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A Finite Element Method for Level Sets

S. Valance, R. de Borst, J. Réthoré, and M. Coret

Abstract Level set methods have recently gained much popularity to capture discon-

tinuities, including their possible propagation. In this contribution we present a finite

element approach for solving the governing equations of level set methods. After a

review of the governing equations, the initialisation of the level sets, the discretisa-

tion on a finite domain and the stabilisation of the resulting finite element method

will be discussed. Special attention will be given to the proper treatment of the

internal boundary condition, which is achieved by exploiting the partition-of-unity

property of finite element shape functions.

Keywords level sets · finite elements · partition of unity · evolving discontinuities

1 Introduction

In the late 1980s, Osher and Sethian [1] have suggested an elegant method to numer-

ically model hypersurfaces. The starting point is the definition of a scalar level set

function φ . The zero-isolevel contour of this function describes the hypersurface,

while the signed distance provided by the level set function enables the simulation

of the evolution of the hypersurface.

Initially, level set methods were applied to the computation of phase changes in

flows as driven by a diffusion equation. Subsequent applications have also included

weather predictions and image analysis [2]. More recently, they have also been used

in conjunction with finite element methods that exploit the partition-of-unity prop-

erty of finite element shape functions to capture crack propagation, especially in
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LaMCoS, UMR CNRS 5514, INSA de Lyon, 69621 Villeurbanne, France

R. de Borst

Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600

MB Eindhoven, The Netherlands; E-mail: r.d.borst@tue.nl

1



three-dimensional cases [3, 4], to model holes and inclusions [5, 6], or to model

biofilm growth [7].

Originally, the evolution equations that arise in a level set method have been

solved using finite difference methods. However, difference methods are less suited

for irregular domains, and, it seems less elegant and even somewhat awkward to use

finite differences to capture a discontinuity, while in a subsequently stress analysis

finite elements are employed, e.g. those that exploit the partition-of-unity property

of finite element shape functions. Moreover, for the stress analysis of bodies with

propagating cracks or other evolving discontinuities the construction of the enriched

functions that are utilised in partition-of-unity based finite element functions is inti-

mately related to the geometry of the propagating discontinuity. For these reasons,

the integration of the level set method that describes the discontinuity in a finite ele-

ment method which also analyses the effects of the evolving discontinuity may have

advantages.

Finite element schemes for solving the equations that describe the level set

evolution are encountered less frequently in the literature, see [8–10] for excep-

tions. These contributions give a solid framework, but can be improved further with

respect to the initialisation of the zero isolevel and the treatment of the internal

boundary condition that arises from the very condition that the level set function

must vanish at the propagating discontinuity. The issue how to impose essential

boundary conditions in enriched finite element methods that exploit the partition-of-

unity property of the standard polynomial shape functions was addressed in detail

in [11], but the procedures described therein do not seem to be directly applicable

to an evolving internal boundary.

This paper begins with a concise review of the governing equations for level

set methods, including the initialisation of the level sets, and the discretisation on

a finite domain using a finite element method. To properly capture the internal

essential boundary condition the finite element method is enhanced by exploiting

the partition-of-unity property of finite element shape functions. Since the resulting

equations have a nonsymmetric character, stability and uniqueness are not ensured.

For this reason a stabilisation term is added using a Galerkin least-square formal-

ism [12]. The ensuing algorithm is presented and the section is concluded by a

description how to initialise the level set method from measured (discrete) data.

2 Level Set Methods

In level set methods a hypersurface φ = φ(x,t) is defined on the domain of interest

Ω. The basic idea is that the intersection of this hypersurface with the zero-level,

i.e. φ = 0, defines the internal discontinuity. From a Lagrangian point of view,

stationarity of the level set field requires that

Dφ

Dt
= 0 (1)
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Fig. 1 Domains around the

internal discontinuity Γ with:
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or, equivalently,

∂φ

∂ t
+ ∇φ ·

∂x

∂ t
= 0. (2)

Equation (2) defines the propagation of the zero-isolevel contour, or equivalently,

of the evolving discontinuity Γ. We next define the velocity Vn that is normal to the

discontinuity Γ, Fig. 1:

∂x

∂ t
·n = Vn, (3)

for all points x at the zero-isolevel contour, and n the normal vector at x:

n =
∇φ

‖ ∇φ ‖
(4)

With these definitions, and adding the initial condition φ(x,t = 0) = f (x), with f (x)
known, the initial value problem that describes the propagation of the zero-isolevel

contour becomes [1]:

∀x ∈ Ω,

{
∂φ
∂ t

+Vn ‖ ∇φ ‖ = 0

φ(x, t = 0) = f (x)
(5)

Mourad et al. [10] assume that ‖ ∇φ ‖= 1 is maintained everywhere in Ω for t > 0,

so that the formulation of the initial value problem (5) simplifies to:

