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In this paper, a modal approach is realized to define the damping properties of piezoelectric/elastic/piezoelectric 
beams. This method is based on the classical laminated beam theory and some simple assumptions about the 
electric fields. This leads to an electromechanical beam constitutive law. The piezoelectric layers play the role of 
sensor and actuator and two feedback control laws are considered. The equivalent stiffness, eigenfrequencies and 
loss factors of the whole system beam/control device are obtained.

1. Introduction

It is well known that piezoelectric materials can provide an
effective way to reduce vibrations and noise. Thanks to this
property, they are actually added to already existing structures
in order to damp and control vibrations at low frequencies
in many areas, such as in the aerospace industry. Thus,
they can recover completely (layer) or partially (patch) the
host structure. Many theoretical and experimental studies
have been devoted to get accurate modelling and analysis of
sandwich structures with piezoelectric layers such as beams
or plates [1, 2, 4, 7, 12, 13]. Also, the piezoelectric
materials can be coupled with viscoelastic damped structures
in order to yield hybrid active–passive damping. Indeed, the
piezoelectric material permits damping the vibration modes at
low frequency whereas the viscoelastic one yields to damping
the modes at medium and high frequencies. So, a lot of hybrid
(active–passive) damping configurations were developed in the
literature to find the best solution which is able to decrease
vibration amplitudes for a large number of modes. A review
and assessment of these configurations can be found in [12].

From an engineering point of view, the damping properties
can be defined by two modal quantities [3, 6, 11]: the
loss factor (damping) and frequency. This approach of the

3 Author to whom any correspondence should be addressed.

dynamical responses based on complex eigenfrequencies has
been extensively applied in the case of viscoelastic damped
sandwich structures and several numerical techniques have
been proposed to characterize and to compute the complex
eigenpairs [3, 11]. To our best knowledge, this simple
modal approach has not yet been applied in the case of smart
structures, involving piezoelectric laminates and active control.

In this paper, it is established that the modal approach
can be useful in the case of elementary control laws.
A piezoelectric/elastic/piezoelectric beam is studied. The
piezoelectric layers play the role of sensor (s) and actuator (a)
(see figure 1). Two feedback control laws are considered. A
simple analytical study of this structure is carried out by using
the classical laminate theory for the mechanical properties
and by assuming a linearly varying electric field. Next, the
electromechanical problem is reduced to a purely mechanical
problem, which defines the elastic or viscoelastic equivalent
stiffness properties. In the case of thin piezoelectric layers
and of bending modes, some more simplifications can be
introduced.

Another contribution of the present paper is the
introduction of equivalent mechanical problems that include
both the electromechanical behaviour of the thin piezoelectric
layers and the control law. There are purely mechanical
models in the literature, but only at a finite element level.
Generally the electric quantities are condensed from an
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Figure 1. The piezoelectric/elastic/piezoelectric beam and notations.

electromechanical finite element model as in [2, 12],. . .. In [5],
an analytical expression of the electric field is inserted into
a finite element mechanical model. Here, we perform an
analytical condensation of the electric field to get equivalent
beam equations that are of elastic or viscoelastic type.

2. An electromechanical model for piezoelectric
laminated beams

In this part, a model for a piezoelectric/elastic/piezoelectric
beam is presented. In view of analytical studies, this model is
designed to be as simple as possible including Euler–Bernoulli
kinematics and the assumption of transverse electric fields.
Various levels of approximations are discussed, as well as the
treatment of the electrostatic problem in the sensor.

2.1. Constitutive law

Piezoelectric materials have the capacity to act, to react to
an electric field or to a strain. This results in the following
constitutive law:

σ = cε − et E

D = eε + εE
(1)

where σ , ε, D, and E are the stress tensor, strain tensor, electric
displacement vector and electric field vector, respectively. c, e,
and ε are the elasticity matrix, whose coefficients are measured
at constant electric field, the piezoelectric matrix, and the
dielectric permittivity tensor, whose components are measured
at constant strain.

