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Statistics of eigenfunctions in open chaotic systems: a pgerbative approach
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Université de Nice-Sophia Antipolis - 06108 Nice cedexranée
’Department of Mathematical Sciences, Brunel Universitybridige, UB8 3PH, UK
(Dated: June 30, 2009)

We investigate the statistical properties of the complsgm@arameter which characterizes uniquely complex-
ness (biorthogonality) of resonance eigenstates of opaatichsystems. Specifying to the regime of isolated
resonances, we apply the random matrix theory to the effeetamiltonian formalism and derive analytically
the probability distribution of the complexness paramétertwo statistical ensembles describing the systems
invariant under time reversal. For those with rigid speatra consider a Hamiltonian characterized by a picket-
fence spectrum without spectral fluctuations. Then, in tbeemealistic case of a Hamiltonian described by the
Gaussian Orthogonal Ensemble, we reveal and discussléhefrépectral fluctuations.

PACS numbers: 05.45.Mt, 03.65.Nk, 05.60.Gg

. INTRODUCTION reported in the literature recently J20,] 41] 42] 23]. Compo-
nents of eigenvectors appear as residues ofStheatrix at
resonance positions and the understanding of their priepert
& thus important for many applications. For example, non-

. . : orthogonality of resonance eigenstates yields the enhance
theoretical points of view (see Refs[l [E’ 3] for recent ' ment (the so-called Petermann factor) of the line width of a

views). Openness may be due to various physical mechanisms_. - - -
such as bulk absorption, coupling to the environment tHnougnESlng mode in open resonatofsj[19] and influences branching

. ST o atios of nuclear cross-sectios|24] 25]. It features msbe
physical channels as well as dissipative or radiative beunJE [E ]

o X article escape from the scattering regiEI [26] as well as in
ary conditions. Whatever the mechanism, openness results issipative quantum chaotic ma[27].

spectral broadening ranging from the perturbative regifne o . . . .
P g ranging P 9 This paper aims to provide new results concerning spec-

non-overlapping (isolated) resonances to the so-callar al and eigenvector statistics of such non-Hermitian cand
son regime of strong overlap. These mechanisms and theﬁ'} 9

related spectral effects have been experimentally stuidied w:\tlrelcsesstiﬁgr\:\ﬁ'\g%;gigte“éeli:']?tn(]:lstogagfirﬁ];_?g\?gr:ﬁmr'n
various context: in microwave cavitie§ [4,[5,[6[], 8], iniept y play y

. o : 13 metry (TRS). In this case, the quasimodes correspond to the
cal microcavities[jo 3¢, 311, and in elastodynamc§ [L3, 13 complex-valued eigenvectors @{.¢. To characterize this

The most salient feature of open systems is the set of regomplexness, it is convenient to introduce the ratio of v
onances which are quasibound states embedded in the Cognces of the imaginary and real parts of the eigenvector as a
tinuum. A natural way to address them analytically is viasingle statistical parameter, hereafter called the coxmgiss
the energy-dependent scattering matfikf). Following the  parameter[[33]. One should note that this parameter is char-
Heidelberg approach[14], the poles (i.e. resonancespafth  acteristic of the degree of non-orthogonality of the comple
matrix turn out to be the complex eigenvalues of an effectivamodes and, therefore, is closely connected to the Petermann
non-Hermitian Hamiltoniar¥.; whereas the bi-orthogonal factor mentioned abov§ 19]. Other studies have considered
eigenvectors of the latter determine the corresponding-res the phase rigidity, another related parameter, introduoed
nance states (quasimodes). Universal properties of resena characterize the degree to which a general scattering wave
scattering in the chaotic regime can then be analyzed by aRunction is complex[[32[ 28]. Both parameters are straight-
plying random matrix theory (RMT) that amounts to replacingforwardly deduced from one another when the phase rigidity
the actual non-Hermitian Hamiltonian with an RMT ensemblejs calculated for a single eigenvector. The main advantage o
of the appropriate symmetry clags][15]. The main advantaggonsidering the complexness parameter is to reveal a ysic
of such an approach is that it treats on equal footing both thgonnection between spatial and spectral statif]ds |5, 23]
spectral and scattering characteristics of open chadiesys In what follows, we study the probability distribution of
as vyeII as that itis flexible enqugh to incorporate other impe ¢ complexness parameter for a generic weakly open chaotic
fections of the system, e.g., disorder and losHes [3]. system and its connection with the distribution of resoeanc

