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POISSON BOUNDARY OF GL d (Q)

We construct the Poisson boundary for a random walk supported by the general linear group on the rational numbers as the product of flag manifolds over the p-adic fields. To this purpose, we prove a law of large numbers using the Oseledets' multiplicative ergodic theorem. The only assumption we need is some moment condition on the measure governing the jumps of the random walk, but no irreducibility hypothesis is made.

Introduction

The Poisson boundary of a group endowed with some measure µ, describes the asymptotic behavior of the random walk with step law µ. In the same time it gives a representation of bounded harmonic functions (see for instance [START_REF] Furman | Random walks on groups and random transformations[END_REF] for a survey on this topic). There are now many results on Poisson boundary of groups of matrices (see for instance [START_REF] Azencott | Espaces de Poisson des groupes localement compacts[END_REF][START_REF] Furstenberg | A Poisson formula for semi-simple Lie groups[END_REF][START_REF] Guivarc | Frontière de Furstenberg, proprétés de contraction et thórèmes de convergence[END_REF][START_REF] Kaimanovich | The Poisson formula for groups with hyperbolic properties[END_REF][START_REF] Kaimanovich | Random walks on discrete groups: boundary and entropy[END_REF][START_REF] Ledrappier | Poisson boundaries of discrete groups of matrices[END_REF][START_REF] Raugi | Fonctions harmoniques sur les groupes localement compacts à base dénombrable[END_REF] for some of the main results in this field, and [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Furstenberg | Boundary theory and stochastic processes on homogeneous spaces[END_REF] for some surveys).

Here we consider more specifically groups of matrices with rational coefficients, which were already considered in our previous works [START_REF] Brofferio | The Poisson Boundary of random rational affinities[END_REF][START_REF] Br | The Poisson boundary of triangular matrices in a number field, to appear[END_REF] for subgroups of triangular matrices. The novelty in the rational case, in comparison with standard results on real matrices, is that to describe the Poisson boundary, one has now to consider all possible embeddings of the rational field in the p-adic fields, and the Poisson boundary is then a product of "local parts", one for each prime number p (see Theorem 1.1 below for a precise statement of our result). This phenomenon was already observed in [START_REF] Kaimanovich | Poisson boundaries of random walks on discrete solvable groups, Probability measures on groups[END_REF] for the group of affine transformations with dyadic coefficients, and is very similar to some result proved in [START_REF] Bader | Factor and normal subgroup theorems for lattices in products of groups[END_REF] in an adelic setting. It should be noticed also that we do not need any hypothesis on the support of the measure µ.

Denote by P * the set of prime numbers and let P = P * ∪ {∞}. For p ∈ P * , denote by Q p the field of p-adic numbers, and set by convention

Q ∞ = R.
If µ is a probability measure on GL d (Q p ) with finite logarithmic moment, i.e. where µ * n denotes the n-fold convolution of µ and ∧ the exterior product. Denote by P p the parabolic subgroup of GL d (Q p ) consisting of matrices (p i,j ) with p i,j = 0, when λ i (p) < λ j (p), and let B p := GL d (Q p )/P p be the associated flag manifold. The main result of this paper is the following:

Theorem 1.1. Let µ be a probability measure on GL d (Q) such that p∈P ln + ||g|| p + ln + ||g -1 || p dµ(g) < +∞.
Then there exists a unique probability measure ν on the space

B := p∈P B p , such that (B, ν) is the Poisson boundary of (GL d (Q), µ).
This theorem unifies and generalizes several results on Poisson boundary of rational matrices groups, known up to now. In particular, it has been proved separately by F. Ledrappier [START_REF] Ledrappier | Poisson boundaries of discrete groups of matrices[END_REF] and V. Kaimanovich [12] that the Poisson boundary of a random walk supported by SL d (Z) is the real flag manifold B ∞ . This results is contained in Theorem 1.1 because, in this case, for all p = ∞, the associated Lyapunov exponents are all equal to zero, thus B p is trivial. Furthermore since Theorem 1.1 does not require any irreducibility condition, it also applies to the case of rational affine group and to rational triangular matrices previously threaded by the authors [START_REF] Brofferio | The Poisson Boundary of random rational affinities[END_REF][START_REF] Br | The Poisson boundary of triangular matrices in a number field, to appear[END_REF].

