r = 0 m, the radial acoustic velocity amplitude is vr = 1.10−4 m.s−1 and for
r = 0.011 m, vr = 0.45 m.s−1. vr is maximum for r = 0.012 m which illustrates
the acoustic leakage at the edge of the microphone. In the vicinity of the
microphone, the distribution of the radial velocity amplitude is not exactly
symetric (Fig. 6A). This asymetry can be due to microphone misalignment,
error in the velocity estimation with PIV or a weak air current caused by
thermal effects. For greater distance from the microphone (z < 0.015m), the
radial velocity amplitude becomes symetric as shown on Fig. 6B.

Finally, Fig. 7 illustrates the radial acoustic velocity amplitude vr as a func-
tion of z for r = 0 m and r = 0.012 m corresponding to surface S3 shown in
Fig. 1. The radial acoustic velocity amplitude increases from zero (r = 0 m)
to 0.033 m.s−1 (r = 0.012 m). This phenomenon illustrates again the presence
of acoustic leakage on the edge of the microphone and has to be taken into
account in equation 12.

Taking these experimental results into account, we consider in the following
that the longitudinal velocity vn1

is constant, that the membrane velocity vn2

can be neglected (vn2
= 0) and that the radial velocity vn3

depends on the z
coordinate. The profile of vn3

as a function of z is estimated analytically in
the following (§5).
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4 Analytical model of the acoustic pressure field in the vicinity of

a microphone membrane

In this section, we derive a specific expression of acoustic pressure in volume
V using the normal velocity profiles vn1

and vn3
estimated from experimental

results (§3). We assume an axial symmetry of the system, which allows the
derivation of a 2D model of the acoustic field.
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4.1 Green function of the system

The Green function G(~r, ~r0) solution of the problem described by eq. (7), can
be presented as

(∆~w + δz + k2)G(~w, z; ~w0, z0) = −δ(~w − ~w0)δ(z − z0) in V, (13)

where ∆~w = (1/r)∂r(r∂r) + (1/r2)∂θ2. The boundary conditions (eqs. (8), (9)
and (10)) are expressed as following

∂n0
G(~r, ~r0) = ∂z0

G(~w, z; ~w0, z0) = 0 for z = 0, (14)

∂n0
G(~r, ~r0) = ∂z0

G(~w, z; ~w0, z0) = 0 for z = L, (15)

∂n0
G(~r, ~r0) = ∂r0

G(~w, z; ~w0, z0) = 0 for r = ra.. (16)

The Green function G(~w, z; ~w0, z0) can be written as a discrete sum of eigen-
functions Ψµν(~w) of the cylinder V under the form

G(~w, z; ~w0, z0) =
∞
∑

µ,ν=0

gµν(z, z0)Ψµν(~w0)Ψµν(~w), (17)

where gµ,ν(z, z0) are dependent on the position z and Ψµν(~w) are solutions of
the following problem

(∆~w + kwµν2)Ψµν(~w) = −δ(~w − ~w0) ∀r ∈ (0, ra) and ∀θ ∈ (0, 2π), (18)

∂nΨµν(~w) = 0 for r = ra and ∀θ ∈ (0, 2π). (19)

The eigenfunctions Ψµν(~w) = Ψµν(r, θ) take the following form

Ψµν(r, θ) = Aµν cos(µθ)Jµ(kwµνr), (20)

where Jµ is the Bessel function and the eigenvalues kwµν are given by

kwµν =
γµν

ra

, with J ′

µ(γµν) = 0. (21)

The coefficients Aµν are found using the orthogonality of the eigenfunctions
and are expressed as

Aµν =
2

(1 + δµ0)πra2
(

1 − µ2

γµν2

)

J2µ(γµν)
. (22)

Using eqs. (13), (17) and (18), the coefficients gµν(z, z0) are solutions of the
following relation

(δz2 + k2zµν)gµν(z, z0) = δ(z − z0) for z ∈ (0, L) (23)
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with k2zµν = k2 − kwµν2. The boundary conditions are given by

∂zgµν(z, z0) = 0 for z = 0, (24)