∀x ∈ Ω,

{
∂φ
∂ t

+Vn = 0

φ(x(t), t = 0) = f (x)
(6)
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A difficulty resides in the fact that the velocity Vn is defined only at the internal

discontinuity Γ. A standard methodology to circumvent this difficulty is to extend

the velocity field Vn at the discontinuity Γ such that

{
∇Ve ·∇φ = 0, x ∈ Ω/ Γ

Ve = Vn, x ∈ Γ
(7)

with Ve the extended velocity field [10, 13]. The orthogonality requirement implied

in Eq. (7a) has some interesting consequences. As shown by Zhao et al. [13],

cf. [10], it preserves the initial signed-distance function for sufficiently smooth φ
and Ve. Keeping the signed distance function smoothens the zero-isolevel contour

around the discontinuity and enables a more regular motion of the front [14].

3 Weak Formulation and Finite Element Implementation

3.1 Propagation Equation

To obtain a finite element discretisation, we multiply Eq. (6) by a test function ψ ,

integrate over Ω, and use Eq. (7) to obtain:

∫

Ω
ψ

(
∂φ

∂ t
+Ve

)
dV = 0 (8)

With a standard interpolation

φ = Nφ (9)

N being the array that contains the interpolation polynomials, and φ the array that

contains the nodal values of φ , and using a Bubnov-Galerkin method in the sense

that the test function ψ is also interpolated in the sense of Eq. (9), Eq. (8) becomes:

M
∂φ

∂ t
+
∫

Ω
NTVedV = 0 (10)

with the mass matrix M defined as

M =

∫

Ω
NTNdV (11)

Using a first-order Euler time discretisation scheme,

∂φ

∂ t
≈

φt+∆t −φt

∆t
(12)

we obtain the following discrete evolution equation:

φt+∆t = φt −∆t M−1

∫

Ω
NTVedV (13)
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3.2 Enforcement of Constant Gradient Norm and Zero-Isolevel

Contour

The preceding time-marching scheme holds subject to the requirement that ‖∇φ‖=
1, which ensures that the signed distance function remains valid, and to the con-

straint that at the evolving discontinuity the level set function vanishes. Accordingly,

the following supplementary conditions must be imposed locally:

{
‖∇φ‖ = 1 ⇐⇒ ∇φ ·∇φ = 1, ∀x ∈ Ω/ Γ

φ = 0, ∀x ∈ Γ
(14)

Since the first equation of the set (14) is nonlinear, an iterative procedure at each

time step is necessary for its solution. Adopting a first-order Taylor series at ∇φt

one obtains:

g(∇φt + εφ ) ≈ g(∇φt)+
∂g

∂∇φ
(∇φt )εφ (15)

with

g(∇φt) = ∇φt ·∇φt −1 (16)

Considering that εφ ≪ 1, a Newton-Raphson procedure can now be used. At

iteration k + 1 a field φ k+1
t is sought, such that:

{
2∇φ k

t ·∇φ k+1
t = 1 + ∇φ k

t ·∇φ k
t , ∀x ∈ Ω/ Γ

φ k+1
t = 0, ∀x ∈ Γ

(17)

Subsequently, the problem is cast into a weak format. With U the space of suf-

ficiently regular fields, e.g., those that belong to H1(Ω), the weak formulation of

Eq. (17) becomes:

∀ ψ ∈ U = {φ ∈ U |φ = 0 on Γ} (18)

find φ k+1
t such that

A
k(ψ ,φ k+1

t ) = ℓk(ψ) (19)

with

A
k(ψ ,φ k+1

t ) = 2

∫

Ω
ψ∇φ k

t ·∇φ k+1
t dV (20)

ℓk(ψ) =

∫

Ω
ψ(1 + ∇φ k

t ·∇φ k
t ) dV (21)

A major difficulty regarding the solution of Eq. (19) arises from the essential con-

dition that is imposed at the internal boundary Γ, cf. Eq. (14). General approaches

to impose boundary conditions, or linear relations between degrees-of-freedom, in

finite element methods are either to reduce the projection space by suppressing

degrees-of-freedom, or by using Lagrange multipliers, which effectively enlarges
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the projection space. Recently, Moës et al. [11] have discussed solutions within the

context of partition-of-unity based finite element methods, but these solutions do

not seem readily applicable to the case of an evolving internal boundary.

