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Fracture of elastomers under static mixed mode:
the strain-energy-density factor

A. Hamdi, N. Aït Hocine, M. Naït Abdelaziz, N. Benseddiq

Abstract This work deals with the fracture of rubbers

under a mixed mode loading (I + II) and it is an exten-

sion of our previous papers on that subject [Aït Hocine

N, Naït Abdelaziz M, Imad A (2002) Int J Fract 117:1–

23; Aït Hocine N, Naït Abdelaziz M (2004) In: Sih GC,

Kermanidis B, Pantelakis G (eds) 6th international con-

ference for mesomechanics. Patras (Greece), May 31–

June 4, pp 381–385]. An experimental and a numerical

analysis were carried out using a Styrene Butadiene

Rubber (SBR) filled with 20 and 30% of carbon black.

Sheets with an initial central crack (CCT specimens)

inclined with a given angle compared to the loading

direction were used. The J -integral and its critical val-

ues Jc (fracture surface energy) were determined by

combining experimental data and finite element results.

These critical values, determined at the onset of crack

growth, were found to be quite constant for each elas-

tomer tested, which suggests that Jc represents a rea-

sonable fracture criterion of such materials. Then, the

strain–stress field and the strain-energy-density fac-

tor S, earlier introduced by Sih [Sih GC (1974) Int

J Fract 10(3):305–321; Sih GC (1991) Mechanics of

fracture initiation and propagation. Kluwer Academic

A. Hamdi · M. Naït Abdelaziz · N. Benseddiq

LML, UMR CNRS 8107, Polytech’Lille,

avenue P. Langevin, 59655 Villeneuve-in Ascq, France

N. Aït Hocine (B)

Laboratoire de Rhéologie, Université de Bretagne

Occidentale, 6 avenue Victor Le Gorgeu, C.S. 93837,

29238 Brest, France

e-mail: nourredine.aithocine@univ-brest.fr

Publishers, Dordrecht, 428 pp] were numerically cal-

culated around the crack tip. According to the exper-

imental observations, the plan of crack propagation is

perpendicular to the direction of the maximum princi-

pal stretch. Moreover, as suggested by Sih in the frame-

work of linear elastic fracture mechanics (LEFM), the

minimum values Smin of the factor S are reached at the

points corresponding to the crack propagation direc-

tion. These results suggest that the concept of the

maximum principal stretch and the one of the strain-

energy-density factor can be used as indicators of the

crack propagation direction.

Keywords Rubber · J -integral ·
Strain-energy-density factor · Fracture criterion ·
Crack propagation direction

1 Introduction

Generally speaking, two general approaches are avail-

able when dealing with the fracture of rubbers. The first

one is based on the works of Griffith (1920, 1924) which

originated more than 80 years ago. Since the energy bal-

ance is written for the whole specimen, the knowledge

of the stress and strain distribution, especially around

the crack tip, is not required. This energy balance leads

to the definition of a parameter, called J and represent-

ing the energy needed to extend the pre-existing defect

of a unit area A:
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J = −
dU

d A

∣

∣

∣

∣

u

(1)

In relation (1), U is the potential strain energy (equiv-

alent to the area under the load–displacement curve

issued from the uniaxial tensile test). The suffix u indi-

cates that derivation is taken under a constant displace-

ment. The parameter J given by Eq. 1 is equivalent to

the well-known J -integral initially introduced by Che-

repanov (1967) and Rice (1968) in the case of small

deformations:

J =
∫

Ŵ

(

W dx2 − →
t

∂
→
u

∂x1
ds

)

(2)

where W denotes the strain energy density, (x1, x2) is

an orthogonal co-ordinate system with x1-axis paral-

lel to the notch surface, Ŵ is a curve surrounding the

notch tip, ds is a small element of Ŵ,
→
t is the traction

vector related to the Cauchy stress tensor components

σi j by ti = σi j · n j (i = 1, 2 and j = 1, 2),
→
u is the

displacement vector and
→
n is the outward normal on Ŵ.

