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Piezoelectric meso- and microactuator systems required for manipulation or assembly of microscale
objects demand reliable force and/or displacement information. Available sensors are prone to
dimension restrictions or precision limitation. Self-sensing method, based on the electric charge
measurement, may represent a solution in terms of cost-effectiveness and integration, the actuator
performing simultaneously as its own sensor. This paper presents a self-sensing method dedicated
to free uni- and bimorph piezocantilevers but can also be adapted to other piezoactuator types. The
integrated electric current, used to convert the charge, can be compensated against piezoelectric
material nonlinearities to provide accurate displacement information. The advantages relative to
existing self-sensing methods consist in the ability to keep this displacement information for
long-term periods �more than a thousand seconds� and in the reduction in signal noise. After
introductive issues related to the method the base principle allowing the estimation of tip
displacement is presented. Then, the identification procedure of the estimator parameters is depicted
and representative experimental results are shown. Finally, a series of aspects related to electronic
circuits are discussed, useful for successful system implementation. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3142486�

I. INTRODUCTION

Piezoelectric cantilevered actuators usually made up of
one or two piezoelectric layers �called uni- or bimorph� are
present in many micromanipulation and microrobotic appli-
cations, thanks to their high displacement resolution and fast
response time. The static and dynamic behaviors of piezo-
electric actuators, their inherent nonlinearities �hysteresis and
creep�, and limits were studied and modeled1–4 especially
during the past 2 decades in attempting to provide more ef-
ficient control solutions.5–7

In order to perform very accurate and fast response time
closed-loop micromanipulation tasks, various sensors have
been used. Unfortunately, these sensors are not ideally
adapted to the micro- and nanoworld because of their sizes,
performances, and limited measurement of degrees of free-
dom. Table I summarizes mostly available sensors in the
field. Hence, an alternative to the use of sensors is the self-
sensing method. There are several advantages of the self-
sensing method relative to the use of external sensors.
Among them, it allows a consistent reduction in the costs by
eliminating expensive sensors. As can be seen, resolution can
also be submicrometric and comparable to that of external
sensors. Self-sensing is based on charge conversion. In fact,
charge is nearly proportional to the displacement, hence
there is no need to further compensate the complex nonlin-
earities �hysteresis and creep� such as in �Ref. 8�.

The idea of self-sensing in piezoelectric cantilever has

been started by the work of Dosch et al.9 While it is not a
new concept on vibration damping or control,10–13 more re-
cently, it has shown its feasibility for piezoelectric tubes of
atomic force microscopy.14,15 But to our knowledge, self-
sensing methods have not yet been adapted for long-term
�more than hundreds of seconds� displacement measurement
of cantilevered actuators, as required by micromanipulation
and microrobotic tasks. In this paper, we present a compen-
sated self-sensing approach especially dedicated to long-term
static measurement. We especially focus on the displacement
measurement of a piezoelectric cantilever beam.

Drawbacks of displacement self-sensing method refer to
inherent charge leaks and temperature influence. With proper
actuators and electronic circuits, charge information may be
preserved even for thousands of seconds. However, because
of the temperature variations, extra care will be required for
proper thermal isolation especially in the case of nonsym-
metric cantilevers �example: unimorph� to limit temperature-
related uncertainties.

There are several self-sensing schematics depending on
application. Capacitive bridges9,11 are convenient for vibra-
tion control but are not easy to balance for long-term mea-
surements. Structures with both electrodes for actuation and
electrodes for sensing are a simple solution but their incon-
venience is a partial reduction in the total actuating
range.14,16 A current integrator was introduced in Ref. 17 for
a piezostack. The disadvantage was a poor compensation of
leaking resistance with a very high value potentiometer
across the integrating capacitor. Another method quite re-
lated to self-sensing concept was linearization of the actuator
displacement using voltage-to-charge amplifiers.18,19 The ad-
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vantage was a linear voltage-to-displacement characteristic.
However, the conventional HV supplier needs to be replaced
by more complex charge driven circuits. In our paper we
propose two simple schematics of current integrators �modi-
fied charge amplifiers� that can also be easily implemented
onto existing systems, avoiding requiring the redesign of ac-
tuator or HV supply.