∂zgµν(z, z0) = 0 for z = L, (25)

and the solution is written

gµν(z, z0) = −
cos(kzµνz) cos[kzµν(z0 − L)]

kzµν sin(kzµνL)
if z < z0, (26)

gµν(z, z0) = −
cos(kzµνz0) cos[kzµν(z − L)]

kzµν sin(kzµνL)
if z > z0. (27)

4.2 General formulation of acoustic pressure in the volume V

The acoustic pressure in the volume V can now be determined by means of the
Green function of the system and the normal acoustic velocity on the surface
S. Using eq. (17) in eq. (12), the pressure is written as

p(~r) = −jωρ
∑

i

∫∫

Si

∞
∑

µ,ν=0

gµν(z, z0)Ψµν(~w0)Ψµν(~w)vni
dSi, (28)

for i = 1, 2 and 3 corresponding respectively to the surface Si and the normal
velocities vni

. Setting

pi(r, θ, z) = −jωρ
∞
∑

µ,ν=0

∫∫

Si

gµν(z, z0)Ψµν(~w0)Ψµν(~w)vni
dSi (29)

the total pressure in the volume V is written as

p(r, θ, z) =
3
∑

i=1

pi(r, θ, z) (30)

where i indicates the considered surface of the volume. The pressure due to
the different surfaces can now be calculated separately to show the influence
of each surface area.

4.2.1 Calculation of the pressure field p1(r, θ, z)

Using eqs. (20) and (21) in eq. (29), the pressure field p1(r, θ, z) is expressed
as
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p1(r, θ, z) =−jωρ
∞
∑

µ,ν=0

gµν(z, 0)A2µν cos(µθ)Jµ(
γµν

ra

r)2πδm0

∫ ra

0

vn1
(r0)Jµ(

γµν

ra

r0)r0dr0dθ0 (31)

where vn1
(r0), the normal acoustic velocity field for x = 0, is independant of

θ. Taking into account the cylindrical symmetry of the system, the acoustic
pressure field p1 is also independent of θ (which implies that µ = 0) and is
written as

p1(r, z) = −jωρ
∞
∑

ν=0

g0ν(z, 0)A20νJ0(
γ0ν

ra

r)2π
∫ ra

0

vn1
(r0)J0(

γ0ν

ra

r0)r0dr0dθ0,

(32)
with

g0ν(z, 0) = −
cos(kz0ν(z − L))

kz0ν sin(kz0νL)
for z > 0, (33)

and

A20ν = −
1

ra2πJ0(γ0ν)
. (34)

4.2.2 Calculation of the pressure field p2(r, θ, z)

The acoustic pressure field p2(r, θ, z), considered as independent of θ (due to
the cylindrical symmetry), can be expressed as

p2(r, z) = −jωρ
∞
∑

ν=0

g0ν(z, L)A20νJ0(
γ0ν

ra

r)2π
∫ ra

0

vn2
(r0)J0(

γ0ν

ra

r0)r0dr0dθ0,

(35)
with

g0ν(z, L) = −
cos(kz0νz)

kz0ν sin(kz0νL)
for z < L, (36)

and A20ν defined by eq. (34).

4.2.3 Calculation of the pressure field p3(r, θ, z)

The normal acoustic velocity vn3
on the surface S3, considered as independent

of r and θ (due to the cylindrical symmetry), depends only on the z coordinate.
The acoustic pressure field p3(r, θ, z), considered as independent of θ (due to
the cylindrical symmetry), is expressed as a function of the normal acoustic
velocity vn3

(z) on the surface S3 in using eqs. (20) and (21)

p3(r, z) = −jωρ
∞
∑

ν=0

A20νJ0(γ0ν)J0(
γ0ν

ra

r)2πra

∫ L

0

vn3
(z0)g0ν(z, z0)dz0. (37)
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The expression for g0ν(z, z0) depends on the acoustic velocity profile vn3
(z) on

the surface S3.