The integral assumes the same value for all paths Ŵ sur-

rounding the crack tip. Although Rice’s proof was given

in the context of infinitesimal deformations with linear

or non-linear stress–strain relationships, the same con-

clusions hold true for finite deformations (Knowles and

Sternberg 1972; Wang 1973; Oh 1976; Chang and Gao

1997). In the latter case, the J -integral of Rice may

still be written in the form of Eq. 2 (Wang 1973; Oh

1976; Chang and Gao 1997) provided that W repre-

sents the strain energy density per unit initial volume,
→
t is nominal traction vector, σi j are contravariant com-

ponents of the stress tensor resolved with respect to the

initial base vectors (
→
x 1,

→
x 2) and referring to the unde-

formed geometry, x1 and x2 are the initial cartesian

co-ordinates, and ds is the differential arc length along

Ŵ defined in the undeformed state.

Hence, crack growth will start at some critical value

Jc of J . This value should be an intrinsic property of

the material, i.e. it should be independent of the crack

geometry and the loading. The widely used crack initi-

ation criterion in rubbers is the tearing energy concept

introduced by Rivlin and Thomas (1953). This crite-

rion represents an extension of Griffith’s (1920, 1924)

approach initially developed in the case of the linear

elastic framework. It is also equivalent to the energy

rate interpretation of the J -integral given by relation

(1) (Rice 1968). Unfortunately, such a criterion is not

able to predict the propagation direction of a crack. In

this case, strain and stress fields or their combination

θ
r

Crack

Fig. 1 Crack in general stress field

can represent good alternative approaches that were

originally developed to study the fracture of metallic

materials.

Dealing with linear elastic mechanical behaviour,

Sih (1974, 1991) theoretically analysed the strain-

energy-density field near the crack tip under multiaxial

loading (Fig. 1). Since the singularity in the strain-

energy-density is of the form 1/r , he defined an energy

parameter S, named “the strain-energy-density factor”

written as:

S = W · r (3)

where W is the strain-energy-density and r is a fixed

radial distance measured from the crack tip (Fig. 1). r

should be small compared with the crack length. Then,

he postulated that:

– the initial crack growth takes place in the direction

along which the strain-energy-density factor exhib-

its a stationary (minimum Smin) value, i.e. ∂S
∂θ

= 0

at which θ = θ0 with −π < θ0 < +π .

– the critical value Smin
c of Smin could represent a frac-

ture toughness measure of the material.

Indeed, r being constant, an initial crack will prop-

agate in the direction which requires the least energy,

that means a minimum value Smin of S.

The series of experiments that he performed on Plex-

iglas materials confirmed his theoretical predictions.

Moreover, in the last decade, this mesoscopic approach

has been successfully extended to other kinds of mate-

rials (Yue et al. 1997; Liang et al. 2000; Zheng et al.

2001; Sih 2004). However, to date it has never been
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applied in the case of finite deformations except in

our recent work (Aït Hocine et al. 2004) dealing with

the fracture of rubbers under mode (I) loading. Dou-

ble edge notch in tension (DENT) specimens with var-

ious crack lengths were experimentally tested and a

finite element (FE) analysis was performed. The results

obtained particularly highlighted that the critical value

Sc of the strain-energy-density factor S seems to gov-

ern the crack initiation in elastomers according to the

analysis of such specimens submitted to mode (I) load-

ing.

In the present study, we try to verify if this concept

can be extended to very highly deformable materials

under a mixed mode (I + II). This combined loading

was assumed to be induced around the crack tip by

using sheets containing a central crack inclined with a

given angle regarding the uniaxial loading direction.

2 Experimental study

2.1 Materials, specimens, tests

The experiments were carried out using a Styrene

Butadiene Rubber (SBR) filled with carbon black in

the proportions of 20% (SBR1) and 30% (SBR2). Such

synthetic elastomers show substantially non-linear

reversible elasticity and display large deformations.

The constitutive law is identified from the engineer-

ing stress–strain relationship that is provided by tensile

tests performed on an Instron device on three rectangu-

lar unnotched sheets of 2 mm thickness, 30 mm length

and 6 mm width. The load cell measurements allow the

computation of the engineering stress by dividing the

applied load by the original area of the specimen cross

section. Corresponding engineering strains are deduced

from the elongation measured with a CCD camera that

follows the changes in the distance l0 between two

circle marks printed on the surface of the specimen

(Fig. 2). Data measurements are recorded using a com-

puter which is connected to the experimental setup.