The developed self-sensing systems can be divided into
three main parts, as in Fig. 1: the piezoelectric actuator, the
electronic circuit, and the data processing system. The latter
is the proposed self-sensing estimator. The estimate displace-
ment could be used for further feedback or closed-loop con-
trol systems.

Piezoelectric actuators are submitted to Vin external volt-
ages in a range of up to several hundred volts, depending on
actuators. Resulted charge Q �in fact integrated current� is
converted by the electronic amplifier to a measurable voltage
Vout. This signal will be converted for further numerical pro-
cessing. Data is further processed on a computer or is de-
ployed into a real-time processor or microcontroller. External
signals can be provided to improve the self-sensing accuracy,
for instance temperature variation may be compensated with
a small thermistor. As the charge cannot be kept indefinitely,
external resetting before each measurement prevents satura-
tion and offsets large parts of the static error.

Among the contributions of this paper include: the intro-
duction of an antiparallel reference capacitance, numerical
compensations of amplifier bias currents and of piezoelectric
leaking resistance, and dielectric absorption. A step by step
approach of the identification of the self-sensing parameters
is presented as well as experimental results.

The paper is organized as follows. First, we present the
principle and related equations of the self-sensing estimator.

Afterwards, we detail the parameter identification. Hence, we
present the experimental results. Finally, we relate some is-
sues to be taken into account when deploying self-sensing
systems.

II. DISPLACEMENT DETECTION

A. Charge output of piezoelectric cantilever

Consider a bimorph cantilevered beam piezoactuator
subjected to an electrical excitation Vin �Fig. 2�. The beam is
characterized by its length L, its width w, and its half-
thickness h.

In the absence of external force, we have a theoretically
linear relation between displacement and applied voltage20

� = −
3d31

1 +
d31

2

4s11
E �33

S

L2

h2 Vin, �1�

where s11
E is the compliance coefficient along the beam �X

direction�, �33
S and d31 are dielectric and piezoelectric mate-

rial coefficients.
Using the relation between the applied voltage and the

capacitance for bimorph piezoelectric cantilever beam

Q =
4wL�33

S

h
Vin, �2�

charge directly results and, as stated previously, is quasipro-
portional to free displacement �

TABLE I. Displacement sensors for the microworld.

Sensor type Advantages Disadvantages

Triangulation lasers
High precision and resolution; fair band pass;

and spot measurement
Quite expensive, large sizes, and

limited measurement range

Interferometers
Very high precision resolution and range; increased band pass;

and spot�s� measurement Very expensive and large sizes

Diffraction grating target High precision and multidimensional measurement
Large sizes, require attaching target,

and expensive

Strain gages Less expensive and millimeter size
Fragile, noisy output signal, and

temperature influence

Capacitive or inductive High sensibility, high precision, and fair price
Require linearization, from fair to quite large
dimensions, and close vicinity requirements

Magnetic Hall effect, magnetoresistive,
and magnetostrictive Good precision, band pass, and fair price

Require permanent magnets often too large
and close vicinity requirements.

Using image processing Large measurement range and in-plane displacement
Expensive and limited resolution and

response time

Piezoelectric self-sensing
Double functionality, high band pass, high resolution,

and lowest price
Require nonlinear compensation and

long-term charge leaking

FIG. 1. �Color online� Displacement self-sensing system. FIG. 2. A bimorph piezoelectric cantilever beam.
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Q =
4wh�33

S

3d31L
�1 +

d31
2

4s11
E �33

S �� = �� , �3�

where � is denoted as an actuator charge-displacement coef-
ficient. In the sequel, this charge will be converted into a
measurable voltage Vout from which the deflection � will be
estimated, as described in Fig. 1.