Orthotropic piezoelectric materials and an extension
mechanism are considered. The constitutive relation can be
represented in terms of a reduced number of components with
respect to the three Cartesian/orthogonal axes, labelled 1, 2 and
3 of piezoelectric material. We suppose that the piezoelectric
layers are thin, the stress tensor is uniaxial and the electric
fields D and E parallel to the transverse direction. So, the
constitutive law is reduced to [2]{

σ1

D3

}
=

[
c∗

11 −e∗
31

e∗
31 ε∗

33

]{
ε1

E3

}

ε∗
33 = ε33 + e2

33

c33

e∗
31 = e31 − c13

c33
e33

c∗
11 = c11 − c2

13

c33
.

(2)

2.2. Electric description

The electric field–electric potential relation is the following:

E3 = −∂φ

∂z
. (3)

We consider that the central layer is conductive with an
uniform potential, fixed to zero [7]. Often in the literature,
the potential field is assumed to be linearly varying across the
thickness, in accordance with the same variation of the stress
and strain [8–10]. It may be asked whether a constant electric
field gives a sufficient description in the case of a thin layer.
An adimensional variable r (0 � r � 1) is introduced in
piezoelectric layers, for instance by z = hc

2 + hsr in the top
layer. So, the electric field is written in terms of two unknowns
φ1 and φ2:

E3 = − 1

hs
(φ1 + φ2(1 − 2r)) (4)

where φ1 = φ1(x) represents the superficial potential and
φ2 = φ2(x) the internal potential variation.

2.3. Kinematics

To describe the properties of a sandwich piezoelec-
tric/elastic/piezoelectric beam, we use the classical theory of
laminates. The kinematics of the structure is represented by
the classical hypothesis of Euler–Bernoulli:

u(x, z) = u(x) − zw′(x)

w(x, z) = w(x)

ε1 = u ′ − zw′′.

(5)

2.4. Electromechanical law of the sandwich beam

Now a global electromechanical behaviour law is established.
In this respect, the definitions of the normal force Ni and the
bending moment Mi of each layer are needed:

Ni =
∫

Si

σi dS and Mi =
∫

Si

(z − zi)σi dS

i = s, c, a.

Because of the constitutive law (2), the uniaxial stress σ1i is
equal to

σ1c = Ec(u
′ − zw′′) for the central elastic layer

σ1i = c∗
11(u

′ − (z − zi )w
′′) − e∗

31 E3

for the piezoelectric layers (i = a, s).

(6)
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In accordance with Euler–Bernoulli kinematics, the beam
stresses can be represented by a global normal force N and a
global bending moment M . Classically, they are expressed as
functions of the normal forces and bending moments of each
layer in the following form:

N = Ns + Nc + Na

M = Ms + Mc + Ma − zs Ns − za Na

(7)

with zs = hc+hs
2 and za = − hc+ha

2 .
By combining (6) and (7), the global electromechanical

constitutive law of the laminate is deduced:

N = (E S)mecu
′ + Bmecw

′′ + e∗
31

(
Ss

hs
φ1s − Sa

ha
φ1a

)

M = Bmecu ′ + (E I)mecw
′′ − e∗

31

(
zs Ss

hs
φ1s − za Sa

ha
φ1a

)

− e∗
31

6
(Ssφ2s − Saφ2a)

(8)

with

(E S)mec = Ec Sc + c∗
11(Ss + Sa)

Bmec = −c∗
11(zs Ss + za Sa)

(E I)mec = Ec Ic + c∗
11(Is + Ia) + c∗

11(Ssz2
s + Saz2

a).

(9)

So (8) is the global constitutive law, that expresses the beam
generalized stresses N and M as functions of the membrane
strain u ′, of the curvature w′′, of the superficial potentials φ1s

and φ1a and on two additional quantities φ2s and φ2a for the
internal variations of the electric field. A few remarks can be
made about this constitutive law. First, without electric fields,
one recognizes the classical laminated beam theory. Then,
Bmec represents the membrane/bending coupling term. If the
beam is symmetrical (za = −zs), Bmec is equal to zero, that
is to say there is no membrane/bending coupling. Finally, the
electric quantities φ1a, φ2a , φ1s and φ2s can be considered as
forcing terms of a classical beam model.