By now, complex eigenvalues of such non-Hermitian ran-widths within the RMT approach. At the first stage, we derive
dom matrices have been studied quite systematiy|ﬂ6, 17an expression for the complexness parameter in the weak cou-
@]. However, the statistical properties of the correspondpling regime and establish a general relation between @s av
ing (left and right) eigenvectors are less understood. &uitage and width fluctuations. Then accounting for the esdentia
a substantial progress in this direction has been achieyed Istatistical feature of spectra in chaotic systems, narspig-
Schomerugt al. [@], who studied mainly the systems with tral rigidity, we investigate the case of a system whoseetlos
broken time-reversal symmetry. Other analytical reswdts f limit is described by a pure picket-fence spectrum. An exact
a few physically interesting particular cases have alsabeeanalytic prediction for the probability distribution ofdftom-

are currently actively investigated both from experiméeanal



plexness parameter is derived, depending on only two paraninto complex quasimodes of its open counterpart. In order
eters: the number of open scattering channels and the meémmeasure their complexness, we define the complexness pa-
resonance width. Finally, we consider the more realistseca rameterg? as follows:
of systems modelled by the Gaussian Orthogonal Ensemble .

: . . - S (Im4p?)?
(GOE). We derive an analytic expression for the probability 2 i\ n) (4)

distribution of the complexness parameter in this case &d d " Xi(Reyy)?

cuss the effect of spectral fluctuations. where!, is thei-th component of the eigenvector (we note

that the complexness parameter can be equivalently defined b
means of the left eigenvectors). It is worth noting here ihat
contrast to the related Petermann fac@ [19], which is @€ffin
for a fixed value of the given resonance width, no additional
constraints are imposed (ﬂ (4). In chaotic systefhseveals
strong mode-to-mode fluctuations which we describe through

Open wave systems are commonly described using the s@s probability distribution function to be derived below.
called projection formalisn{[25, R9]. The exterior couplis

modeled byM scattering channels connectedYdevels of a

Il. EFFECTIVE HAMILTONIAN FORMALISM

A. Scattering approach

closed system. The coupling to the environment turns modes, B. Statistical assumptions
with a infinite life time, into resonances, with a finite lifene.
Being initially introduced in nuclear physics, this forrisah Within the RMT approach, the universal statistical prop-

has been later applied successfully to wave billiafdp [80] f erties of closed chaotic systems with preserved TRS are de-
which antennas and absorption can be described by scgtterigcribed by GOE[]1]. In this ensemble the joint probability
channels[[31]. In this approach, the resonance part ofthe distribution, P({£;}), of the levels (the eigenvalues &f) is

matrix is given by: induced by a Gaussian distribution of the random real sym-
metric H with zero mean. The exact expression foi{ E; })
S(E)=1- iVTWV, (1)  is well known to have the following form:
— Ileff
N 2
whereV is the coupling matrix of sizév x M, the elements P{E;}) x H |E,, — Epn|exp (—TW ZEZ) (5)
V¢ of this matrix couple the:-th level to thec-th scattering n>m n

channel. The poles of are given by the eigenvalues®a.  ere, we have chosen the variancabsuch that it yields the
Assuming an independence of the coupling elements from,aan jevel spacing = 1/N at the spectrum centef;, = 0.