B. Experimental setup

A schematic overview of the setup is depicted in Fig. 3.
Several uni- and bimorph rectangular actuators �PZT on Cu
or Ni substrate� were tested, of length between 10–15 mm,
width between 1–2 mm, and total thickness of 0.27–0.45
mm. A Keyence LC-2420 optical displacement reader was
only used for intermediate tests on actuators displacement;
for some measurements requiring better precision a SIOS
SP-120 miniature plane-mirror interferometer was employed
�Fig. 4�. However displacement readings served only for ref-
erencing and evaluating purposes of the self-sensing method.
The high voltage �HV� amplifier allowed applying a voltage
up to �150 V. A current integrator amplifier circuit �modified
charge amplifier� to be discussed next chapter provided Vout

output signal. The Matlab Simulink detection model was de-
ployed on a high speed DSpace DS1103 real-time controller
board. A PC-based CONTROLDESK interface served for model
parameterization and data acquisition/presentation.

C. Integrator amplifier

The static electrical equivalent schematic of piezoelec-
tric bender is a charge generator in parallel with a capacitor
and a leaking resistance, as seen in Fig. 5, and its electrome-
chanical model is shown in Ref. 2. CP capacitance is in the
order of nanofarad depending on the shape and dimensions
of the microactuator’s structure while RFP is the insulating
resistance, whose order of magnitude is between
109 . . .1012 �.

If we ignore nonlinear effects, charge is proportional to
the applied voltage and the external force. To measure
charge, we propose a precise integrator circuit scheme, as
pictured in Fig. 6 and described below.

The input signal Vin is inverted and applied to a “refer-
ence capacitor” CR whose the value is close to CP value; it
will “absorb” a significant part of the charge due to the ap-
plied voltage, according to the second Kirchoff law. Al-
though CR and HV inverter may miss from the circuit, their
use is recommended. Indeed, the output will saturate at a
higher Vin input voltage value �up to several hundred volts�
while preserving the same sensitivity. Feedback capacitor C
will integrate the current due to external force variation and
applied voltage �depending on CR /CP fraction�. An electro-
mechanical relay-switch k �in series with several kilo ohms
resistor� allows resetting Vout voltage from DSpace environ-
ment in order to avoid the saturation. Electronic switches are
not suitable because of their “off” source/drain leakage cur-
rents. Further details and propositions are discussed in
Sec. V.

Output voltage is

Vout = −
1

C
�

0

T

i�t�dt = −
1

C
Q , �4�

where, for the free beam �Fext=0�, charge is

FIG. 3. �Color online� Experimental setup schematic of the self-sensing
actuator. Direction for positive displacement is given.

FIG. 4. �Color online� Photo of experimental setup. Actuator is placed in the
upper left and SIOS interferometer is in the right side of the image.

FIG. 5. Equivalent electrical schematic of a piezoactuator.

FIG. 6. Electronic circuit schematic of charge amplifier.
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Q = − CRVin + �� , �5�

where � was introduced in Eq. �3�.
If we consider a nonlinear dielectric absorption effect of

piezoelectric material, we propose the following slight modi-
fication:

Q = − CRVin + ��� + QDA� , �6�

where QDA is an internal amount of charge depending on �33

variation.

D. Detected displacement formula

Adding the influence of the nonzero bias current iBIAS of
the operational amplifier �op-amp� and finite leaking resis-
tance RFP of the piezoactuator, output voltage Vout of the free
cantilever beam is given by

Vout =
CR

C
Vin −

�� + QDA

C
−

1

C
� Vin�t�

RFP
dt

−
1

C
� iBIAS�t�dt . �7�

Extracting the displacement �, we obtain the estimate as
follows:

�est = −
C

�
Vout −

QDA�Vin,t�
�

+
CR

�
Vin − −

1

RFP�
� Vin�t�dt

−
1

�
� iBIAS�t�dt . �8�

We will consider a simple relaxation effect described by a
first-order transfer function for the dielectric absorption term

QDA
� �s� =

QDA�s�
�

=
ks

�

�s + 1
, �9�

where static gain ks
�=ks /�. Based on the previous equations,

Fig. 7 presents the detailed estimation bloc-scheme. Some
parameters of the identification in Eq. �8� have to be identi-
fied. It will be presented in the next section.