2.5. Condensation of electric terms in sensor layer

With the help of the Galerkin method, the superficial potential
and internal potential variation of the sensor can be written as
functions of strain quantities u ′ and w′′ (see the appendix):

φs = φ1sr + φ2sr(1 − r)

φ1s = e∗
31

ε∗
33

hs(u
′ − zsw

′′)

φ2s = e∗
31

2ε∗
33

h2
sw

′′.

(10)

Next, we replace φ1s and φ2s by their expression (10) in (8).
So, we obtain a new constitutive law, which takes account of
electric boundary conditions in the sensor:

N = (E S)equ ′ + Beqw
′′ − e∗

31

Sa

ha
φ1a

M = Bequ ′ + (E I)eqw
′′ + e∗

31Sa

(
za

ha
φ1a + 1

12
φ2a

) (11)

with

(E S)eq = (E S)mec + e∗2
31

ε∗
33

Ss

Beq = Bmec − e∗2
31

ε∗
33

zs Ss

(E I)eq = (E I)mec + e∗2
31

ε∗
33

Ss

(
z2

s − h2
s

12

)
.

(12)

So the electric behaviour of the sensor modifies the apparent
stiffness of the beam, by increasing the membrane stiffness
E S and the bending stiffness E I . Considering the expression
of Beq, one sees that this electric condensation induces a
membrane bending coupling, even with a symmetric beam.

This dissymmetry of the laminate behaviour does not arise
from a material dissymmetry, but from the difference of electric
boundary conditions between the sensor and the actuator.

2.6. What approximations are needed in the case of thin
piezoelectric layers?

To simplify this discussion, let us consider a symmetrical
beam:

ha = hs, Sa = Ss, za = −zs . (13)

Then, the term Bmec in the constitutive law becomes zero and
the others are rewritten in the following form:

(E S)eq = Ec Sc + 2c∗
11Ss + e∗2

31

ε∗
33

Ss

Beq = −e∗2
31

ε∗
33

zs Ss

(E I)eq = Ec Ic + 2c∗
11 Is + 2c∗

11 Ssz2
s + e∗2

31

ε∗
33

Ss

(
z2

s − h2
s

12

)
.

(14)
By comparison with the one-layer beam, we want to evaluate
the extra terms due to the direct effect of the piezoelectric
layers or those due to the electrostatic condensation in the
sensor. To simplify, a rectangular symmetric cross-section is
considered. This leads to

I j → h3
j

12

S j → h j .

(15)

Then, three adimensional parameters are introduced:

rE = c∗
11

Ec
, r p

E = e∗2
31

c∗
11ε

∗
33

, rh = hs

hc
(16)

where rE and r p
E represent material ratios and rh a thickness

ratio.
First, the second term of (E S)eq represents the direct

contribution of the piezoelectric layers to the stiffness, and the
last term the effect of the electrostatic condensation. Using the
hypotheses (15) and (16), the following equivalences can be
written:

2c∗
11Ss

Ec Sc
� 2rErh

(
e∗2

31

ε∗
33

Ss

)/
(2c∗

11 Ss) = r p
E/2.

(17)
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In order to evaluate the adimensional terms, let us consider the
sandwich beam studied by Zhang and Sun [13]. It is constituted
by PZT5H material in the skins and aluminium in the core. Its
geometric characteristics are L = 10 cm, hc = 1.6 cm and
hs = ha = 0.1 cm. With these data, the approximated values
of the adimensional ratios are

rE � 1, r p
E � 0.5, rh � 6 × 10−2. (18)

The material ratios (rE , r p
E ) are neither small nor big, whereas

the thickness ratio is sufficiently little. Therefore, the second
and third terms of (E S)eq represent respectively 12% and 3%
of the first one. So, they cannot be neglected.