the energy and neglecting direct proces [14], the aféect T4 energy levels, as defined by Eﬁl (5), exhibit a lin-
Hamiltonian of the open systems is represented as follows: o5/ |evel repulsion. As a result, the energy spectrum dis-

i plays spectral rigidity which restrains the spectral flatitons
Her = H — §VVT, (2)  aroundthe mean. This important feature can approximately b
taken into account within the so-called picket-fence madel
whereH is the Hamiltonian of the closed system and the anti-equidistantly spaced levels [33]. The usefulness of thideho
Hermitian part;V'V'T describes coupling to the channels. Inis in its simplicity that allows one to treat various resocen
the case of the systems with preserved TRS considered belophenomena analytically, see, e.g., Refs] [34,[3p, 36]. én th
H is areal symmetric matrix of sizZ& x N andV is alsoreal. =~ present context, we employ this model to single out a contri-
As usual, the RMT IlimitN' — oo is to be finally taken. bution tog? due to fluctuations of the resonance widths.
Since Heg is a non-Hermitian operator, the eigenvalue As concerns the coupling amplitudes, the results are known
problems(v, |[Hest = An(n| and Heg|thn) = An|ton) de-  to be model independent on statistical assumptiong pas
fine two sets of a priori independent eigenvectors, calléid le long as the number of open channels is small compared to that
{|¥»)} and right{|+,,)} eigenvectors associated to the sameof the levels [3[7[38]. The coupling amplitudes may be equiv-
set of eigenvalueg),}. These left and right eigenvectors alently chosen as fixedl [14] or randofn][32]. In order to pre-
form a bi-orthogonal set which satisfies conditions of ogtho  serve orthogonal invariance &f.¢ under (complex) orthog-
onality, ('n|tm) = 6nm, and completeness; . [¢n)(¥n| =  onal transformationg [B2], we consider thig’s as Gaussian
1. Making use of the right eigenvectors, the diagonalizatiorrandom variables with zero mean and

of Heg then reads: , , 5 /
<VchnC,> — (26A/T) G 8 = 028, 8. (6)

oft|Un) = (B, — (/2)) ¥, 3
Hetrln) = (/D)) ©) Henceforth(- - -) stands for the statistical averaging over the

where E,, andI’,, are respectively the energy and the width ensembles. The coupling constantletermines a transmis-
of then-th resonance. Due to TRS preset is a complex  sion coefficient” = 1—| (S) |*> = 4x/(1+~)? of the channels
symmetric matrix, hence, the left and right eigenvectoes ar (assumed to be statistically equivalent). The cases ef 1
related by the transpose),,| = (|¢»))” [B3]. orT = 1 correspond respectively to weak or perfect coupling.

The coupling to continuum, as described by the imaginaryn the weak coupling regime considered belawg 1, all the
part of H.s, turns real eigenfunctions of the closed systemresonances are isolated afiy < A.
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Ill. PERTURBATIVE APPROACH one another. We note, however, that the levélsare mutu-
ally correlated. The quantitids,,’s, unlike the original am-

A. Complexness parameter in the weak coupling regime plitudesV,?, are also not statistically independent. Although
their joint distribution can be found fre%lrﬁ(G), the resudin

We now derive an expression for the complexness parame-XpIiCit expression is quite complicated [41], being ofléit

eter of the eigenvectors in the regime of isolated resormncePractical use for actual calculations in the present cantex
The matrix representation 6f.q in an arbitrary basig|n)} To overcome the difficulty of averaging over the coupling

of the Hilbert space spanned by eigenvectorflakads: amplitudes, we follow Sokolov and Zelevinsfy]32] and treat
' an arbitrary matrix elemerit,, as a scalar products between

N g NoM M-dimensional vectord/,, and V,, of the coupling ampli-
Het = Z |n) Hyp(p| — = Z Z [n)ViVy(pl (7)  tudes{V/°} associated with the levels= n andl = p. This
n,p=1 2 n,p=1 c=1 suggests a natural parametrizationIfgy, in terms of the an-

) ) ) ) ?Iesenp between the pairs of thegé vectors:
As we focus on the weak coupling regime, the imaginary par

may be viewed as a perturbation of the Hamiltonian of the Ly =(V,-V,)=+/I,,cosb,,, (11)
closed system. The repulsion of the energy levels exhibite
by the systems under investigation allows us to consider th
eigenenergies off as nondegenerate. One can therefore ap.
ply first order perturbation theory to obtain froﬁl\ (3) theamrg
values and the eigenvectors Bf.¢ straightforwardly. The
eigenvalues readl,, — %Fn, where theF,,’s are the eigenval-

cf’he main advantage of this representation is that the angles
9np are mutually independent and also independent of