III. SELF-SENSING PARAMETER IDENTIFICATION

Parameters identification of Eq. �8� can be performed
under a manual or semiautomatic procedure. Capacitances
are given �C=47 nF and CR=8.2 nF in our case�. The
identification procedure for the rest of parameters
�� , iBIAS, RFP, and QDA� is based on Eq. �7�, where the
displacement � is provided by the displacement sensor �op-
tical or interferometer�. The following steps describe the
identification procedure.

A. Bias current iBIAS identification

Under Fext=0, Vin=0, Vout�0, and zero temperature
change, there is no electric current through the piezoelectric
material; the Vout rate of change is measured for several doz-
ens of seconds, deriving iBIAS.

B. Leaking resistance RFP identification

Under Fext=0, a constant voltage Vin�0 is applied to the
actuator. After several hundred seconds the creep influence
becomes negligible, and the output voltage Vout shifts with a
constant slope, depending on iBIAS �identified before� and RFP

�to be identified�.
The identification can be repeated for different Vin values

and averaged. Each point in Fig. 8 was recorded after a
1000–2000 s delay, to eliminate residual creep influence.
Linear regression was applied.

Quality piezocantilevers will exhibit RFP values superior
to 1010 �. For our actuator we identified RFP=0.435 T�.

C. Displacement coefficient � identification

A step signal is applied on the free actuator. To avoid
dynamic oscillations of the actuator, the step signal is shaped
with ramp of around 20 V/s �Fig. 9�. Measured values of �
and Vout immediately after Vin step signal will serve to com-
pute �

� = �− CVout + CRVin�/� . �10�

An alternate method for deriving � is to apply one or several
sinusoidal signals as in Fig. 10 and use amplitude values in
Eq. �10�.

FIG. 7. Displacement detection model �Simulink�.

FIG. 8. �Color online� Leakage current of PZT actuator measured under
constant dc voltage values. Calculated insulation resistance is 0.435 T�.
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D. Identification of dielectric absorption transfer
function

The last part to be identified in displacement in Eq. �8� is
the dielectric absorption QDA�Vin , t� of the piezoelectric
material.

��est�s� = QDA
� �s�Vin�s� , �11�

where ��est=�est−� is the difference between estimated �us-
ing already identified parameters� and measured tip displace-
ments �Fig. 11�. Identification of ks and � is performed on a
step response, calculating the static gain and response time to
reach 63.2% of final value.

IV. SELF-SENSING RESULTS

Several tests have been performed to evaluate the accu-
racy of the proposed self-sensing technique. Known and
identified parameters are entered into the real-time processor,
we have

� = − 10.05e−9 C/m,

C = 47e−9 F,

CP = 1.74e−9 F,

CR = 8.2e−9 F,

RFP = 0.435e12 � ,

iBIAS = − 1.7e−12 A,

� = 57 s,

ks = 3.02e8 m/V.

A. Displacement self-sensing results

In Fig. 12, an input signal Vin was applied in several
steps between +20 and �25 V, under null external force.
Data was recorded for 1020 s—largely sufficient for most
applications involving piezoelectric actuators. A very good
agreement is found; measured and detected displacement
curves almost superpose.

A comparative representation of displacement errors is
made as follows. Three graphs are traced �Figs. 13–15� from
uncompensated to fully compensated with respect to leaking
resistance and dielectric absorption. Measurement with Key-
ence optical displacement reader provided a poorer linearity
than self-sensing signal, making it impossible for accurate
error evaluation; SIOS interferometer was eventually em-

FIG. 9. �Color online� Identification of � coefficient with a �20 V ramped
step input.