The same study is realized for (E I)eq. In this case, the
terms due to the direct effect of piezoelectric layers 2c∗

11(Is +
Ssz2

s ) and the term due to the electrostatic condensation
e∗2

31
ε∗

33
Ss(z2

s − h2
s

12 ) are compared to the bending stiffness Ec Ic of
the central layer:

2c∗
11(Is + Ssz2

s )

Ec Ic
= 2rE(r 3

h + 3rh(1 + rh)
2)

e∗2
31

ε∗
33 Ec Ic

Ss

(
z2

s − h2
s

12

)
= r p

ErErh(3(1 + rh)
2 − r 2

h ).

(19)

Considering again the sandwich beam studied by Zhang and
Sun, these terms are respectively about 36% and 10%. But,
they can be simplified by neglecting the terms involving r 3

h and
even r 2

h . Two terms are functions of r 3
h : the bending stiffness

of the piezoelectric layers 2rEr 3
h and the quadratic term of the

potential −r p
ErEr 3

h . These last terms represent respectively
0.04% and 0.01% of Ec Ic. Therefore, two more assumptions
can be introduced to get a simpler model. First, the stress in
the skins can be reduced to the membrane contribution (i.e.,
the bending moments Ms and Ma can be neglected). Second,
the quadratic term φ2s in the electric potential has no influence
on the global behaviour and can be dropped. This means that
the assumption of constant electric fields is relevant for thin
skins (rh lower than 0.2). In what follows, we limit ourselves
to this simplified analysis.

3. A simplified analysis for bending modes

In this part, a new simplification is introduced to analyse the
bending modes of symmetrical sandwich beams. We assume
further:

u ≈ 0 and |u ′| � zs |w′′|. (20)

This means that the membrane/bending coupling is neglected
and that the bending constitutive law is reduced to

M = (E I)eqw
′′ − e∗

31Ss
zs

hs
φ1a (21)

with (E I)eq defined in (14). Let us recall that φ2a has been
dropped according the argument given in section 2.6.

At this level, feedback control laws will be introduced,
by connecting the two potentials in the piezoelectric layers.
These control laws will be condensed, to get a global bending
law, including the three layers of the laminate and the control
device.

3.1. Direct proportional feedback control

With this control law, the superficial potential applied to the
actuator is directly proportional to the superficial potential of
the sensor:

φ1a(x) = Gcφ1s(x) (22)

where Gc represents the control gain.
According to the assumptions (20) and φ2a = 0 and to the

law (22), the superficial potential becomes

φ1a = −Gc
e∗

31

ε∗
33

hs zsw
′′. (23)

By combining (21) and (23), a sort of equivalent elastic
constitutive law for the whole system (beam and control
device) is obtained. This yields a classical form for the elastic
bending of beams, involving a simplified expression of the
system bending stiffness (E I)simp:

M = (E I)simpw
′′

(E I)simp = (E I)eq + Gc Ss
e∗2

31

ε∗
33

z2
s .

(24)

Therefore, a symmetrical piezoelectric/elastic/piezoelectric
beam can be represented by an equivalent homogeneous beam,
whose stiffness matrix increases with the control gain Gc. One
remarks that the increase of stiffness depends on the following
parameter:

g = Gc Ss
e∗2

31

ε∗
33

(25)

that is a function of the control gain and of the dielectric and
piezoelectric constants. It could be also convenient to consider
a non-dimensional constant rcontrol as follows:

rcontrol = Gc Ss

Ec Ic

e∗2
31

ε∗
33

Z2
s = gZ2

s

Ec Ic
. (26)

So the simplified system bending stiffness can be rewritten in a
more convenient form, where (E I)eq has been defined in (12)
and (14):

(E I)simp = (E I)eq + gZ2
s = (Ec Ic)

[
(E I)eq

Ec Ic
+ rcontrol

]
.

The balance of momentum leads to the following equation:

M ′′ + (ρS)eqẅ = 0 (27)

where (ρS)eq is the equivalent linear density of the sandwich
beam:

(ρS)eq = ρs Ss + ρc Sc + ρa Sa. (28)

The modal solutions of (24) and (27) are classical [6], and the
nth eigenfrequency is given by

ω2
n = (µn)

4 (E I)simp

(ρS)eqL4
(29)

where the non-dimensional numbers µn depend on the
boundary conditions. For instance, for a bi-articulated beam,
µn = nπ .