We would like to remark that for general number fields (i.e. finite extensions of Q) a similar result can be proved by adapting our methods (see in [START_REF] Br | The Poisson boundary of triangular matrices in a number field, to appear[END_REF] hints to possible generalization).

Due to its generality, our result does not say much about ν and its support. In particular it is not true that the restriction of ν to each B p has always full support. For instance if µ is supported on the subgroup of upper triangular matrices, we know [START_REF] Brofferio | The Poisson Boundary of random rational affinities[END_REF][START_REF] Br | The Poisson boundary of triangular matrices in a number field, to appear[END_REF] that ν charges only one Bruhat cell of each B p . But even this is not optimal since µ could be supported on diagonal matrices and with all Lyapunov exponents distinct, but in this case the Poisson boundary would be trivial (one point). However irreducibility hypothesis can give information on the support of µ. We have for instance the following triviality criterion:

Corollary 1.1. Let p ∈ P. If λ 1 (p) = λ d (p), then the projection of ν on B p is trivial.
Conversely, if the projection of ν on B p is trivial and no proper subspace of

Q d p is fixed by the support of µ, then λ 1 (p) = λ d (p).
There exists several results in the literature to decide whether the real Lyapunov exponents are all equal λ 1 (∞) = λ d (∞). For instance, under irreducibility hypothesis this is equivalent to ask that the closed subgroup generated by µ in GL d (R) is amenable [START_REF] Guivarc | Théorèmes quotients pour les marches aléatoires[END_REF]. For other references and results on product of real random matrices, see also [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. It seem very likely that similar results hold on p-adic setting.

A different question that is still open is to understand the behavior of the measure ν on the product of the p-flag manifolds, and not only of its projection on each B p . For instance: does ν charge the whole product or is it supported by some "diagonal" sub-set? Is there some sort of correlation among the different p-adic components?

The main tool of the proof of Theorem 1.1 is to produce, using the multiplicative ergodic theorem of Oseledets, a law of large numbers for random walks on GL d (Q p ) (not necessarily with rational coefficients, see Proposition 3.1). Notice that such result on GL d (R) or on the affine group over Q p was already known (see [START_REF] Kaimanovich | Lyapunov exponents, symmetric spaces and a multiplicative ergodic theorem for semisimple Lie groups[END_REF] and [START_REF] Cartwright | Random walks on the affine group of local fields and of homogeneous trees[END_REF] respectively). The Lyapunov exponents give the speeds of convergence and the boundary limit of the random walk on B p the directions. This is done in Section 3, where we also use this result to prove that B p and B are µ-boundaries.

In Section 4, we use entropy criterion due to Kaimanovich to establish the maximality of (B, ν) and prove the main theorem and its corollary.

We notice that our strategy is very similar in spirit to that used by Karlsson and Margulis in [START_REF] Karlsson | A multiplicative ergodic theorem and nonpositively curved spaces[END_REF] in a slightly different setting. But here the proof is more direct, since we can use Oseledets theorem, and we do not need to identify the Poisson boundary with the geometric boundary of some non-positively curved metric space.

The authors would like to thank Uri Bader for suggesting them the problem. They are also grateful to François Ledrappier and Anders Karlsson for useful advices and references.

Preliminaries

2.1. General linear group over Q p . If K is a field, we denote by GL d (K) the group of invertible matrices of size d with coefficients in K. We denote by e the identity matrix.

For

p ∈ P and v = (v 1 , . . . , v d ) ∈ Q d p , we set |v| p = max i |v i | p , if p = ∞ and |v| ∞ = i |v i | 2 ∞ ,
and if g ∈ GL d (Q p ) we set

||g|| p = sup |v|p=1 |gv| p .
For any p ∈ P and g, h

∈ GL d (Q p ) set d p (g, h) = ln + ||g -1 h|| p + ln + ||h -1 g|| p ,
where ln + denotes the positive part of the function ln. It is easily checked that d p is symmetric and satisfies the triangular inequality. It is not a distance since the set of

g ∈ GL d (Q p ) such that d p (e, g) = 0 is the compact subgroup of linear isometries of Q d p . Furthermore d p is left-invariant: d p (γg, γh) = d p (g, h), for all g, h, γ ∈ GL d (Q p ). For all g, h ∈ GL d (Q), let d(g, h) = p∈P d p (g, h).
This define a left-invariant pseudometric on GL d (Q).