The probability distribution of any angle (fav/ > 2) can

be easily found to be given by the expression for a solid angle
in an M -dimensional spacﬂBZ]:

ues ofH and the widthg",, are given by: ['(M/2) . M2
7(0) = 0. 12
; pul® = Zror - ™ (2
r, = Z(V;)Q. (8)  Notethatl',, = \/T',I', at M = 1. As concerns the lengths
c=1 of these vectors, i.e. the widtrﬂ (8), these are well-knawn t

The perturbed eigenvectors ®f.g written in the eigenbasis be independent angf distributed according to

{|¢n)} of H are easily found as follows: P () — 1 M/2-1 —/2 13
GV VTI60) e 75

[n) =) =i D ﬁlw : (9)  Henceforthy,, = T, /o2 stands for the dimensionless widths.
p#n "o This distribution function has the mean val{t¢ = M and

Splitting then the real and imaginary parts|¢f,), the com- the variance 9

plexness parametd]] (4) of a given eigenvector reads var(y) = 2M = i (7)? . (14)
2 Z F%p (10) Thus the widths cease to fluctuate as the number of open chan-
I = 4(E, — Ep)?’ nels grows, with the average width being kept fixed.

p7n It is now convenient to express all the quantities in their

natural units and to consider a rescaled complexness parame

. o M c17e _
where we have introducdd,, = > ._, V,;V;7. These quan ter X,, defined as follows:

tities are responsible for the coupling and interferencthef

resonance states due to the common decay chals [32]. A%, A%Z,
In what follows, we study the statistical properties of the Xn = 54 In = In Z A(E, — E,)?’ (15)
complexness parameteEklO) féf being described by a p7n
picket-fence or belonging to GOE. It is worth noting here where we have introduced the following quantities
that expression (10) is a sum of correlated random variables 2
Zp = 7p cOS” Oy - (16)

which, therefore, does not obey the standard central Itmeit t
orem. Statistics of a similar kind of objects appears, &Q., Z, may be given a geometrical interpretation as (a square of)
the study of the parametric level dynamics (‘curvatur@][S the projection of the vectar 1V, along the direction given
and in the context of interference effects in neutron sdale by the vectoiV,,. These projections are statistically indepen-
from compound nucleug [}0]. dent, as is obvious from the above discussion. The prolbabili
distribution of any projection follows readily froﬂlZ) @n
@). Performing an integration first overand then oveé in
B. Rescaled parameters and their statistics the definitionP(Z) = <6(Z — 7 cos? 9)>, one finds
The complexness factoﬂlO) contains two contributions of P(Z)= #e*Z/Q . a7
distinct types, one is due to the internal levels and therothe 2rZ
is due to the coupling matrix elemerits,,. From a statis- Thus, surprisingly, the distribution &, is independent o#/,
tical point of view, these two are statistically indepenidein  being given by the Porter-Thomas law at any> 1.



C. The average ofX and width fluctuations 25 T T T T
A general expression of the average value of the complex- 20} (a) GOE ¢=0.1 ]
ness parameteX can be readily found fron‘mlS) by making
use of the mutual statistical independence between thésvidt 15}k €=102 .
{7}, the projectiond Z,, } and the level{ E,,}. Noting that o)
(v) = M and(Z) = 1 = (v) (cos® #), one obtains ~ 10k |
e=0.3
(X)=Mf, (18) c
where the factof depends on the statistical properties of the
energies of the closed system only: 0 . . . .
0 5 10 15 20
AQ
f= <Z 4(E, —Ep)2>' (19) sl !
v (b) Picket-fence
Is is important to note that, generally, the nonzero values 6
of the complexness parameter are solely due to fluctuations i
of the resonance widths. Indeed, in the extreme case of all ~ T
the widths being equal, the anti-Hermitian part¥éfs gets o) 4+
proportional to the unit matrix and, as a result, the complex A
(biorthogonal) eigenvectors become essentially E{al 28, ol
therefore, instructive to take this explicitly into accoamd,
in view of relation [1}), bring[(18) to the following form: i
0 1 1 1 1
f 0 5 10 15 20
(X) = 2var(7) . (20) var()