So the control law (22) leads only to an increase of the
global stiffness of the beam (if Gc is positive) and therefore of
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the eigenfrequencies, that are given by (24), (28), and (29), for
any boundary condition. Such a law does not induce damping,
because the eigenfrequencies (29) are real.

This increase of stiffness can be characterized by the
parameter g (see (25)) or by the adimensional parameter rcontrol,
which is a function of the control gain and of the material and
geometrical parameters of the laminate.

3.2. Direct and proportional velocity feedback control

In the case of the direct and proportional velocity feedback
control, the potential applied to the actuator is proportional to
the time derivative of the sensor potential:

φa(x) = Gcφ̇s(x) (30)

with Gc positive. As previously, the electric field is assumed
to be constant in each piezoelectric layer. Using (10), (20) and
considering φ2s = 0 (see section 2.6), equation (30) leads to

φ1a = −Gc
e∗

31

ε∗
33

hs zsẇ
′′. (31)

As before, this φ1a is replaced in the expression of bending
moment (21) and we obtain

M = (E I)eqw
′′ + gz2

s ẇ
′′ (32)

where the parameter g represents the term of control and is
defined as previously (25). This relation (32) is a sort of
viscoelastic bending law. The viscoelasticity is of Kelvin type
and it is due only to the control law (30).

Considering a problem of free vibrations, the deflection
w(x) can be sought in the form w = W (x)eiωt and the
constitutive law (32) is rewritten in the following form:

M = [(E I)eq + iωgz2
s ]W ′′. (33)

Therefore, M is defined like M = E I (ω)w′′. This corresponds
to a complex stiffness matrix linearly dependent on ω. So
the behaviour of the whole system is equivalent to that of a
viscoelastic beam and a loss factor can be defined for each
vibration mode. Using the equivalent constitutive law (32), the
dynamic equation (27) leads to

W (4) − (ρS)eq
ω2

E I (ω)
W = 0. (34)

From Geradin [6], the ratio L4(ρS)eqω
2/E I (ω) is real and

depends only on the boundary conditions and on the mode.
These values are exactly the adimensional numbers µn ,
recalled previously. Because E I (ω) is complex, the solution
ω of the free vibration problem is complex and a damping can
be defined by the following equation in ω:

ω2
n = µ4

n

(ρS)eq
[(E I)eq + iωgz2

s ]. (35)

To simplify, the eigenfrequency of a beam only constituted by
the elastic core is introduced as a reference:

ω2
nc = µ4

n

Ec Ic

ρc Sc L4
. (36)

So, equation (35) becomes

λ2
n − iλnβn − 1 = 0

λn = ω

ωnc

βn = g
z2

s

Ec Ic
ωnc = rcontrolωnc

(37)

where rcontrol is defined as in (26). Note that, in the present case,
rcontrol is not adimensional, because of a different definition of
the control gain.

The solution of this equation is

λn = iβn ± 4 − β2
n

2
. (38)

The damping ηn is defined classically by ω2
n = �2

n(1 + iηn),
where �n represents the real frequency. Here, it is equal to

ηn = βn 4 − β2
n

2 − β2
n

(39)

with βn defined in (37).
If βn � 1, the damping is about βn; that is to say,

ηn = Gcωnc
Ssz2

s

Ic

e∗2
31

Ecε
∗
33

= rcontrolωnc. (40)

In any case, each modal damping ηn depends only on a
adimensional parameter βn = rcontrolωnc, a function of a
parameter rcontrol similar to that given above and of the
reference frequency ωnc. This second type of control law
induces a damping that is proportional to Gc, but does not
modify the eigenfrequency very much.

3.3. Are the problems well posed?

With the first control law (22), the resulting equations (24), (27)
are those of an elastic beam. This equation is known to be well
posed, at least if the equivalent modulus (E I)simp is positive.
So the gain can be positive or negative and not too large. The
well posed condition is

rcontrol � − (E I)eq

Ec Ic
. (41)

With the control law (30), one gets the equations of a Kelvin
viscoelastic beam (27), (32), that are well posed only when the
gain is not negative.