2.2. The flag manifold. For each p ∈ P fix the sequence of Lyapunov exponents

λ 1 (p) ≥ • • • ≥ λ d (p).
The associated parabolic sub-group is

P p = {(p i,j ) ∈ GL d (Q p ) | p i,j = 0 if λ i (p) < λ j (p)} .
The flag manifold

B p := GL d (Q p )/P p is then a compact separable GL d (Q p )-space.
We mention that there is a one to one map between B p and the space of flags, viewed as the set of imbedded sequences of sub-spaces of Q d p of fixed dimensions. In fact

B p = (V 1 , . . . , V r ) | V 1 ≤ • • • ≤ V r = Q d p , dim(V i ) = j i ∀i ≤ r
, where r is the number of distinct values taken by λ 1 (p), . . . , λ d (p), and j 1 , . . . , j r are defined inductively by j r = d and

j i-1 = max{j < j i | λ j (p) > λ ji (p)}, for 2 ≤ i ≤ r.
To see the correspondence between B p and this space of flags, observe that GL d (Q p ) acts transitively on the flags and that the parabolic subgroup P p is the stabilizer of the element (E 1 , . . . , E r ), where for all i, E i is the vector space generated by the first j i vectors of the canonical basis.

Let

B := p∈P B p ,
equipped with the product topology. With the natural diagonal action, B is a compact separable GL d (Q)-space.

2.3. Random walk and µ-boundaries. Let µ be a probability measure on a locally compact separable group G. Let (Ω, P) := (G, µ) ⊗N , be the product of N independent copies of (G, µ) (here N is the set of strictly positive integers). If w = (w i , i ≥ 1) ∈ Ω, the random walk is the process defined by

x n := w 1 . . . w n ∀n ≥ 1 and x 0 := e. Observe that under P, for any fixed n, the law of x n is µ * n , the n-th convolution power of µ.

Assume that B is a compact separable space, endowed with a probability measure ν and a continuous action of G. We say that ν is µ-stationary (also known as µinvariant or µ-harmonic), if

µ * ν := G (gν) dµ(g) = ν,
where for all g ∈ G, gν is defined by

gν(f ) = B f (gz) dν(z),
for all continuous functions f . In this case, according to Furstenberg [START_REF] Furstenberg | A Poisson formula for semi-simple Lie groups[END_REF][START_REF] Furstenberg | Boundary theory and stochastic processes on homogeneous spaces[END_REF], we say that (B, ν) is a µ-boundary if, P-almost surely x n ν converges weakly to a Dirac measure.

A µ-boundary (B, ν) is naturally associated to a measurable function b = b B : Ω → B defined by [START_REF] Azencott | Espaces de Poisson des groupes localement compacts[END_REF] lim

n→+∞ x n ν = δ b(w) .
Then ν is the image of P under b.

Denote by θ the shift transformation on Ω: if w = (w i , i ≥ 1) ∈ Ω, then

(θw) i = w i+1 i ≥ 1.
The measure P is θ-invariant and it is easy to see that the function defined in (1) satisfies w 1 b(θw) = b(w). This property characterizes functions that arise from µ-boundaries, as follows from this known result (see for instance [START_REF] Kaimanovich | The Poisson formula for groups with hyperbolic properties[END_REF][START_REF] Ledrappier | Poisson boundaries of discrete groups of matrices[END_REF]): Proposition 2.1. Let B be a compact separable G-space and let b : Ω → B be a measurable map, such that P-a.s. we have w 1 b(θw) = b(w). Let ν be the law of b. Then (B, ν) is a µ-boundary.