Fracture tests were performed using specimens con-

taining an inclined central crack introduced by a razor

blade. The dimensions of these specimens are: length

h = 116 mm, width w = 70 mm and thickness B = 2 mm

(Fig. 3). The considered crack length is a = 38.5 mm

with four orientations defined by the angle α = {0◦,
15◦, 30◦, 45◦}. Specimens were loaded in a uniaxial

Fig. 2 Specimen geometry

used for the identification of

constitutive law constants
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Fig. 3 Geometry of the centre cracked specimens used in

fracture tests

direction but a mixed mode (I + II) could be induced

around the crack tip because of the crack inclination.

An out plane displacement was observed at the free

edge of the crack, but it was significant only at high

stretches.

Loads versus displacements were recorded up to

total breaking. The maximum global stretches λc at

crack initiation were noted using an LCD camera that

screens on a computer the moving picture of the crack

tip zone. The obtained values are reported in Table 1.

The recorded images clearly show that a pre-existing

notch always propagates perpendicularly to the load-

ing direction (Fig. 4), whatever the initial crack orien-

tation is.

2.2 Constitutive law

The mechanical behaviour of rubbers is commonly

described using a hyperelastic formalism leading to

the expressions of the strain-energy-density W defined

in terms of the strain invariants (Oden 1972). Cauchy

stresses as a function of stretches can then be derived

from the function W .
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Table 1 Maximum global

stretches λc at crack

initiation

Angle α(◦) Maximum global stretches λc

SBR1 SBR2

0 1.36 1.41

15 1.41 1.45

30 1.49 1.53

45 1.65 1.69

Fig. 4 Initiation and

propagation of a

pre-existing crack in rubbers

studied. (a) Crack initiation

(initial crack orientation

α = 45◦); (b) total breaking

Loading

Crack

α=15
°

Crack

α=45
°

Crack

α=0
°

Crack

α=30
°

Loading

Initial crack
Propagation

a) Crack initiation (initial crack orientation °= 45α ) b) Total breaking

Table 2 Material constants

Material C10 (MPa) C20 (MPa) C30 (MPa) C01 (MPa) C02 (MPa)

SBR1 2.17×10−1 3.96×10−2 9.06×10−4 4.33×10−2 2.40×10−2

C03 (MPa) C11 (MPa) C12 (MPa) C21 (MPa)

3.11×10−7 −4.83×10−2 −1.49×10−5 −5.73×10−3

SBR2 C10 (MPa) C20 (MPa) C01 (MPa) C02 (MPa) C11 (MPa)

3.76×10−1 1.27×10−2 1.14×10−2 2.11×10−5 3.81×10−4

Identification of the constitutive law parameters

requires both uniaxial and biaxial loading experimental

data. Since only uniaxial experimental data are avail-

able, a theoretical response under biaxial loading is

built using the method introduced by Lambert-Diani

(1999). This method is based on the fact that for a

given experimental uniaxial strain εuni corresponding

to a stress σuni, an equivalent equibiaxial deformation

ε
eq
bia exists corresponding to the same stress σ

eq
bia = σuni.

Fitting experimental uniaxial and theoretical biaxial

engineering stress–strain curves leads to identifying the

model that best describes the mechanical behaviour of

our materials. The constitutive laws of the SBR1 and

the SBR2 seem to follow, with the assumption of a

nearly incompressibility condition, the Mooney–Rivlin

(1948) model with, respectively, 9 and 5 parameters:

W =
m

∑

i=0

n
∑

j=0

Ci j (I1 − 3)i (I2 − 3) j ; C00 = 0 (4)

where Ci j are the material constants, I1 and I2 are the

first and the second invariants of Cauchy Green’s right

deformation tensor and λi = 1 + εi are the principal

elongations (εi being engineering strains).

Material parameter values were evaluated by fitting

available data (Table 2) and were used to analytically

calculate the engineering stresses and strains that were

then compared to experimental uniaxial and theoretical

biaxial data. A good agreement is observed for the two

materials studied, as illustrated in Fig. 5. Moreover, it

must be noted that, beyond the limit of the experimental

measure field, predicted stresses continually increase
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Fig. 5 Engineering stress–strain evolution of the material

with the stretch λ, which ensures that the convergence

of the finite element calculations will not be hobbled.

