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POISSON BOUNDARY OF GLd(Q)

SARA BROFFERIO AND BRUNO SCHAPIRA

Abstract. We construct the Poisson boundary for a random walk supported
by the general linear group on the rational numbers as the product of flag
manifolds over the p-adic fields. To this purpose, we prove a law of large
numbers using the Oseledets’ multiplicative ergodic theorem.

1. Introduction

Denote by P∗ the set of prime numbers and let P = P∗ ∪ {∞}. For p ∈ P∗,
denote by Qp the field of p-adic numbers, and set by convention Q∞ = R.

If µ is a probability measure on GLd(Qp) with finite logarithmic moment, i.e.
∫ (

ln+ ||g||p + ln+ ||g−1||p
)

dµ(g) < +∞,

the associated Lyapunov exponents are the real numbers λ1(p) ≥ · · · ≥ λd(p) such
that

k∑

i=1

λi(p) = lim
n→+∞

1

n

∫
ln ||

k∧
g||p dµ∗n(g),

where µ∗n denotes the n-fold convolution of µ and ∧ the exterior product. Denote
by Pp the parabolic subgroup of GLd(Qp) consisting of matrices (pi,j) with pi,j = 0,
when λi(p) < λj(p), and let Bp := GLd(Qp)/Pp be the associated flag manifold.
The main result of this paper is the following:

Theorem 1.1. Let µ be a probability measure on GLd(Q) such that

∑

p∈P

∫ (
ln+ ||g||p + ln+ ||g−1||p

)
dµ(g) < +∞.

Then there exists a unique probability measure ν on the space

B :=
∏

p∈P

Bp,

such that (B, ν) is the Poisson boundary of (GLd(Q), µ).

This theorem unifies and generalizes serval results on Poisson boundary of ratio-
nal matrices groups, known up to now. In particular, it has been proved separately
by F. Ledrappier [15] and V. Kaimanovich [9] that the Poisson boundary of a ran-
dom walk supported by SLd(Z) is the real flag manifold B∞. This results is con-
tained in Theorem 1.1 because, in this case, for all p 6= ∞, the associated Lyapunov
exponents are all equal to zero, thus Bp is trivial. Furthermore since Theorem 1.1
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does not require any irreducibility condition, it also applies to the case of rational
affine group and to rational triangular matrices previously threaded by the authors
[3, 18].

We would like to remark that for general number fields (i.e. finite extensions of
Q) a similar result can be proved adapting our methods (see in [18] hints to possible
generalization).

Due to its generality, our result does not say much about ν and its the support. In
particular it is not true that the restriction of ν to each Bp has always full support.
For instance if µ is supported on the subgroup of upper triangular matrices, we
know [3, 18] that ν charges only one Bruhat cell of each Bp. But even this is not
optimal since µ could be supported on diagonal matrices and with all Lyapunov
exponents distinct, but in this case the Poisson boundary would be trivial (one
point). However irreducibility hypothesis can give information on the support of µ.
We have for instance the following triviality criterion:

Corollary 1.1. Let p ∈ P. If λ1(p) = λd(p), then the projection of ν on Bp is

trivial.

Conversely, if the projection of ν on Bp is trivial and no proper subspace of Qd
p

is fixed by the support of µ, then λ1(p) = λd(p).

There exists serval results in the literature to decide whether the real Lyapunov
exponents are all equal λ1(∞) = λd(∞). For instance, under irreducibility hypoth-
esis this is equivalent to ask that the closed subgroup generated by µ in GLd(R) is
amenable [8]. For other references and results on product of real random matrices,
see also [2]. It seem very likely that similar results hold on p-adic setting.

A different question that is still open is to understand the behavior of the measure
ν on the product of the p-flag manifolds, and not only of its projection on each Bp.
For instance: does ν charge the whole product or is it supported by some ”diagonal”
sub-set? Is there some sort of correlation among the different p-adic components?

The main tool of the proof of Theorem 1.1 is to produce, using the multiplicative
ergodic theorem of Oseledets, a Law of large numbers for random walks on GLd(Qp)
(not necessarily with rational coefficients, see Proposition 3.1). The Lyapunov
exponents give the speeds of convergence and the boundary limit of the random
walk on Bp the directions. This is done in Section 3, where we also use this result
to prove that Bp and B are µ-boundaries.