This expression relates the average complexness parameter
the natural measure of the width fluctuations, its variance. .
. FIG. 1: The average rescaled complexness parameter vdrsus t
Strong correlations between the complexness parametey.

d th | width Iready k Th . idth variance for the GOE and picket-fence models. The sym-
and the spectral widths are already known. e proportiong correspond to the results of numerical simulationsopered

ality between,/(X) and the average value of the fluctuat- at o7 = 1,2,3,5,10 (see the text for details). The linear depen-

ing part of damping was recently found experimentally in adence predicted by Eq|]20) is represented by the solid limehe

chaotic microwave billiard at room temperature, where thisGOE case (a), the proportionality factor is given by the tageed

was also explained heuristically using a ray picture based oexpressiory. = 3 [~ ds s~ ?Ra(s). The results obtained with three

the ergodic character of the wave systeﬂn [5]. Then this prodifferent values of the cut-o#f are shown. In the picket-fence case
. . . . A — 2 R b

portionality was established iff [23] using a two-level RMT (0). / =7 /12 as exactly given by Eq[(§3).

model and considering/ > 1 that was relevant for this ex-

periment. Expressior] (20) readily provides this featune, i _ S

view of \/m = (v) \/f/M, at anyN andM. On the other order perturbation theorﬂllS) does not yield finite moments

side, it captures fluctuation properties of the widths priype  thus demanding for the characterization of fluctuationsof

e.g., yielding the vanishingX) in the absorptive limit of Py means of its probability distribution.

many weakly coupled channels with the average total width

kept fixed, due to the vanishing varian@ (14). Therefore,

we believe that relation (PO) is a general feature of weakly IV. DISTRIBUTION FUNCTION
open chaotic systems with non-degenerate spectrum in the
perturbative regime. Figure 1 supports this suggestianutjin The probability distribution function of the rescaled com-

numerical simulations of the picket-fence and GOE modelsplexness parameté¥,, is defined as follows
(with the details being given later in the next section).

Aremark on the proportionality factgris appropriate here. Pu(X) ={(X - X,)), (21)
In the RMT limit N — oo, this factor may be represented
as followsf = § [“dss™2R,(s), whereR,(s) is the two-  where the statistical averaging over the levels, the widtits
point correlation function of the RMT. The main problem of the projections is performed with the help of E¢b. (B)] (18) a
the GOE case, already mentioned|[in][[9, 23], is an infrared (L), respectively. In the weak coupling regime, functipi)(
logarithmical divergency of due toR2(s) ~ s ats — 0. depends only on the numbgf of open channels.
Practically, this divergence can be regularized by intooag It is instructive first to consider the case of the completely
a cut-off at smalk, s > ¢, see Fig. 1. Without this cut-off the rigid spectrum which may be viewed as an approximation of
expression of the complexness parameter obtained using firhe GOE spectrum where the fluctuations are neglected.