3 Finite elements study

3.1 Model and meshing

All the above mentioned fracture tests were numeri-

cally simulated using the finite elements (FE) program

“Ansys”. The whole sheet was modelled except when

the crack was perpendicular to the loading direction

(α = 0◦) where, according to symmetries, only a quar-

ter of the specimen was considered. The crack tip is not

sharp and exhibits a curvature radius of 0.1 mm, which

corresponds to approximately half of the razor blade

thickness. Introducing such a radius avoids the mesh-

ing distortion at the vicinity of the crack tip under high

deformations. Figure 6 shows, as an example, a selected

meshing for a sample with the initial crack orientation

α = 30◦. This meshing contains only quadrilateral ele-

ments with eight nodes for the whole specimen and is

refined in the vicinity of the crack tip. In this zone, the

semi-circle representing the crack notch is subdivided

into 24 equal segments. According to this division, the

dimensions of first raw of the elements surrounding the

crack tip are 0.013 × 0.34 mm2. Plane stress and large

strains were assumed in the analysis.

The FE calculation was achieved by gradually

increasing the displacements applied to the nodes

located at the top of the specimen, with equilibrium

iteration at each step (full Newton–Raphson method).

4 Results and discussion

Below we shall discuss the ability of the following

parameters:

– the J -integral,

– the principal stretches and stresses,

– the strain-energy-density (SED) factor,

Fig. 6 Example of a

selected meshing (α = 30◦)

W

hh

(Zoom in the vicinity of the crack)

Crack
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to be used as fracture criteria and/or indicators of the

crack propagation direction in rubbers. Only selected

examples are shown when the results exhibit the same

trends for all other configurations studied.

4.1 J -Integral

The J -integral is computed using Eq. 2, considering

finite deformations, through three different contours

surrounding the crack tip (Fig. 7). Each contour Ŵ

intersects elements of gridwork at a series of points

required for the numerical interpolation. Bekker (1983)

suggested the contour element intersection should pass

through the integration points so as to avoid such fur-

ther interpolation and this is ideally suited for accurate

calculation of the strain-energy-density W .

The path independence of the J -integral is clearly

illustrated in Fig. 8 as an example for a particular ini-

tial crack orientation. This property was verified for all

configurations studied and the slight difference pointed

out is less than 0.5%.

The critical values of J corresponding to the crack

initiation are reported in Fig. 9 as a function of the ini-

tial crack orientation α. This graph clearly shows that

the critical values Jc are quite independent of the angle

α for the two materials studied with a maximal discrep-

ancy of about 4%. This result means that Jc could also

represent, as previously observed for the mode (I) load-

ing (Aït Hocine et al. 2002), a fracture criterion of rub-

bers under mixed mode. However, J -parameter cannot

predict the crack propagation direction. So, which local

parameter is able to achieve it in the case of rubbers?

Fig. 7 Contours delimiting some elements used for the

J -integral evaluation

0.99

1

1.01

1 1.1 1.2 1.3 1.4 1.5

Global stretch (λ)

)
3.t

n
oc( 

J / 
J

J (cont.1) / J (cont.3)

J (cont.2) / J (cont.3)

Fig. 8 Influence of the contour position on the J -integral values

(α = 30◦)
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J
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SBR1
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Fig. 9 Numerical fracture energy Jc as a function of the initial

crack orientation α

The analyses of some local parameters such as princi-

pal stretches, principal stresses or SED factor may give

an adequate answer.

4.2 Principal stretches and principal stresses

The maximum principal stretch criterion was intro-

duced by Cadwell et al. in 1940 as a fracture criterion in

rubbers containing no defects. Moreover, it was exper-

imentally observed that the crack nucleation plane or

the propagation direction of a pre-existing defect is per-

pendicular to the maximum principal stretch. In fact,

strain is a natural choice because it can be linked to the

maximum stretch which can be supported by a molec-

ular chain (Gent 2004; Kakavas and Blatz 2005).
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Fig. 10 Evolution of the

principal elongations as a

function of the stretch λ

(SBR2, α = 30◦)
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The F.E. analyses allow the calculation of the Green-

Lagrange strain tensor (E) components. These values

were computed at the node located in the middle of

the semi-circle representing the notch tip. Characteris-

tics of the selected meshing are given in Sect. 3.1. The

principal stretches were then obtained according to the

following relationship:

E =
1

2
(C − I ) (5)

where C = F
T

F and I is the unit tensor, F being the

deformation gradient tensor.