In Section 4, we use entropy criterion due to Kaimanovich to establish the max-
imality of (B, ν) and prove the main theorem and its corollary.

The authors would like to thank Uri Bader for suggesting them the problem.
They are also grateful to François Ledrappier and Anders Karlsson for useful advices
and references.

2. Preliminaries

2.1. General linear group over Qp. If K is a field, we denote by GLd(K) the
group of invertible matrices of size d with coefficients in K. We denote by e the
identity matrix.

For p ∈ P and v = (v1, . . . , vd) ∈ Qd
p, we set

|v|p = max
i

|vi|p, if p 6= ∞ and |v|∞ =

√∑

i

|vi|2∞,
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and if g ∈ GLd(Qp) we set
||g||p = sup

|v|p=1

|gv|p.

For any p ∈ P and g, h ∈ GLd(Qp) set

dp(g, h) = ln+ ||g−1h||p + ln+ ||h−1g||p,

where ln+ denotes the positive part of the function ln. It is easily checked that dp is
symmetric and satisfies the triangular inequality. It is not a distance since the set
of g ∈ GLd(Qp) such that dp(e, g) = 0 is the compact subgroup of linear isometries
of Qd

p. Furthermore dp is left-invariant:

dp(γg, γh) = dp(g, h),

for all g, h, γ ∈ GLd(Qp).
For all g, h ∈ GLd(Q), let

d(g, h) =
∑

p∈P

dp(g, h).

This define a left-invariant pseudometric on GLd(Q).

2.2. The flag manifold. For each p ∈ P fix the sequence of Lyapunov exponents
λ1(p) ≥ · · · ≥ λd(p). The associated parabolic sub-group is

Pp = {(pi,j) ∈ GLd(Qp) | pi,j = 0 if λi(p) < λj(p)}

The flag manifold Bp := GLd(Qp)/Pp is then a compact separable GLd(Qp)-space.
We mention that there is a one to one map between Bp and the space of flags,

viewed as the set of embedded sequences of sub-spaces of Qd
p of fixed dimensions.

In fact

Bp =
{
(V1, . . . , Vr) | V1 ≤ · · · ≤ Vr = Qd

p, dim(Vi) = ji ∀i ≤ r
}

,

where r is the number of distinct values taken by λ1(p), . . . , λd(p), and j1, . . . , jr

are defined inductively by jr = d and ji−1 = max{j < ji | λj(p) > λji
(p)}, for

2 ≤ i ≤ r. To see the correspondence between Bp and this space of flags, observe
that GLd(Qp) acts transitively on the flags and that the parabolic subgroup Pp is
the stabilizer of the element (E1, . . . , Er), where for all i, Ei is the vector space
generated by the first ji vectors of the canonical basis.

Let
B :=

∏

p∈P

Bp,

equipped with the product topology. With the natural diagonal action, B is a
compact separable GLd(Q)-space.

2.3. Random walk and µ-boundaries. Let µ be a probability measure on a
locally compact separable group G. Let

(Ω, P) := (G, µ)⊗N,

be the product of N independent copies of (G, µ) (here N is the set of strictly
positive integers). If w = (wi, i ≥ 1) ∈ Ω, the random walk is the process defined
by

xn := w1 . . . wn ∀n ≥ 1 and x0 := e.

Observe that under P, for any fixed n, the law of xn is µ∗n, the n-th convolution
power of µ.
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Assume that B is a compact separable space, endowed with a probability measure
ν and a continuous action of G. We say that ν is µ-stationary (also known as µ-
invariant or µ-harmonic), if

µ ∗ ν :=

∫

G

(gν) dµ(g) = ν,

where for all g ∈ G, gν is defined by

gν(f) =

∫

B

f(gz) dν(z),

for all continuous functions f . In this case, according to Furstenberg [6, 7], we say
that (B, ν) is a µ-boundary if, P-almost surely xnν converges weakly to a dirac
measure.

A µ-boundary (B, ν) is naturally associated to a measurable function b = bB :
Ω → B defined by

(1) lim
n→+∞

xnν = δb(w).

Then ν is the image of P under b.
Denote by θ the shift transformation on Ω: if w = (wi, i ≥ 1) ∈ Ω, then

(θw)i = wi+1 i ≥ 1.