Proof. We give here a proof for sake of completeness. By using the invariance of P by θ and the hypothesis on the map b we get for every continuous functions

f on B ν(f ) = Ω f (b(w)) dP(w) = Ω f (w 1 b(θw)) dP(w) = G Ω f (w 1 b(w ′ )) dP(w ′ ) dµ(w 1 ) = µ * ν(f ),
proving that ν is µ-stationary. The hypothesis on b also shows that for any continuous function f , the sequence

M n (w) := x n • ν(f ) n ≥ 1,
is a bounded martingale. Thus this sequence converges a.s and in L 1 toward some limit, say ν w ∞ (f ). Since B is separable, this defines actually a random measure ν w ∞ on B, which is the weak limit of x n • ν, n ≥ 1. Observe now that for all k ≥ 1,

ν w ∞ = x k ν θ k w ∞ P -a.s. Moreover E[ν w ∞ ] = ν.
Observe also that the Dirac measure δ b(w) has the same properties. As a consequence for any k ≥ 1, any Borel subsets O 1 , . . . , O k ⊂ G and U ⊂ B,

Pν w ∞ [O 1 × • • • × O k × U ] = Ω ν w ∞ (U )1(w 1 ∈ O 1 , . . . , w k ∈ O k ) dP(w) = Ω w 1 . . . w k ν θ k w ∞ (U )1(w 1 ∈ O 1 , . . . , w k ∈ O k ) dP(w) = Ω ν((w 1 . . . w k ) -1 U )1(w 1 ∈ O 1 , . . . , w k ∈ O k ) dP(w).
For the same reason

Pδ b(w) [O 1 × • • • × O k × U ] = Ω ν((w 1 . . . w k ) -1 U )1(w 1 ∈ O 1 , . . . , w k ∈ O k ) dP(w).
Thus the two measures Pν w ∞ and Pδ b(w) defined on Ω × B coincide on F k := σ(w 1 , . . . , w k ) ∨ B, for all k ≥ 1, where B denotes the Borel sets of B. Since the filtration (F k ) k≥0 generates the σ-algebra of Ω × B on which are defined these measures, they are equal, proving that ν w ∞ is well a Dirac measure. This concludes the proof of the proposition.

Poisson boundary and asymptotic entropy. The Poisson boundary (B, ν)

is defined as the maximal µ-boundary, i.e. it is the µ-boundary such that any other µ-boundary is one of its measurable G-equinvariant quotients. A classical problem is to decide weather a space, that is known to be a µ-boundary, is in fact the maximal one.

For countable groups, there exists powerful techniques based on the estimation of the entropy introduced by Kaimanovich and Vershik [START_REF] Kaimanovich | Random walks on discrete groups: boundary and entropy[END_REF] and Derrienic [START_REF] Derriennic | Entropie, théorèmes limite et marches aléatoires[END_REF] and further developed by Kaimanovich (see [START_REF] Kaimanovich | The Poisson formula for groups with hyperbolic properties[END_REF] for details). Suppose that the measure µ has finite entropy:

H(µ) := - g∈G µ(g) ln µ(g) < ∞.
If (B, ν) is a µ-boundary and z ∈ B, it is possible to define the law P z of w ∈ Ω conditioned by b(w) = z. Then for n ≥ 0, P z n denotes the law of x n under P z , i.e. P z n (g) = P z (x n = g) = P(x n = g | b(w) = z). The conditional asymptotic entropy h z is defined by

h z := -lim n→+∞ ln P z n (x n ) n P z -a.s.
Then (B, ν) is the Poisson boundary if, and only if, h z is equal to zero for ν-almost every z.

Law of large numbers and µ-boundaries for GL

d (Q p )
In this section we can assume µ to be a probability measure on GL d (Q p ), not necessarily supported on matrices with rational coefficients. We are going to show that, under first moment hypothesis, the random walk on GL d (Q p ) satisfies a strong law of large numbers, in which the "speeds" of the drift are given by the Lyapunov exponents and the "directions" are given by an element of the associated flag manifold B p . This approach was introduced by V. Kaimanovich in [START_REF] Kaimanovich | Lyapunov exponents, symmetric spaces and a multiplicative ergodic theorem for semisimple Lie groups[END_REF] for semisimple Lie groups, as a group-geometrical version of the classical multiplicative ergodic theorem of Oseledets (see also [START_REF] Karlsson | A multiplicative ergodic theorem and nonpositively curved spaces[END_REF] and [START_REF] Karlsson | On laws of large numbers for random walks[END_REF]).