The principal directions (I, II, III) were analytically

determined and they refer to the undeformed geome-

try since the used strain tensor measurements are purely

Lagrangian. In these principal directions, Eq. 5

becomes:

Ei =
1

2
(λ2

i − 1), i = {1, 2, 3} since F =

⎡

⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤

⎦ .

(6)

It appears that the principal directions (I, II) coincide

with horizontal and vertical directions (1, 2) indepen-

dently of the loading level (Fig. 10). Indeed, it was

found that the angle β indicating the orientation of a

principal direction regarding the horizontal axis is equal

to zero no matter what both the applied stretch value

and the crack orientation α were. The evolution of the

two principal stretches is plotted in Fig. 10. It high-

lights that the principal elongation λ1 is negligible in

comparison to λ2 independently of the loading level.

Although it is only shown for a typical example, all

the results obtained exhibit the same trends. The cri-

terion of crack propagation direction based upon the

maximum principal stretch is in good agreement with

3

4
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°
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l
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nir

p
l

acitir
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Fig. 11 Critical principal elongations λ2 as a function of the

angle “α”

the experimental observations since it always predicts

a horizontal direction.

One may notice that the strain state at the crack tip

is closer to that of uniaxial tension (Fig. 10) since in

this case: λ1 ≈ 1/
√

λ2. Indeed, under the incompress-

ibility assumption, the deformation gradient tensor is

expressed as:

F =

⎡

⎣

λ−1/2 0 0

0 λ 0

0 0 λ−1/2

⎤

⎦ (7)

Moreover, as shown in Fig. 11, the critical values

of the principal stretches corresponding to crack initi-

ation, seem to be quite independent of the crack orien-

tation even they slightly increase with α. Indeed, the

values exhibit a scattering of about ±4%. One may

conclude that this quantity is a good candidate for a

fracture criterion parameter of such materials.
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“α”

The same analysis was achieved by examining the

principal first Piola-Kirchhoff (PK1) stresses which is

the conjugate of F . The evolution of its critical principal

values as function of α is shown in Fig. 12. The depen-

dence on α is here more accentuated. The scattering

around an average value is of about ±12%. This diver-

gence is higher than that obtained for λ because of the

extreme hardening of the material when approaching

failure (a small increase of the strain leads to an impor-

tant drop of the stress).

So, the crack initiation criterion based upon the max-

imum principal stretches is more relevant than the one

provided by the first Piola-Kirchhoff stress values.

Three kinds of mesh refinements in the vicinity of

the crack tip were used to examine the influence of

the element size on the strain and stress values. As

expected, the smaller is the element size, the higher

are strains and stresses. However, the critical values of

these quantities keep the same trends independently of

the meshing type as exhibited by Figs. 11 and 12 for

elongations and PK1 stresses, as an example, along the

principal direction II.

4.3 Strain-energy-density (SED) factor

The strain-energy-density was evaluated at all nodes

and its distribution was analysed in the surrounding

crack tip zone. The sensitivity of this quantity to mesh

refinement was analysed. As illustrated in Fig. 13 for an

angle α = 30◦ and for a given global stretch λ = 1.17,

the element size has no influence on the SED factor S

0.4

0.6

0.8

1

1.2

1.4

-90 -60 -30 0 30 60 90

Angle θ°

)²
m/

J
k(

r.
W

=
S Element size 0.17mm

0.34mm

0.70mm

λ = 1.17 ; r = 2.25 mm

Fig. 13 Influence of meshing on the evolution of the SED factor

(α = 30◦)

(relation 3). It must be noted that similar results were

obtained for all other initial crack orientations and for

all the stretch range up to breaking. Hence, one may

conclude that it is reasonable to denote the magnitude

of the strain-energy-density W by the SED factor S as

was initially proposed by Sih in LEFM framework (Sih

1974, 1991).

Checking the element size of 0.34 mm in the vicinity

of the crack, the numerical parameter S was calculated

at all nodes surrounding the notch, for different load-

ing levels especially at the onset of the crack growth.

The results obtained are shown in Fig. 14 in terms of

S as a function of the angle θ (polar co-ordinate) for

several assigned values of the radius r . Although, the

results reported only concern an SBR2 specimen with

initial crack orientation α = 30◦ and for two given

stretches, the same trends were observed for all other

cases considered except when the loading is too high.

In that case, elements are excessively distorted and the

accuracy of the results is no longer ensured.