The measure P is θ-invariant and it is easy to see that the function defined in (1)
satisfies

w1b(θw) = b(w).

This property characterizes functions that arise from µ-boundaries, as follows from
this known result (see for instance [10, 15]):

Proposition 2.1. Let B be a compact separable G-space and let b : Ω → B be a

measurable map, such that P-a.s. we have w1b(θw) = b(w). Let ν be the law of b.

Then (B, ν) is a µ-boundary.

Proof. We give here a proof for sake of completeness. By using the invariance of P

by θ and the hypothesis on the map b we get for every continuous functions f on B

ν(f) =

∫

Ω

f(b(w)) dP(w)

=

∫

Ω

f(w1b(θw)) dP(w)

=

∫

G

(∫

Ω

f(w1b(w′)) dP(w′)

)
dµ(w1) = µ ∗ ν(f),

proving the invariance of ν by µ. The hypothesis on b also shows that for any
continuous function f , the sequence

Mn(w) := xn · ν(f) n ≥ 1,

is a bounded martingale. Thus this sequence converges a.s and in L1 toward some
limit, say νw

∞(f). Since B is separable, this defines actually a random measure νw
∞

on B, which is the weak limit of xn · ν, n ≥ 1. Observe now that for all k ≥ 1,

νw
∞ = xkνθkw

∞ P − a.s.
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Moreover E[νw
∞] = ν. Observe also that the dirac measure δb(w) has the same

properties. As a consequence for any k ≥ 1, any Borel subsets O1, . . . , Ok ⊂ G and
U ⊂ B,

Pνw
∞[O1 × · · · × Ok × U ] =

∫

Ω

νw
∞(U)1(w1 ∈ O1, . . . , wk ∈ Ok) dP(w)

=

∫

Ω

w1 . . . wkνθkw
∞ (U)1(w1 ∈ O1, . . . , wk ∈ Ok) dP(w)

=

∫

Ω

ν((w1 . . . wk)−1U)1(w1 ∈ O1, . . . , wk ∈ Ok) dP(w).

For the same reason

Pδb(w)[O1 × · · · × Ok × U ] =

∫

Ω

ν((w1 . . . wk)−1U)1(w1 ∈ O1, . . . , wk ∈ Ok) dP(w).

Thus the two measures Pνw
∞ and Pδb(w) defined on Ω × B coincide on Fk :=

σ(w1, . . . , wk) ∨ B, for all k ≥ 1, where B denotes the Borel sets of B. Since the
filtration (Fk)k≥0 generates the σ-algebra of Ω × B on which are defined these
measures, they are equal, proving that νw

∞ is well a Dirac measure. This concludes
the proof of the proposition. �

2.4. Poisson boundary and asymptotic entropy. The Poisson boundary (B, ν)
is defined as the maximal µ-boundary, i.e. it is the µ-boundary such that any other
µ-boundary is one of its measurable G-equinvariant quotients. A classical problem
is to decide weather a space, that is known to be a µ-boundary, is in fact the
maximal one.

For countable groups, there exists powerful techniques based on the estimation
of the entropy introduced by Kaimanovich and Vershik [12] and Derrienic [4] and
developed by Kaimanovich (see [10] for details). Suppose that the measure µ has
finite entropy:

H(µ) := −
∑

g∈G

µ(g) lnµ(g) < ∞.

If (B, ν) is a µ-boundary and z ∈ B, it is possible to define the law Pz of w ∈ Ω
conditioned by b(w) = z. Then for n ≥ 0, Pz

n denotes the law of xn under Pz, i.e.

Pz
n(g) = Pz(xn = g) = P(xn = g | b(w) = z)

The conditional asymptotic entropy hz is defined by

hz := − lim
n→+∞

log Pz
n(xn)

n
Pz − a.s.

Then (B, ν) is the Poisson boundary if, and only if, hz is equal to zero for ν-almost
every z.

3. Law of large numbers and µ-boundaries for GLd(Qp)

In this section we can assume µ to be a probability measure on GLd(Qp), not
necessarily supported on matrices with rational coefficients. We are going to show
that, under first moment hypothesis, the random walk on GLd(Qp) satisfies a strong
law of large numbers, in which the ”speeds” of the drift are given by the Lyapunov
exponents and the ”directions” are given by an element of the associated flag man-
ifold Bp. This approach was introduced by V. Kaimanovich in [11] for semisimple
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Lie groups, as a group-geometrical version of the classical multiplicative ergodic
theorem of Oseledets. (see also A. Karlsson and F. Ledrappier [13].)