A. The picket-fence model " 01!
3K N
In this model the eigenenergies of the closed system are
equally spaced, i.ek,, — E,,+, = £kA, and the eigenvector .
components are random Gaussian variables. The complexness = 2 102
parameter is then given by “a&H
Z, 1t
an%zZm- (22) 4 5 6 7
k0 i
This expression does not have any divergence problems of the 0 0 1 ' > 3 4
GOE case, thus statistics §f[22) can be also characterized b
its moments. In particular, the average value is easily ddon
be exactly given by EquO), where the facfois equal to ozl r-\ 10-2 |
1 w2 \
f=Y =1 (23) —~ U -
s 4k 12 =
Figure 1(b) illustrates the depender{eg) = = var(y). OLh 1073 ]
We now derive an exact expression for the probability dis- 10 14 18 23
tribution P}\’j(X ) in the picket-fence case. First we substitute ]
in the definition @1) the Fourier representation of the aelt 0
function,§(X — X,,) = [ d2eiw(X=%1) whereX,, is given 0 c 10 15 20
by Eq. [22). Then the integration over the projectighswith 0.12
the help of Eq. 7) becomes trivial, yielding ' ~ 10-2
) ) B ’l \\
dw = 1
Ph(X) = / — X /dv Pu() ] — - (24) 0.08} \
2 1+ igz —
oo 0 k=1 !
The infinite product here can be evaluated expliciﬂ [42]. »E(f
Making use of the explicit expressioh [13) By, (v) and ap- 0.04¢ .
plying the change of variables= 2|z|%, Eq. (24) can then be 20 25 30 35 40
cast in the following form: 1
O IT
. 1 T 0 5 10 15 20 25 30 35 40
SHpSp——
L(M/2) | 2= X
+oo
M—1 iwX—2> iwzm . o
dz|z| e — . (25) FIG. 2: (color online) The distribution of the rescaled cdexpess
. sinh(v/iwzm) parameter for the picket-fence modelldt= 1,5 and 10 (top, mid-

dle and bottom, respectively). The analytical reﬂ (8xlotted in

As one can easily check, this expression is properly northe solid line while the histograms correspond to numesaaula-
malized to unity. It is also worth noting that the integrarid o tions. Insets show the tail of the distribution in a semi-$ogle.
Eq. ) is an analytic function i except for the poles lo-
cated on the upper part of the imaginary axisgt= i(k/z)?,
k = 1,2,...,00. This readily implies thaP?} (X) = 0 at
X < 0identically.

The details of the subsequent calculation§>c§j(X) are
givenin appendiﬂA. The final expression reads:

with J,, (z) being the Bessel function of order In the case of
an odd number of channeld/ = 2n +1,n = 0,1,.. ., this
expression can be integrated further to yield an attragtive
simple formula

pf _ M _i n;
ot 1y 2m(VX)M/2 P =m0 \"ox ) warvm @0
P = T
! s In particular, the single-channel distributia®" (X ) reads
z
X /dz mt}ﬁi/z—l@ﬁz)v (26) PP (X) 1 L (28)

- 2vX cosh?(VX)



Itis interesting now to study in details the case of the large 10-1
number of weakly open channeld > 1. In view of the N
scaling ), we consider the limiting probability distitibn 2 AN
of x = X/M defined as

102}

X)

p(z) = lim MPy(Mz). (29) g

M—oo

goe

Expression@G) is actually not very convenient for evahgat 103
this function. However, one can note that in the limit con- [ 2 10 20
sidered, the distributio®y; (), Eq. (1B) tends to the Dirac
distribution,d(~ — M). Then, starting from equatiof (24), the 0 1 2 3 4
integration overy is trivial and the probability distribution of
x reads:

oo

1 B 1
—_ d wr _ 30
) = g [ e Uiy

Using the residue theorem, one readily gets:

ppf(I) — 42(_1)k+1k2672k2z (31)
k=1
and finally 0.12 T T T T T T T
\
=2 Lo @) N
ppt(x) = =27 " —104(0,e = 32 [
o a1 008} iy
\
whered, is a Jacobi theta functiof [42]. q;; :
The above analytical predictions concerning the average 3~

value of the complexness factor and its probability disittiitm 0.04}

have been checked through numerical simulations of random 40 60 8¢
matrices, see Figs. 1 and 2. Numerical simulations are based

on the diagonalization of the effective Hamiltoni& (2)we=l 0 ) - .