FIG. 10. �Color online� Identification of � coefficient from sinusoidal
signals.

FIG. 11. Identification of dielectric absorption QDA
� �s� transfer function.
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ployed. Our constraint on the utilized interferometer is that
data is only available offline. Vertical error lines in the fig-
ures can be neglected and are due to the linear interpolation
and sampling period mismatch between the two data sets
�acquired at sampling rates of 10 and 16.11 Hz�.

As seen in the Fig. 13, peak-to-peak error of uncompen-
sated signal is 2.75 	m. Compensation of RFP leaking resis-
tance allowed a reduction in maximum error to 1.05 	m
�Fig. 14�. Adding the compensation of dielectric absorption
�Fig. 15� provided a 0.38 	m �0.55%� peak-to-peak error.

Unaveraged measured self-sensing signal noise in dis-
placement is of only 1.6 nm �rms�, being 10 times less noisy
than that of filtered Keyence LC-2420 sensor �16.7 nm rms
noise on 4096 averaged samples�. However, as expected,
SIOS SP 120 interferometer showed best results: 0.5 nm rms
noise �Fig. 16�.

B. Temperature influence on displacement self-
sensing accuracy

Temperature exhibits changes in dielectric and piezo-
electric constants. Also, differences in thermal expansion of

piezoelectric and passive material tend to bend the structure
like a thermal bimetallic, conducting to parasitic displace-
ment �and charges�. In this case Eq. �2� between charge and
displacement no longer applies �Q����, leading to dis-
placement errors. To analyze the thermal influence, we com-
pared its effects on two types of piezoelectric beams: uni-
morph and bimorph cantilevers. As seen in figures and as
expected, unimorphs �Fig. 17� are more affected by ambient
temperature than bimorphs �Fig. 18�. As bimorph cantilevers
are intrinsically symmetric, charges from both sides sum up
and self-compensate.

If we compare the above results, we see that unimorph
cantilevers are five times more sensitive to temperature than
bimorphs. Errors can be limited by a proper thermal isolation
or compensated with a sensitive temperature sensor like a
miniature thermistor. However, temperature sensor should be
in contact with the actuator for more correlate readings.

V. CURRENT INTEGRATION RELATED ISSUES

An improper choice of charge amplifier21 will signifi-
cantly reduce sensing accuracy. The circuit should be pro-
tected against temperature changes, with a special care to
PCB design �guard rings, sufficient space between routes,
vias, and pads� otherwise unwanted leakage will easily ex-
ceed op-amp bias current.

Integrating capacitor must have primarily an extremely
high insulation resistance, low dissipation factor, and good
temperature stability. Polypropylene plastic film capacitors
were employed in our case, with a measured leaking resis-
tance of 24 T� for C=10 nF, high enough to ignore its

FIG. 13. Error curve of detected displacement with no leaking resistance
RFP and dielectric absorption QDA compensation.

FIG. 14. Error curve of detected displacement with only leaking resistance
RFP compensation.

FIG. 15. Error curve of detected displacement with compensation of leaking
resistance RFP and dielectric absorption QDA.

FIG. 12. �Color online� Measured and detected displacement for an arbitrary
Vin input signal �Fext=0�.
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leaking influence in the circuit. Polystyrene or Teflon capaci-
tors also showed better performance than ceramic or polyes-
ter film capacitors.

Precise operational amplifiers used in charge amplifiers
must be unity-gain stable; otherwise they will tend to oscil-
late. Noise and bias currents have to be as small as possible.
Several op-amp types were tested, OPA111BM Difet model
was chosen for its very small bias current �1.7 pA�, small
offset voltage, small temperature drift, fair supply voltage,
and on-chip guarding ring. OPA627 model is also suitable.