These equivalent mechanical models have never been
presented in the literature. This result has consequences on
the relevant discretization techniques. For instance, the control
term in (32) leads to a parabolic equation so that the time
derivative must be discretized in an implicit way to get a stable
scheme.

4. A second analysis taking into account the axial
terms

In this last part, we study the bending modes of a sandwich
beam with active control but without neglecting the axial
strain and axial inertia term as in the previous section. This
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will permit us to define the limits of this simplified analysis.
Nevertheless, the assumption of a constant electric field per
layer (φ2s = φ2a = 0) will be kept, because it has been
established in section 2. Within beam theory, the balance of
momentum leads to

−N ′ + (ρS)eqü = 0

M ′′ + (ρS)eqẅ = 0
(42)

where M and N are defined by the constitutive laws (11), (14)
and (15) and (ρS)eq by (28).

The two previous control laws will be considered again.
For simplicity, the analysis is limited to a simply support beam
(N = M = w = 0 at x = 0, L).

4.1. Direct proportional feedback control

With the direct proportional feedback control law, the equiv-
alent constitutive law of the system is defined from (8), (22)
and (10):{

N
M

}
=

[
(E S)eq − g Beq + gzs

Beq − gzs (E I)eq + gz2
s

]{
u ′
w′′

}
(43)

where g represents the term of control and is defined by (25).
As compared with (24), this constitutive law of the system

couples membrane and bending quantities. The constitutive
matrix depends on the control parameter g. Note that it is not
symmetric, which is due to the non-conservative character of
the control law.

The solution of the system (42), (43) is sought in the
following form:

u = q1 cos

(
nπx

L

)
eiωt

w = q2 sin

(
nπx

L

)
eiωt .

(44)

4.1.1. Effect of membrane/bending coupling. To study
the effect of membrane/bending coupling, a membrane static
condensation is considered in the first equation of (42). Thus,
q1 can be expressed according to q2 and it is replaced in the
second equation of (42). This permits us to obtain the bending
frequency, which is equal to

ω2
n = n4π4

(ρS)eqL4

−(B2
eq − g2z2

s )

(E S)eq − g
+ (E I)eq + gz2

s

]
. (45)

As in the previous study, with this law, the frequency is real and
there is no damping. Compared to (29), ω2

n of (45) includes
an extra term because of taking into account the membrane
motion. This term is compared to the bending stiffness (Ec Ic)
of the central layer:

−(B2
eq − g2z2

s )

[(E S)eq − g]Ec Ic
= − 3r 2

Er p2
E r 2

h (1 + rh)
2(1 − G2

c)

1 + 2rErh + rEr p
Erh(1 − Gc)

= 3 × 10−3 G2
c − 1

1 − Gc/38
. (46)

The last equality holds with the numerical values presented
in section 2. Hence the influence of the axial strain is small
(<0.3%) for a gain lower than 1. From (46) and figure 2, it
appears that this coupling term can be neglected for Gc lower
than 3.

160800

160600

160400

160200

160000

0 2 6 8 104
Gc

Figure 2. Modal frequency ωn as function of the control gain
constant Gc. Simply supported beam. Study of the first vibration
mode. Direct proportional feedback control. (×) results from
formula (29), (continuous line) results from formula (45).

4.1.2. Effect of the membrane inertia. Here equations (42)
and (43) are solved without any simplification. This yields, by
letting k = nπ/L ,

[(E S)eq − g]k2 − (ρS)eqω
2 (Beq + gzs)k3

(Beq − gzs)k3 [(E I )eq + gz2
s ]k4 − (ρS)eqω

2

× q1

q2
= 0

0
. (47)

Thus, the eigenfrequencies are given by an equation of the
second degree with (ρS)eqω

2 as unknown. Here we only
discuss in which conditions the axial inertia term is small. So
it is sufficient to compare the first and the last term of the (1, 1)
term of the matrix (47). Because only an order of magnitude is
sought, we suppose

ω = ωnc, (ρS)eq = ρc Sc, (E S)eq = Ec Sc. (48)

Also, the expression (36) of ωnc and hypothesis (15) are
considered. Then, the ratio (ρS)eqω

2/(E S)eqk2 becomes

(ρS)eqω
2

(E S)eqk2
� n2π2 Ic

L2Sc
� n2π2

12

(
hc

L

)2

. (49)

This ratio depends on the mode (n2) and on the beam
slenderness (hc/L). So, the effect of the membrane inertia can
be neglected for an aspect ratio L/nhc greater than 10.