Related to this result, we will see that Bp, endowed with the law of the ”direc-
tion”, is a µ-boundary for the random walk.

3.1. Oseledets’ theorem and law of large numbers. If p = ∞, let Λn = Λn(∞)
be the diagonal matrix of GLd(R) with coefficients

(2) (Λn)i,i := enλi(∞) ∀i ≤ d.

If p ∈ P∗, let Λn = Λn(p) be the diagonal matrix with coefficients

(3) (Λn)i,i := p
−

h

nλi(p)

ln p

i

∀i ≤ d;

where [·] is the integer part. In such a way, Λn has rational entries whose p-norms
are close to the enλi(p)’s.

Proposition 3.1. Suppose E(dp(1, w1)) < ∞. Then there exists a measurable map

b = bp : Ω → Bp,

such that P-almost surely b(w) is the unique element of Bp such that

(4) lim
n→+∞

1

n
dp (xn, bΛn) = 0,

for any b in the class of b(w).

To prove this proposition we use the following lemma that translates Oseledets’
Theorem in our setting:

Lemma 3.1. Suppose E(dp(1, w1)) < ∞. Then there exists a measurable map

b = bp : Ω → Bp,

such that P-almost surely

(5) lim
n→+∞

1

n
ln ||x−1

n bΛn||p = 0,

for any b in the class of b(w).

Proof. Let us first recall the multiplicative ergodic theorem, first proved by V.I.
Oseledets [16] for real matrices and generalized by M.S. Raghunathan [17] to ma-
trices on local fields. It says that P-a.s. there exists a filtration of subspaces of Qd

p,

{0} = V 0(w) ⊂ V 1(w) ⊂ · · · ⊂ V r(w) = Qd
p, such that

(i) The map w → V i(w) is measurable for all i ≤ r.
(ii) For all 1 ≤ i ≤ r, we have v ∈ V i(w) \ V i−1(w) if, and only if,

lim
n→+∞

1

n
ln ||w−1

n . . . w−1
1 v||p = −λji

(p),

where r and j1, . . . , jr are defined as in section 2.2.
Suppose that p 6= ∞ (the real case is treated analogously). Denote by (e1, . . . , ed)

the canonical basis of Qd
p. Consider a matrix b ∈ GLd(Qp) such that for all i ≤ r,

b sends the family (e1, . . . , eji
) into a basis of V i(w). Then b = [v1| · · · |vd], where

for all i ≤ r, (v1, . . . , vji
) is a basis of V i(w). Observe that

x−1
n bΛn =

[
x−1

n v1p
−

h

nλ1(p)
ln p

i

∣∣∣∣ · · ·

∣∣∣∣x
−1
n vdp

−
h

nλd(p)

ln p

i
]

.
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Then

max
k=1,...,d

(
p

h

nλk(p)

ln p

i

|x−1
n vk|p

)
≤

∥∥x−1
n bΛn

∥∥
p
≤ d max

k=1,...,d

(
p

h

nλk(p)

ln p

i

|x−1
n vk|p

)
.

Then, since w−1
n . . . w−1

1 = x−1
n , by (ii)

lim
n→+∞

1

n
ln ||x−1

n bΛn||p = 0.

To conclude the proof, just observe that two matrices b1 and b2 give two basis of the
same filtration {Vi(w)}i if, and only if, b−1

1 b2 is in the group Pp, thus such matrix
b can be identified with an element of Bp. �

Proof of Proposition 3.1. Let x̃n = (wt
1)

−1 · · · (wt
n)−1 = (xt

n)−1 be the random
walk of law µ̃, image of µ under the map g 7→ (gt)−1. Then the Lyapunov exponents
associated to µ̃ are

λ̃i = −λd−i.

Let Λ̃n be the diagonal matrix constructed with the exponents λ̃i as in (3). For

P-almost all w there exists a b̃ ∈ GLd(Qp) such that:

lim
n→+∞

1

n
ln ||xt

nb̃Λ̃n||p = 0.