Related to this result, we will see that B p , endowed with the law of the "direction", is a µ-boundary for the random walk.

Oseledets' theorem and law of large numbers

. If p = ∞, let Λ n = Λ n (∞) be the diagonal matrix of GL d (R) with coefficients (2) (Λ n ) i,i := e nλi(∞) ∀i ≤ d.
If p ∈ P * , let Λ n = Λ n (p) be the diagonal matrix with coefficients

(3) (Λ n ) i,i := p - h nλ i (p) ln p i ∀i ≤ d;
where [•] is the integer part. In such a way, Λ n has rational entries whose p-norms are close to the e nλi(p) 's. To prove this proposition we use the following lemma that translates Oseledets' Theorem in our setting: Proof. Let us first recall the multiplicative ergodic theorem, first proved by V.I.

Oseledets [START_REF] Oseledets | A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems[END_REF] for real matrices and generalized by M.S. Raghunathan [START_REF] Raghunathan | A proof of Oseledec's multiplicative ergodic theorem[END_REF] to matrices on local fields. It says that P-a.s. there exists a filtration of subspaces of

Q d p , {0} = V 0 (w) ⊂ V 1 (w) ⊂ • • • ⊂ V r (w) = Q d p , such that (i) The map w → V i (w) is measurable for all i ≤ r. (ii) For all 1 ≤ i ≤ r, we have v ∈ V i (w) \ V i-1 (w) if, and only if, lim n→+∞ 1 n ln ||w -1 n . . . w -1 1 v|| p = -λ ji (p),
where r and j 1 , . . . , j r are defined as in section 2.2. Suppose that p = ∞ (the real case is treated analogously). Denote by (e 1 , . . . , e d ) the canonical basis of

Q d p . Consider a matrix b ∈ GL d (Q p ) such that for all i ≤ r, b sends the family (e 1 , . . . , e ji ) into a basis of V i (w). Then b = [v 1 | • • • |v d ],
where for all i ≤ r, (v 1 , . . . , v ji ) is a basis of V i (w). Observe that

x -1 n bΛ n = x -1 n v 1 p - h nλ 1 (p) ln p i • • • x -1 n v d p - h nλ d (p) ln p i . Then max k=1,...,d p h nλ k (p) ln p i |x -1 n v k | p ≤ x -1 n bΛ n p ≤ d max k=1,...,d p h nλ k (p) ln p i |x -1 n v k | p . Then, since w -1 n . . . w -1 1 = x -1 n , by (ii) lim n→+∞ 1 n ln ||x -1 n bΛ n || p = 0.
To conclude the proof, just observe that two matrices b 1 and b 2 give two bases of the same filtration {V i (w)} i if, and only if, b -1 1 b 2 is in the group P p , thus such matrix b can be identified with an element of B p .

Proof of Proposition 3.1. Let x n = (w t 1 ) -1 • • • (w t n ) -1 = (x t n ) -1
be the random walk of law µ, image of µ under the map g → (g t ) -1 . Then the Lyapunov exponents associated to µ are

λ i = -λ d-i .
Let Λ n be the diagonal matrix constructed with the exponents λ i as in (3). For P-almost all w there exists a b ∈ GL d (Q p ) such that:

lim n→+∞ 1 n ln ||x t n b Λ n || p = 0. Consider the matrix s =    0 • • • 1 . . . • • • . . . 1 • • • 0    that transforms the basis (e 1 , . . . , e d ) in
the basis (e d , . . . , e 1 ). Then

||x t n b Λ n || p = ||x t n bss -1 Λ n s|| p since s p = s -1 p = 1 = ||x t n bsΛ -1 n || p since s -1 Λ n s = Λ -1 n = ||Λ -1 n ( bs) t x n || p since g t p = g p . Set b = (( bs) t ) -1 , then lim n→+∞ 1 n ln ||Λ -1 n b -1 x n || p = 0.
We want to show now that if b is as in ( 5) then b and b are in the same class in B p . To do this observe that ( 6)

u ∈ P p ⇐⇒ lim n→+∞ 1 n ln ||Λ -1 n uΛ n || p = 0 ⇐⇒ lim n→+∞ 1 n ln ||Λ -1 n uΛ n || p ≤ 0.
This can be proved by direct calculations using the fact that max i,j |g i,j | p ≤ ||g|| p ≤ d 2 max i,j |g i,j | p for all p ∈ P.