4.2. Direct and proportional velocity feedback control

In this case, the two potentials φa and φs are related by the
law (30). Because of (10), the constitutive law of the whole
system is then expressed in the following form:

{
N
M

}
=

[
(E S)eq Beq

Beq (E I)eq

] {
u ′
w′′

}
+

[ −g gzs

−gzs gz2
s

]{
u̇ ′
ẇ′′

}

(50)
where g, always given by (25), represents the control term.
Once more, this global law is viscoelastic of Kelvin type. Note
that the damping matrix is not symmetric.
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The analysis of the vibration modes of a bi-articulated
beam is similar to that in 4.1.

Here, we limit our approach by using a static
approximation in the axial equation. Then, the second equation
of system (42) is written as

−(ρS)eqω
2 + iωgzs

n4π4

L4

(
Beq

(E S)eq
+ zs

)

+ n4π4

L4

(
− B2

eq

(E S)eq
+ (E I)eq

)
= 0. (51)

The solution ω2 of this last equation is complex. That is to say,
a damping can be defined. Compared to (34), equation (51)

includes two extra terms (
Beq

(E S)eq
) and (− B2

eq

(E S)eq
) due to the

membrane strain. To obtain the damping, equation (51) must
be solved:

λ2
n − iλnβn − γ = 0

λn = ω

ωnc

βn = Gcωnc
e∗2

31

Ecε
∗
33

Sszs

Ic

(
Beq

Ec Sc
+ zs

)

γ = 1 − B2
eq

E2
c Sc Ic

.

(52)

The solution of equation (52) is

λn = iβn ± √
4γ − β2

n

2
. (53)

The damping is defined as previously, and is equal to

ηn = βn 4γ − β2
n

2γ − β2
n

. (54)

If βn � 1 and γ � 1, the damping is about βn; that is to say,

ηn � βn = 3GcωncrhrEr p
E(1 + rh)

2(1 − rhrEr p
E). (55)

With the numerical data (18) for rE and r p
E , it becomes

ηn � 3

2
Gcωncrh(1 + rh)

2
(

1 − rh

2

)
. (56)

In the case of thin piezoelectric layers (rh � 1, then βn � 1
and γ � 1) the damping (56) is consistent with the values (40)
that had been found in the previous section. This establishes
than the membrane strains can be neglected for thin skins.
Indeed, these comments are in good agreement with the results
presented in figure 3. In this, the results from formula (39) and
those from (54) are reported for comparison.

4.3. Are the problems well posed?

It is not so obvious to decide if the equations (42), (43) lead
to a well posed problem, because the stiffness matrix in (43) is
not symmetric. Nevertheless the elastic term does not satisfy
the ellipticity conditions if the gain g is sufficiently large and
especially when

g > (E S)eq or g < − (E I)eq

z2
s

. (57)

2.5

2

1.5

1

0.5

0
0 0.001 0.002 0.003 0.004 0.005 0.006

Gc

Figure 3. Modal loss factor ηn as a function of the control gain
constant Gc. Simply supported beam. Study of the first vibration
mode. Direct and proportional velocity feedback control. (x) results
from formula (39), (continuous line) results from formula (54).

In the case of a damping control, the damping matrix in (50)
never has a definite sign. So the dynamic problem (42), (50)
is not well posed, whatever the gain. There is a spill-
over phenomenon in the membrane problem if Gc is positive
and in the bending problem if Gc is negative. Thus,
it would be dangerous to solve numerically the complete
dynamical problems established in this part, as well as the
electromechanical problems of section 2 associated with the
presented control laws. Nevertheless, one can find such
calculations in the recent literature. Note that the modal
analysis of this paper remains consistent, because it is restricted
to few modes, while the instabilities and the ill posed problems
are related to high eigenfrequencies.