Consider the matrix s =




0 · · · 1
... · · ·

...
1 · · · 0


 that transforms the basis (e1, . . . , ed) in

the basis (ed, . . . , e1). Then

||xt
nb̃Λ̃n||p = ||xt

nb̃ss−1Λ̃ns||p since ‖s‖p = ‖s−1‖p = 1

= ||xt
nb̃sΛ−1

n ||p since s−1Λ̃ns = Λ−1
n

= ||Λ−1
n (̃bs)txn||p since ‖gt‖p = ‖g‖p.

Set b = ((̃bs)t)−1, then

lim
n→+∞

1

n
ln ||Λ−1

n b
−1

xn||p = 0.

We want to show now that if b is as in (5) then b and b are in the same class in
Bp. To do this observe that

(6) u ∈ Pp ⇐⇒ lim
n→+∞

1

n
ln ||Λ−1

n uΛn||p = 0 ⇐⇒ lim
n→+∞

1

n
ln ||Λ−1

n uΛn||p ≤ 0.

This can be proved by direct calculations using the fact that maxi,j |gi,j|p ≤ ||g||p ≤
d2 maxi,j |gi,j |p for all p ∈ P .

Then since

ln ‖Λ−1
n b

−1
bΛn‖p = ln ‖Λ−1

n b
−1

xnx−1
n bΛn‖p ≤ ln ‖Λ−1

n b
−1

xn‖p + ln ‖x−1
n bΛn‖p,

it follows immediately that b
−1

b ∈ Pp.
On the other hand

||Λ−1
n b

−1
xn||p||Λ

−1
n uΛn||

−1
p ≤ ||Λ−1

n u−1b
−1

xn||p ≤ ||Λ−1
n u−1Λn||p||Λ

−1
n b

−1
xn||p.

Then for every b1 = bu with u in the group Pp,

lim
n→+∞

1

n
ln ||Λ−1

n b−1
1 xn||p = 0.
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Thus for all b ∈ b(w),

lim
n→+∞

1

n
dp (xn, bΛn) = lim

n→+∞

1

n
(ln+ ‖x−1

n bΛn‖p + ln+ ||Λ−1
n b−1xn||p) = 0.

It just remains to see that the class b(w) is the unique such that (4) holds. But
if b1 and b2 are two matrices such that (4) holds, then

0 = lim
n→+∞

1

n
dp (b1Λn, b2Λn) = lim

n→+∞

1

n
dp

(
e, Λ−1

n b−1
1 b2Λn

)
,

and using once more (6) we conclude. �

3.2. The spaces Bp and B are µ-boundaries. It is easily checked, using left-
invariance of dp, that the function bp defined in Proposition 3.1 satisfies the hy-
pothesis of Proposition 2.1. Then we immediately get

Corollary 3.1. Let µ be a probability measure on GLd(Qp). Suppose that E(dp(e, w1)) <
∞, and let νp be the law of bp. Then (Bp, νp) is a µ-boundary.

Let µ be a probability measure on GLd(Q). Suppose that E(d(e, w1)) < ∞. Let

b be the map from Ω to B =
∏

p∈P Bp defined by:

b : w 7→ b(w) = (bp(w))p∈P .

Let ν be the law of b. Then (B, ν) is a µ-boundary.

4. Poisson boundary of GLd(Q)

To prove that B is the maximal µ-boundary, we use the following lemma, which
is a generalization of the ray criterion of V. Kaimanovich [10], already implicitly
used in our previous works [3, 18].

Lemma 4.1. Let µ be a probability measure on a countable group G with finite

entropy. Let (B, ν) be a µ-boundary and b the associated boundary map. Suppose

that for each n there exits a measurable map Cn from B to subsets of G such that:

lim
n→+∞

P(xn ∈ Cn(b(w))) = 1 and lim
n→+∞

1

n
ln |Cn(z)| ≤ δ ν(dz)-almost surely.

Then hz ≤ δ for ν-almost all z.

Proof. Observe that

P (xn ∈ Cn(b(w))) =

∫

B

Pz
n [Cn(z)] ν(dz) → 1.

Thus, along a sub-sequence, Pz
n [Cn(z)] converges to 1 for ν-almost all z.

Recall that hz is the Pz-almost sure limit of − lnPz
n(xn)/n. Now for any ε > 0

consider the set

An(z) = {g ∈ G | −hz − ε < ln Pz
n(g)/n < −hz + ε} .