Attention has must be paid to supply and input voltages.
The circuit is damaged if high input voltage is applied in the
absence of supply voltage. Also, to prevent the output satu-
ration, the k switch allows resetting when necessary. Further
increase in voltage over an already saturated op-amp will
cause damage.

Cables should be shielded properly to avoid the electro-
magnetic interference. Further noise rejection can be
achieved by modifying the electronic schematic presented in

Fig. 6. We propose the schematic pictured in Fig. 19 where
the current, proportional to the voltage drop across a series
resistance or more likely across a voltage divider �to avoid
op-amp damage due to HV�, is buffered or preamplified and
then integrated. Indeed, this schematic allows noise reduc-
tion thanks to the grounded series resistance RZ2

connected to
the high impedance amplifier input.

Vout = −
RZ2

RC�RZ1
+ RZ2

��0

T

i�t�dt , �12�

For our actuator the best compromise between response time,
sensitivity, and noise was a series resistance of 82 k� �RZ1
+RZ2

=82 k��.
Noise was reduced by a factor of five but on the other

hand this schematic was much more sensitive to temperature
offset drifts than that of Fig. 6. As Vz voltage is in the 	V
range or lower, op-amp offset voltage temperature drift
��0.5 	V / °C� and supply rejection ��3 	V /V� limited
system accuracy. Usually op-amp offset is trimmed manually
�with potentiometers�; in our case this measure was not suf-
ficient to compensate thermal drifts. We made an automatic
compensation of the offset voltage with random temperature
changes. This was performed by connecting DSpace DAC
outputs �Fig. 20� to op-amp “trim” pins and by measuring
and referencing the temperature to a miniature thermistor in
close contact with op-amp chip. This way, we preserved a
signal up to 100 s similar in accuracy with that of Figs.
12–15, however rms noise was reduced from 1.6 nm to only
0.4 nm, inferior to even that of SIOS SP120 interferometer.

FIG. 16. Zoomed in measure �Keyence LC2420� and detected displacement
for noise evaluation.

FIG. 17. Typical self-sensing displacement error due to ambient temperature
change in a unimorph actuator. Error is 	1 	m / °C.

FIG. 18. Typical self-sensing displacement error due to ambient temperature
change in a bimorph actuator. Error is 	0.2 	m / °C.

FIG. 19. Alternate schematic with voltage divider and integrator allowed
noise reduction.
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Zero-drift chopper op-amps �typically �0.03 	V / °C� will
probably ameliorate temperature drifts but other effects such
as thermal electro motive force �EMF� �Seebeck effect� in
cable junctions will still perturbate the circuit.

To generally resume, charge integration is prone to non-
zero bias currents offset voltages, temperature drifts, leaking
resistance or currents, thermal EMF and electro magnetic
interference influence. However, with proper measures, their
influence can be eliminated or at least partially quantified
and compensated.

VI. CONCLUSION

Displacement self-sensing of uni- and bimorph cantile-
vered actuators used for meso- and microscale gripping and
manipulation is cost-effective and relatively simple to imple-
ment or upgrade to existing systems. To our knowledge it is
a first paper focusing on displacement self-sensing of these
devices. We referred to a current integration method self-
compensated against some actuator nonlinearities �hysteresis
and creep� and externally compensated to others �leaking re-
sistivity and dielectric absorption�.

In the case of detected or a priori—supposed absence of
external forces, displacement is almost directly proportional
to the charge. Further compensation of nonzero amplifier
bias current, finite actuator leaking resistance, and dielectric
absorption lead to a significant reduction in errors, up to
0.55% and an increase in measurement period to more than
1000 s, sufficient enough for most tasks. Signal noise was
lower than that measured with expensive laser triangulation
sensor. Two schematics were presented, the first one based
on direct current integration showed its feasibility for long
integration periods while the second integrating shunt volt-
age drop allowed a further reduction in signal noise with a

cost of a more unstable long-term signal. Practical issues
related to long-term charge preservation were presented, and
temperature influence discussed.
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