as a random non-Hermitian matrix. We have considered res- 0 5 10 15 20 25 30 35 40

onances in the bulk only,e. resonances with a large number
of neighbors on the left and on the right of the spectrum. This
restriction is introduced to neglect the effect of the speut

edges Whose contrlbutlo.n ter_wds_to va_tmslj\hs—» oo . FIG. 3: (color online) The distribution of the rescaled cdexpess
The picket-fence Hamiltonian is built such that the eigenen parameter for the GOE model &f — 1,5 and 10 (top, middle and

ergies are equally spaced and the eigenvectors are randitom, respectively). The analytical res{i](35) is shawthe solid
Gaussian variables. This is readily done by following a proc  |ine and compared to thaﬂZS) of the picket-fence case @ththe)
dure adapted fron] [}}3] where the authors used it to generatghile the histograms correspond to numerical simulatiohsets
the POE ensemble. Thus, in a basis deduced from its eigeshow the tail of the distribution in a log-log scale.

basis through an arbitrary orthogonal transformatibmwith

random Gaussian variables, the Hamiltoniaris given by:

X

B. The GOE model

H = Odiag{E, }O! (33)
The probability distribution in the GOE case can be found
whereE,, = n/N, such thath = 1/N, and by making use of group integration methods and results ob-
tained in ]. Outlining the details of the computation ip-A
(Oi) =0, (0})=1/N (34)  pendix[B, we state the final result here:

2
Statistics were performed with 100 matrices of size ™M 147~ (i)’;M)

1000%x1000. In order to make the calculated distributions in- P (X) = 24X2 (1 4 z2)M/2+2’
sensitive to edge effects, 100 levels at each end of the spec- ax

trum were discarded. In all the simulations the mean splectra To check our findings, the same kind of humerical simula-
width is kept fixed and equal td") /A = 10~2. tions as in the picket-fence model have been performed. The

(35)




closed Hamiltoniard now belongs to GOE, its elements be- Acknowledgments
ing defined by their first two moments:
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tics were obtained with 150 matrices of size 18QMOO.

Only levels neal = 0 for which spacings deviate less than

5% fromA were kept. The agreement between numericaland ~ APPENDIX A: DERIVATION OF EQS. (2@ AND (
analytical results is flawless, as shown in Fig. 3.

_ The comparison between the probability distributionof We first note that the integrand ¢f]25) is a symmetric func-
in the picket-fence model and for GOE illustrates the €€t i iy, that allows us to restrict theintegration to the pos-

the fluctuations of the spectrum on the complexness paramgs e axis. Then we deform the contour of integration over
ter. The maximum of both distributions are close to eachrothe ; tom the real to imaginary axis by putting = iw. Per-
This is mainly due to the spectrumrigidity in both ensemblesg, . ing after that the scaling transformations of the ineg
But at largeX the statistical weight is larger for GOE than for 40\ ariables. first: — 2/v/ and thenQ — Q/X, and

the picket-fence model. This difference is introduced kg th interchanging the order of integrations oveand(2, we may
behavior of the levels at small distance: the spacing of twq. Eq.@S) in the following form

eigenergies can be very small, the corresponding coniitout

to the complexness parameter is large, then the t&hefX) Mjz—1 % o
is larger for GOE than for the picket-fence model. This fea- PYI(X) = 2r X / dz z
ture is most explicitly seen by comparing the corresponding = ['(M/2) sinh(7z)
limiting distributions at\/ > 1. The distribution @9) of: is

(Hij) =0, (H}

j

. . +i00
easily obtained from[(35) and reads / 4 aiss 0 x 0 A1)
Peoc(®) = 5173 (1 * E) P <_8_a:) 50 o

. . . i —-X22/Q
In contrast to the asymptotic exponential behavior in theT0 calculate here the last integral o¥&rwe expana™

picket-fence cases: () x e~2*, see Eq.[[1), the tail of the into a series and evaluate the result termwise

distribution (37) follows a power-law decayoc () o< 272, . tico
3 (=Xz%)* / AR 21k 0
k! 27
V. CONCLUSION k=0 —i00

»