Then since ln Λ -1 n b -1 bΛ n p = ln Λ -1 n b -1 x n x -1 n bΛ n p ≤ ln Λ -1 n b -1 x n p + ln x -1 n bΛ n p , it follows immediately that b -1 b ∈ P p .
On the other hand

||Λ -1 n b -1 x n || p ||Λ -1 n uΛ n || -1 p ≤ ||Λ -1 n u -1 b -1 x n || p ≤ ||Λ -1 n u -1 Λ n || p ||Λ -1 n b -1 x n || p .
Then for every b 1 = bu with u in the group P p , lim n→+∞

1 n ln ||Λ -1 n b -1 1 x n || p = 0.
Thus for all b ∈ b(w),

lim n→+∞ 1 n d p (x n , bΛ n ) = lim n→+∞ 1 n (ln + x -1 n bΛ n p + ln + ||Λ -1 n b -1 x n || p ) = 0.
It just remains to see that the class b(w) is the unique such that (4) holds. But if b 1 and b 2 are two matrices such that (4) holds, then

0 = lim n→+∞ 1 n d p (b 1 Λ n , b 2 Λ n ) = lim n→+∞ 1 n d p e, Λ -1 n b -1 1 b 2 Λ n ,
and using once more (6) we conclude. Let ν be the law of b. Then (B, ν) is a µ-boundary.

Poisson boundary of GL d (Q)

To prove that B is the maximal µ-boundary, we use the following lemma, which is a generalization of the ray criterion of V. Kaimanovich [START_REF] Kaimanovich | The Poisson formula for groups with hyperbolic properties[END_REF], already implicitly used in our previous works [START_REF] Brofferio | The Poisson Boundary of random rational affinities[END_REF][START_REF] Br | The Poisson boundary of triangular matrices in a number field, to appear[END_REF]. Lemma 4.1. Let µ be a probability measure on a countable group G with finite entropy. Let (B, ν) be a µ-boundary and b the associated boundary map. Suppose that for each n there exits a measurable map C n from B to subsets of G such that:

lim n→+∞ P(x n ∈ C n (b(w))) = 1 and lim n→+∞ 1 n ln |C n (z)| ≤ δ ν(dz)-almost surely.
Then h z ≤ δ for ν-almost all z.

Proof. Observe that

P (x n ∈ C n (b(w))) = B P z n [C n (z)] ν(dz) → 1.
Thus, along a sub-sequence, P z n [C n (z)] converges to 1 for ν-almost all z. Recall that h z is the P z -almost sure limit ofln P z n (x n )/n. Now for any ε > 0 consider the set

A n (z) = {g ∈ G | -h z -ε < ln P z n (g)/n < -h z + ε} . Then P z n (A n (z) ∩ C n (z))
converges to 1 on a sub-sequence, while, for large n δ+ε) . Thus δh z + 2ε ≥ 0. Since ε was arbitrarily chosen, we get h z ≤ δ.

P z n (A n (z) ∩ C n (z)) ≤ e n(ε-h z ) |C n (z)| ≤ e n(ε-h z ) e n(
In order to apply this lemma in our setting we need to show that the gauge on GL d (Q) associated to the distance d grows at most exponentially:

Lemma 4.2. For g ∈ GL d (Q) and R ≥ 0, let B(g, R) = {h ∈ GL d (Q) | d(g, h) ≤ R}.
Then there exits a constant C > 0 such that for all g and R |B(g, R)| ≤ Ce CR .

Proof. First observe that since d(e, g -1 h) = d(g, h), we have g -1 B(g, R) = B(e, R). Thus two balls with the same radius have the same cardinality, and we can restrict us without loss of generality to the case g = e.