Then Pz
n(An(z) ∩ Cn(z)) converges to 1 on a sub-sequence, while, for large n

Pz
n(An(z) ∩ Cn(z)) ≤ en(ε−hz)|Cn(z)| ≤ en(ε−hz)en(δ+ε).

Thus δ − hz + 2ε ≥ 0. Since ε was arbitrarily chosen, we get hz ≤ δ. �

In order to apply this lemma in our setting we need to show that the gauge on
GLd(Q) associated to the distance d grows at most exponentially:
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Lemma 4.2. For g ∈ GLd(Q) and R ≥ 0, let

B(g, R) = {h ∈ GLd(Q) | d(g, h) ≤ R}.

Then there exits a constant C > 0 such that for all g and R

|B(g, R)| ≤ CeCR.

Proof. First observe that since d(e, g−1h) = d(g, h), we have g−1B(g, R) = B(e, R).
Thus two balls with the same radius have the same cardinality, and we can restrict
us without loss of generality to the case g = e.

Observe now that if h = (hi,j) ∈ B(e, R) then for all couples of indices (i, j)
∑

p∈P

ln+ |hi,j |p ≤
∑

p∈P

max
i,j

ln+ |hi,j |p ≤ d(e, h) ≤ R.

It can be shown (see for instance [3]) that there exists C′ such that for all R
∣∣∣∣∣∣




q ∈ Q |
∑

p∈P

ln+ |q|p < R






∣∣∣∣∣∣
≤ C′eC′R.

The desired result follows. �

Proof of Theorem 1.1. First observe that, since µ has finite first moment with re-
spect of to an exponentially growing gauge, it has finite entropy.

For any p, consider the moment of the random walk with respect to dp:

mp =

∫
dp(e, g) dµ(g).

Observe that
∑

p∈P mp = E(d(e, w1)) < +∞. Fix F a finite subset of P and set

mF c =
∑

p∈F c mp. By the law of large numbers, P-almost surely
∑

p∈F c dp(xn, e)

n
≤

∑n

k=1

∑
p∈F c dp(xk, xk−1)

n
=

∑n

k=1

∑
p∈F c dp(wk, e)

n
→ mF c .

Fix ε > 0 and b = (bp)p∈P ∈ B, and set

CF,ε
n (b) =



g ∈ GLd(Q) | dp(g, bpΛn(p)) ≤ n ε ∀p ∈ F,

∑

p∈F c

dp(g, e) ≤ n (mF c + ε)



 .

Then by Proposition 3.1

P
[
xn ∈ CF,ε

n (b(w))
]
→ 1.

To apply Lemma 4.1, we need to control the cardinality of CF,ε
n . Suppose that

CF,ε
n (b) is nonempty and let g0 ∈ CF,ε

n (b). Then for all g ∈ CF,ε
n (b),

d(g0, g) =
∑

p∈P

dp(g0, g)

≤
∑

p∈F

(dp(g0, bpΛn) + dp(bpΛn, g)) +
∑

p∈P−F

(dp(g0, e) + dp(e, g))

≤ 2n (|F |ε + mF c + ε)

Thus

1

n
ln |CF,ε

n (b)| ≤
1

n
ln |B(g0, 2n (|F |ε + mF c + ε))| ≤ 2nC (|F |ε + mF c + ε) +

lnC

n
.
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Thus for all finite F and all ε > 0,

hz ≤ 2C(|F |ε + mF c + ε).

Letting ε go to zero and F grow to P (in such a way mF c goes to zero), it follows
that hz = 0 and thus that (B, ν) is the Poisson boundary. �

To conclude we prove our triviality criterion:

Proof of Corollary 1.1. It is immediate that if λ1(p) = λd(p) then Pp = GLd(Qp),
thus Bp is trivial.

Suppose now that the projection of ν on Bp is trivial , but that λ1(p) > λd(p).
In this case Bp is nontrivial and the projection of ν on Bp is a Dirac measure whose
mass is concentrated in a point b ∈ Bp that is fixed by the support of µ. Then the
support of µ fixes all sub-spaces that compose the nontrivial flag associated to b.
This contradicts the fact that no proper subspace of Qd

p is fixed by the support of
µ. �
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