4.3 Calculation of acoustic pressure in the volume V

Using eqs. (30), (32), (35) and (37) and, as shown by the experimental results
(section 3.2), considering a incident plane wave on the surface S1 and vn2

(r) =
0 on the surface S2, the total pressure field in the volume V can be written as

p(r, z) = jωρ
cos[k(z − L)]

k sin kL
vn1

+ j
2ωρ

ra

(

∞
∑

ν=0

J0(
γ0ν

ra
r)

J0(γ0ν)

1

kz0ν sin(kz0νL)
{

cos[kz0ν(z − L)]
∫ z

0

vn3
(z0) cos[kz0νz0]dz0

+ cos[kz0νz]
∫ L

z
vn3

(z0) cos[kz0ν(z0 − L)]dz0

})

, (38)

where A0ν2 and g0ν(z, z0) have been substituted by their expressions given by
eqs. (34), (24) and (25).

To express the total pressure field in the volume V , the acoustic velocity profile
vn3

(z) on the surface S3 must be determined. The experimental results (section
3.2) suggest that this profile can be modeled by a parabolic curve defined as

vn3
(z) = −ηz2 for z ∈ [0, L] and η > 0. (39)

Finally, the calculation of the integral function in eq. (38) using eq. (39) leads
to the following result for the total pressure in the volume V (see appendix
??)

p(r, z) = jωρ
cos[k(z − L)]

k sin kL
vn1

− j
2ωρ

ra

(

∞
∑

ν=0

J0(
γ0ν

ra
r)

J0(γ0ν)

η

k2z0ν sin(kz0νL)

×

{

z2 sin(kz0νL) +
2

kz0ν

[

−
1

kz0ν

sin(kz0νL) + L cos(kz0νz)
]})

,(40)

where k = kz00.

Now, the characterization of the acoustic pressure field in the vicinity of the
microphone (volume V ) can be made with the knowledge of the normal acous-
tic velocities on the volume boundaries.
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5 Results and discussion

The calculation the acoustic pressure in front of the microphone requires the
determination of the coefficient of the parabolic curve describing the variation
of the normal acoustic velocity on the surface S3. This coefficient η defined in
eq. (39) is determined by a minimization method. Fig. 8 shows a comparison
between the experimental data and the model (defined by eq. (39)) with η =
135 m−1.s−1. PIV measurements of the acoustic velocity amplitude normal to
S3 have been obtained for the phase 3 of the acoustic period (see Fig. 3).
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Fig. 8. Normal acoustic velocity amplitude on the surface S3 as a function of z,
experiment (−) and model (· · · ) defined by eq. (39).

Figs. 9 and 10 show the calculation of the pressure amplitude in the volume
V for ν = 2 modes and for ν = 90 modes respectively (ν > 0 corresponds
to radial modes defined in eq. 40). The influence of the number of modes on
the calculation of the acoustic pressure is clearly shown by comparing these
two figures. The diffraction effects on the acoustic wave due to the micro-
phone are visible even with 2 modes but this phenomenon is described more
precisely when the modes number increases. According to the experimental
results, the presence of the microphone distorts the velocity field streamlines
allowing an acoustic leak on the border of the microphone (Fig. 4). This phe-
nomenon leads to an increase of the acoustic pressure amplitude on the edge
of the microphone. The acoustic pressure amplitude is not constant along the
microphone membrane, varying from 126.65 dB at the microphone center to
126.8 dB at the microphone border. Due to the volume dimension and to the
acoustic frequency (f = 680 Hz), only the plane mode is propagative and
all the higher modes are evanescent. The result of the calculation shows that
the microphone edge creates diffraction of the plane wave which leads to the
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redistribution of the acoustic energy of all the modes and consequently to the
excitation of higher modes.

MICROPHONE

P
ressure am

plitude (dB
)

r (m)

z

(m)

Fig. 9. Calculation of acoustic pressure amplitude in the vicinity of the microphone
using eq. (40) with ν = 2.
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)

z
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Fig. 10. Calculation of acoustic pressure amplitude in the vicinity of the microphone
using eq. (40) with ν = 90.

6 Conclusion

A microphone subjected to a plane wave has been studied. Using a propaga-
tion model in a fluid domain located close to the microphone membrane and
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measuring the acoustic velocities on the boundary on the domain provides an
estimate of the acoustic pressure on the microphone membrane. This model
assumes that the normal acoustic velocity on the microphone membrane is
uniformly zero and considers the incident wave as plane.