5. Conclusion

In this paper, simple models and analytical modal solutions for
piezoelastic/elastic/piezoelastic beams have been presented.
Two feedback control laws have been considered and
constitutive laws of the whole system beam–control device
have been established. These global laws can be of elastic type
(conservative or not) or of viscoelastic type.

In the case of thin piezoelectric layers, a pure bending
model is sufficient to define bending vibration modes. Within
this very simple modelling, the behaviour of a system is
summarized by a stiffness bending modulus, that depends on
the geometrical and material data of the laminate and on the
control gain. The latter modulus can be real or complex,
according to the type of control law. This means that the
control can modify the stiffness of the system or induce some
damping. Such a very simplified analysis can be useful to
describe more complicated systems such as hybrid passive–
active damping, laminated plates or more intricate control
devices.

Furthermore, a complex modal approach has been
considered to characterize active damped systems. This
method had been widely applied for viscoelastic damping.
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Within this method, each complex mode is associated with
a complex eigenvalue and this defines an eigenfrequency
and a loss factor per mode. In our opinion, the modal
approach should be more extensively used in the case of
piezoelectric laminates and active control. It permits one
to simply characterized the damping properties of an active
system, independently of the applied loads.

Appendix: approximate analysis of the electric
problem

The electric problem in the sensor is studied according to
the assumptions described in section 2. It is reduced to a
transversal problem, associating the constitutive law (8) and
the following ones:

∂ Dz

∂z
= 0, φ(r = 0) = 0, Dz(r = 1) = 0 (A.1)

where the adimensional variable r (r = 0 refers to the bottom
layer and r = 1 refers to the top layer) is used. This assumes
that the central layer is conductive and that the electric current
due to the central system is neglected. The variational form
of (A.1) is ∫ 1

0
Dz(r)δφ ′(r) dr = 0 (A.2)

for any δφ(r) that is zero for r = 0. With account of the
constitutive law, we get

∫ 1

0
φ′(r)δφ ′(r) dr = e∗

31hs

ε∗
33

∫ 1

0
ε1(r)δφ ′(r) dr. (A.3)

Next, we assume that the potential φ(r) varies in a quadratic
manner across the layer and a Galerkin approximation is
applied:

φ(r) = φ1r + φ2r(1 − r) δφ(r) = r and δφ = r 2.

(A.4)
So equation (A.3) leads to the following approximated system:

[
1 0
0 1

3

]{
φ1

φ2

}
= e∗

31hs

ε∗
33

{ ∫ 1
0 ε1 dr∫ 1

0 ε1(1 − 2r) dr

}
. (A.5)

As ε = u ′ − zw′′, the system (A.5) has the following solution:

φ1 = e∗
31hs

ε∗
33

(u ′ − zsw
′′)

φ2 = e∗
31h2

s

2ε∗
33

w′′.
(A.6)

It must be noted that φ2 is proportional to h2
s .

To know if the potential φ2 has an important part in the
bending stiffness (E I)eq, we look at the contribution of the
sensor in the bending moment, Ms , which is defined by

Ms = −
∫ 1

0
σ1z dz.

σ1 defined in (2) is rewritten with account of expressions (A.6):

σ1 = −c∗
11zw′′ − e∗2

31

ε∗
33

(
zsw

′′ − h2
s

2
w′′(1 − 2r)

)
. (A.7)

Then, the part of (E I)eq due to the sensor, denoted (E I)s , is
equal to

(E I)s = c∗
11

∫
s

z2 dz + e∗2
31

ε∗
33

zs

∫
s

z dz − e∗2
31h2

s

ε∗
332

∫
s
(1 − 2r)z dz

(A.8)
where s denotes the sensor. The last term of (A.8), which
comes from the quadratic term φ2, is function of h2

s . That
is why it can be neglected for thin skins, as explained in
section 2.6.

References
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