Figure 14 highlights that, out of a core region sur-

rounding the crack tip (region under complex defor-

mation, i.e. where the nature of deformation is signifi-

cantly different from those on the outside), the mini-

mum Smin of S is reached at an average angle θ = θ0

that remains quite constant independently of the radius

r . This angle localises the horizontal direction whatever

the initial crack orientation, as illustrated by Fig. 15

for all cases studied, at stretch λ = 1.26 and for a

given radius r = 5.9 mm. It must also be noticed that the

higher is the loading level, the larger is the core zone.

This phenomenon is expected since the factor S cannot
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Fig. 14 Evolution of S as a function of θ for several values of

the radius r and for two given stretches (α = 30◦)

be accurately evaluated for excessively deformed ele-

ments. Nevertheless, the accuracy of FE calculations

can be further improved by using an adaptive meshing

that consists in mesh regeneration in that zone when

the computation is running.

The above numerical results suggest, according to

the works of Sih (1974, 1991), that for highly deform-

able materials under mixed mode (I + II), the crack

always propagates perpendicularly to the direction of

the loading, independently of the initial crack angle.

Such a result is in a good agreement with experimental

observations (Fig. 4) and confirms, as already analyt-

ically proved by Stephensen (1982), that the mode (I)

is always prominent for such materials. This result was

also recently confirmed by Martin Borret (1998) who

SBR2, r=5.9, λ=1.26
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=
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Fig. 15 Evolution of S as a function of θ for a given radius r

and stretch λ
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Fig. 16 Critical values Smin
c of the factor S as a function of the

initial orientation α of the crack (SBR2)

applied an asymptotic method to derive the mechanical

stress–strain fields around a crack in rubber compo-

nents. This work followed the pioneering ones of Wong

and Shield (1969) and Knowles and Sternberg (1974).

Finally, the minimum Smin
c of the factor S corre-

sponding to onset of crack growth was evaluated out-

side the core zone (at r = {7.7, 8.8, 10 mm}) and the

values obtained are plotted in Fig. 16 as a function of

the initial orientation α of the crack. This graph shows

that the critical values Smin
c increase with the angle α

indicating that this parameter is not a good candidate

to describe the crack initiation.
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5 Conclusion

In this work, the fracture of two kinds of rubber-like

materials under mixed mode (I + II) was analysed by

combining experimental data and FE calculations. Such

a loading mode was assumed to be obtained by initially

introducing an inclined crack in thin rectangular sheets.

Fracture tests highlighted that, independently of its

initial orientation, this pre-existing crack always prop-

agates perpendicularly to the loading direction.

All the experimental tests performed were also

numerically simulated using the “Ansys” FE program.

The path independence of the J -integral was pointed

out in each configuration considered, which confirms

the appropriateness of the selected meshing. Moreover,

critical values Jc of J corresponding to the crack ini-

tiation are quite independent of the initial crack orien-

tation for the two materials studied. This result means

that Jc represents a fracture criterion of rubbers under

mixed mode (I + II) because for such materials, mode

(I) prevails.

To predict the crack propagation direction, an

approach based on the maximum principal stretch and

stress was examined. It appeared that the maximum

principal stretch direction is always perpendicular to

the crack propagation plane (horizontal plane). This

result suggests that maximum principal stretch is a good

indicator of the crack propagation direction in rubber-

like materials. In addition, independently of the crack

orientation, at the onset of crack initiation, critical prin-

cipal stretches remain constant, which means that their

average value can also be taken as a fracture criterion

of such materials.

Finally, the strain-energy-density factor evolution

derived for each configuration was analysed. The min-

imal value of this factor, corresponding to the direc-

tion of crack propagation, is always reached in the plan

perpendicular to the loading axis, independently of the

initial crack orientation. This result is in good agree-

ment with experimental observations. Consequently,

the SED factor, developed in the LEFM framework,

could be extended to highly non-linear deformable

materials as an indicator of the crack propagation direc-

tion. However, the critical values Smin
c of S, measured

at the onset of crack growth, increase with the angle α

suggesting that a fracture criterion based upon a Smin
c

value could not be extended to inclined cracks. A rel-

evant fracture criterion could be provided by combin-

ing the parameter Smin
c with angle α. This combination

must be in adequateness with the results obtained in our

previous study dealing with mode (I) loading. Such an

analysis is what our future investigations partly aim at.
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