This preliminary study of the acoustic pressure field in the very close vicinity
of a microphone highlights an acoustic pressure gradient along the microphone
membrane in order of magnitude of 0.1 dB. This acoustic pressure difference
existing between the center and the edge of the membrane can be very prob-
lematic when microphone calibration requires an uncertainty less than 0.1 dB.
The hypothesis used in this work (incident plane wave, parabolic profile of
radial velocity and motionless membrane) tend to minimize this pressure gra-
dient value. A numerical calculation of integrals (Green fomulation) would
enable to ignore these hypothesis and could lead to a more realistic pressure
estimation.

This preliminary study opens new horizons in microphone calibration research,
especially in free field conditions. These first results on the acoustic pressure
field in the very close vicinity set an important question : what is measured by
the microphone since the acoustic pressure is not uniform along the membrane
?

In the future, these results should be validated by measuring the acoustic pres-
sure field in the very close vicinity of the microphone using, for instance, a
small probe to not perturb the acoustic field. The proposed model can be im-
proved by taking into account the membrane motion which could be estimated
using laser probe measurements.

References

[1] AJ. Zuckenwar and GC. Herring Calibration of the pressure sensitivity of
microphones by e free-field method at frequencies up to 80 kHz J. Acoust.

Soc. Am., 119(1):320–329, 2005.

[2] International Electrotechnical Commission IEC 61094-2:1992. Measurement
microphone - Part 2: primary method for the pressure calibration of laboratory
standard microphones by the reciprocity method. International Electrotechnical
Commission; 1992.

[3] S. Barrera Figueroa, K. Rasmussen, F. Jacobsen. A time-selective technique
for free-field reciprocity calibration of condenser microphones. J. Acoust. Soc.

Am., 114(3):1467–76, 2003.

[4] S. Barrera Figueroa, K. Rasmussen, F. Jacobsen. On the interference between
the two microphones in free-field reciprocity calibration. J. Acoust. Soc. Am.,
116(5):2771–2778, 2004.

17



[5] International Electrotechnical Commission IEC 61094-3:1995. Measurement
microphone - Part 3: primary method for free field calibration of laboratory
standard microphones by the reciprocity method. International Electrotechnical
Commission; 1995.

[6] RP. wagner and V. Nedzelnitsky Determination of acoustic center correction
values for type LS2aP microphones at normal incidence J. Acoust. Soc. Am.,
104(1):192–1203, 1998.

[7] KJ. Taylor. Absolute calibration of microphone by a Laser-Doppler technique.
J. Acoust. Soc. Am., 70(4):939–945, 1981.

[8] TJ. MacGillivray, DM. Campbell, CA. Greated, R. Barham. The development
of a microphone calibration technique using Laser Doppler anemometry.
Acustica-Acta Acustica, 88(1):135–41, 2002.

[9] TJ. MacGillivray, DM. Campbell, CA. Greated, R. Barham. The development
of a microphone calibration technique using photon correlation spectroscopy.
Acustica-Acta Acustica, 89(2):369–76, 2003.

[10] T. Koukoulas, P. Theobald, T. Schlicke and R. Barham. Towards a future
primary method for microphone calibration: Optical measurement of acoustic
velocity in low seeding conditions Optics and Lasers in Engineering, 46:791–796,
2008.

[11] A. Degroot, R. MacDonald, O. Richoux, B. Gazengel and M. Campbell.
Suitability of laser Doppler velocimetry for the calibration of pressure
microphones Appl. Acoust., 69:1308–1317, 2008.

[12] B. Gazengel, O. Richoux and P. Rouquier. Characterization of a loudspeaker
free field radiation by laser doppler velocimetry Acustica-Acta Acustica,
93(3):447–456, 2007.

[13] S. Schedin, A. O. Wahlin, and P. O. Gren. Transient acoustic near field in air
generated by impacted plates J. Acoust. Soc. Am., 99(2):700–705, 1996.

[14] S. Moreau, R. Boucheron, H. Bailliet and J-C. Valire. Mesures LDV et PIV dans

les couches limites acoustiques In 9ieme Congrès Francophone de Vélocimétrie
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