. . » SRR
In this paper, we have studied the statistics of complex - Z RO + k) (A2)
wavefunctions associated to the resonances of weakly dpene =0
wave chaotic systems with the preserved time-reversal sym- +i00 40 v R _ 1/T(v). Making

metry. More specifically, in the perturbative regime, wedav Wwhere we have usegﬂﬂ.m 2mi

d - . —_now use of the well-known series representation for the&ess
considered th_e case of the completely rigid spectra qefmeﬁmction @] one can immediatel;l? recognize the rh.s. of
through the picket-fence model and that of the GOE dlsplay@) 10 be edual (/X 2)1-M/2 (2VX =) CoII.e(.:t—.
ing spectral fluctuations. One of the key features of thigystu ing all the factors together, we finjgllﬂalrrive at EEI(%)
relies on the proportionality between the average of the-com Further proaress is os’sible in t>r/1e case of add It'is
ple_xness parameter an_d the varian_ce of the resonance Widtqﬁstructive l?irs? to start \F/)vith the case &f = 1, which turns
which we believe S valid for generic nop_—degen_erat.e Spectr out to play the central role in this caIcuIatio'n We may use
We have also derived the exact probability distributionhaf t he k lati | hi
complexness parameter in these two cases. the known relation/_, /»(z) = /2z/m cos(z)/z in this case

To check the validity of the present results, recent experlfid], thus (v X 2)'/2J_; (2 X 2) = —= cos(2v/X z), that

iments in elastodynamics are available. In particularhim t allows us to perform the integration i 1) analytically:
case of vibrating plates, a complete knowledge of the eigen-
functions can be obtained through non invasive measureament ¢ Fico

[#4] even for moderate overlap of resonances. Indeed, the un /dz# / d_Q_Q—l/%Q—XZZ/Q
derstanding of the statistics of eigenfunctions beyongtre sinh(z7) K 2mi

turbative regime still remains an open problem. Finallye on - e

should also note that the complexness parameter may be con- / zcos(2v X 2) 1 1

sidered as a sensitive probe of the crossover from localized “ sinh(zm) /7 = 17 coshz(\/f) - (A3)
extended states in open disordered syst@s [45].



Taking now into account the (omitted) factdy// X, we ob-
tain P’ (X), Eq. (2B).
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We note that the above expressi(BS) was obtained in
[@] for the particular case of one open channel. The key fact

The general case of od = 2n + 1 may be reduced to Which allows us to apply this result to oti-channel case, is

that of M = 1 considered above, if one notices that the termthe representatio

5) in terms of projections with thérdis

ZM JQM/2=X="/% in the integrand of (A1) can be generated bution (1 (T). Thelater correspondsto the Gaussian disioibu

by a differentiation with respect t& as follows:

2\ s e (L0 =
Q Q1/2 0X Q1/2
(A4)

Substituting this representation in@Al) and changimgah
der of the integrations and differentiation there, we saettie
resulting integral is already given bfy (A3) that readilylslie

the expressior (27) of Sec. 1Y A.

X22/Q

APPENDIX B: DERIVATION OF EQ. (35)]

We use the recent result by Schomeatsal. [E], who
calculated the joint probability distributioR( A, B) of

AZEE BAZ BB

pF#N p#ﬂ Ep =

(B1)

where {c,,} are the statistically independent real Gaussian

variables distributed according to

7T _mc 52
plag) =\ [gAze 5™ (B2)
p

and{E,} are taken from the GOE. They found the following

expression fo?(A, B):

\/27T1+7T2A2,‘£ ok 22 A2 /K2
PA.B) = =5 B7/2/ AT (B3

@3) with » = 1 and Zca2 = Z,, thus giving a connection

X = T'YB- Correspondlngly, the distribution function af
in the GOE case can be found from

PEE(X) = <6<X—7§73>> (84)

by averaging over, B and~. Substituting the explicit form
@), it is convenientfirst to integrate oftthat readily yields

)7/267117/2

OC v T
Py (X) = =5~ /
0

/dA(1+7r2A2) (av/2)7*A* (BE)
with @ = 72/4X. The Gaussian integration overis now
straighforward and gives

PE(X) = I
24 2M/2T (M /2) X2

X /dv 71\/[/2(1 + (w)e_(lﬂ)”/?, (B6)
0

where we have substituted expressi@ (13)Par(y). The

remaining integration is also simple, yielding finally @I.
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