Observe now that if h = (h i,j ) ∈ B(e, R) then for all couples of indices (i, j)

p∈P ln + |h i,j | p ≤ p∈P max i,j ln + |h i,j | p ≤ d(e, h) ≤ R.
It can be shown (see for instance [START_REF] Brofferio | The Poisson Boundary of random rational affinities[END_REF]) that there exists

C ′ such that for all R    q ∈ Q | p∈P ln + |q| p < R    ≤ C ′ e C ′ R .
The desired result follows.

Proof of Theorem 1.1. First observe that, since µ has finite first moment with respect of to an exponentially growing gauge, it has finite entropy. For any p, consider the moment of the random walk with respect to d p :

m p = d p (e, g) dµ(g).

Observe that p∈P m p = E(d(e, w 1 )) < +∞. Fix F a finite subset of P and set m F c = p∈F c m p . By the law of large numbers, P-almost surely Thus for all finite F and all ε > 0,

h z ≤ 2C(|F |ε + m F c + ε).
Letting ε go to zero and F grow to P (in such a way m F c goes to zero), it follows that h z = 0 and thus that (B, ν) is the Poisson boundary.

To conclude we prove our triviality criterion:

Proof of Corollary 1.1. It is immediate that if λ 1 (p) = λ d (p) then P p = GL d (Q p ), thus B p is trivial. Suppose now that the projection of ν on B p is trivial , but that λ 1 (p) > λ d (p). In this case B p is nontrivial and the projection of ν on B p is a dirac measure whose mass is concentrated in a point b ∈ B p that is fixed by the support of µ. Then the support of µ fixes all sub-spaces that compose the nontrivial flag associated to b. This contradicts the fact that no proper subspace of Q d p is fixed by the support of µ.

Proposition 3 . 1 .

 31 Assume that d p (e, g) dµ(g) < +∞. Then there exists a measurable map b = b p : Ω → B p , such that P-almost surely b(w) is the unique element of B p such that x n , bΛ n ) = 0, for any b in the class of b(w).

Lemma 3 . 1 .ln ||x - 1 n

 311 Assume that d p (e, g) dµ(g) < +∞. Then there exists a measurable map b = b p : Ω → B p , such that P-almost surely bΛ n || p = 0, for any b in the class of b(w).

3. 2 . 3 . 1 .

 231 The spaces B p and B are µ-boundaries. It is easily checked, using leftinvariance of d p , that the function b p defined in Proposition 3.1 satisfies the hypothesis of Proposition 2.1. Then we immediately get Corollary Let µ be a probability measure on GL d (Q p ). Assume that d p (e, g) dµ(g) < +∞, and let ν p be the law of b p . Then (B p , ν p ) is a µ-boundary. Let µ be a probability measure on GL d (Q). Assume that d(e, g) dµ(g) < +∞. Let b be the map from Ω to B = p∈P B p defined by: b : w → b(w) = (b p (w)) p∈P .

1 P

 1 p∈F c d p (x n , e) n ≤ n k=1 p∈F c d p (x k , x k-1 ) n = n k=1 p∈F c d p (w k , e) n → m F c .Fix ε > 0 and b = (b p ) p∈P ∈ B, and setC F,ε n (b) =    g ∈ GL d (Q) | d p (g, b p Λ n (p)) ≤ n ε ∀p ∈ F, p∈F c d p (g, e) ≤ n (m F c + ε) x n ∈ C F,ε n (b(w)) → 1.To apply Lemma 4.1, we need to control the cardinality ofC F,ε n . Suppose that C F,ε n (b) is nonempty and let g 0 ∈ C F,ε n (b). Then for all g ∈ C F,ε n (b), d(g 0 , g) = p∈P d p (g 0 , g) ≤ p∈F (d p (g 0 , b p Λ n ) + d p (b p Λ n , g)) +p∈P-F (d p (g 0 , e) + d p (e, g)) ≤ 2n (|F |ε + m F c + ε) Thus 1 n ln |C F,ε n (b)| ≤ 1 n ln |B(g 0 , 2n (|F |ε + m F c + ε))| ≤ 2nC (|F |ε + m F c + ε) + ln C n .
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