Herein, we impose the internal boundary condition by exploiting the partition-

of-unity property of finite element shape functions [15–17]. In this method, the

projection space is enriched by new functions which are multiplied by the classical

polynomial functions on the support of a node:

φ(x) =
N

∑
i=1

Ni(x)

(
φ̄i +

m

∑
j=1

Ñ j(x)φ̃i j

)
(22)

with Ni(x) the traditional polynomial shape functions, Ñ j(x) the enrichment func-

tions at node i, φ̄i and φ̃i the degrees-of-freedom that relate to the standard and the

enhanced interpolations, respectively, N the number of nodes per element, and m

the number of enhanced functions per node. In the present case the essential bound-

ary condition is imposed at the evolving internal boundary Γ, and we have m = 1

and

Ñ1(x) = φ0
t (x)+ δ 0 (23)

which represents the value of the level set function φ at the initialisation of the

iterative procedure, i.e. the solution obtained at the end of the previous propagation

step, plus a possibly non-zero value δ 0 of φ(x) that is imposed at Γ. With the usual

interpolation, we can rewrite this enrichment as:

Ñ1(x) =
N

∑
k=1

Nk(x)φ0
t (xk)+ δ 0 (24)

and substitution into Eq. (22) subsequently yields:

φ(x) =
N

∑
i=1

Ni(x)

(
φ̄i +

N

∑
k=1

Nk(x)φ0
t (xk)+ δ 0

)
φ̃i (25)

We now remove the standard part from the interpolation, i.e. from which a value at

Γ can stem that is unequal to φ0
t (x)+ δ 0, and obtain:

φ(x) =
N

∑
i=1

Ni(x)

(
N

∑
k=1

Nk(x)φ0
t (xk)+ δ 0

)
φ̃i (26)

The first term enforces a vanishing value of φ(x) at the zero-isolevel contour, while

the second enrichment sets the value of φ(x) at the zero-isolevel contour equal to

δ 0. Accordingly, this technique enables the imposition of Dirichlet conditions at

an internal, possibly evolving, boundary. For the present purpose of enforcing the

zero-isolevel contour it suffices to include the first term.

Assembling the standard and enriched interpolation functions in a matrix Ne, and

assembling the degrees-of-freedom needed for the standard interpolation and those
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that relate to the enrichment in a single array φ̂, we can write Eq. (26) in a more

compact manner, e.g. [17]:

φ = Neφ̂ (27)

where, for notational simplicity, the explicit dependence of φ and Ne on x has been

dropped. The enrichment is only used in the area of interest, i.e. at the nodes that

belong to Ω0, Fig. 1. A well-known issue of partition-of-unity based finite element

methods is that the enrichment should be regularised outside the area of interest

in order to avoid perturbations [16, 18]. For the present purpose, we only use the

enriched interpolation functions, and this issue does not arise.

Requiring that the set (19–21) holds for any variationally admissible ψ , and using

the discretisation (27), Eq. (19) can be written in a standard matrix-vector format,

as follows:

Akφ̂
k+1

t = bk (28)

with

Ak = 2

∫

Ω
NT

e (∇Neφ̂
k

t )
T∇NedV (29)

bk =

∫

Ω

(
1 +(∇Neφ̂

k

t )
T(∇Neφ̂

k

t )
)

NT
e dV (30)

3.3 Stabilisation

The weak form (19) is not completely satisfactory owing to its nonsymmetric nature.

As a consequence, uniqueness and stability of the solution are not ensured. To over-

come this, a Galerkin least square stabilisation term is added to the bilinear form

A k [12], so that it transforms into:

∀ψ ∈ U = {φ ∈ U |φ = 0 on Γ} (31)

find φ k+1
t such that:

A
k(ψ ,φ k+1

t )+A
k

GLS(ψ ,φ k+1
t ) = ℓk(ψ)+ ℓk

GLS(ψ) (32)

with

A
k

GLS(ψ ,φ k+1
t ) = ∑

E

4τe

∫

Ωe

(∇ψ ·∇φ k
t )(∇φ k

t ·∇φ k+1
t )dV (33)

ℓGLS(ψ) = ∑
E

2τe

∫

Ωe

(∇ψ ·∇φ k
t )(1 + ∇φ k

t ·∇φ k
t )dV (34)
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and the stabilisation parameter

τe =
he

2‖∇φ k
t ‖

(35)

In Eqs. (32–35) E denotes the set of elements of the mesh, and he is the element size.

Requiring that the set (32–35) holds for any variationally admissible ψ , and using

the discretisation (27), Eq. (32) can be written in a standard matrix-vector format,

as follows:

(Ak + Ak
GLS)φ̂

k+1

t = bk + bk
GLS (36)

with Ak and bk defined in Eq. (21), and

Ak
GLS = ∑

E

4τe

∫

Ωe

∇NT
e (∇Neφ̂

k

t )
T(∇Neφ̂

k

t )∇NedV (37)

bk
GLS = ∑

E

2τe

∫

Ωe

(
1 +(∇Neφ̂

k

t )
T(∇Neφ̂

k

t )
)

∇NT
e (∇Neφ̂

k

t )dV (38)

The set (36) can now be solved in a standard Newton-Raphson manner, by repeat-

edly solving the set of equations:

φ̂
k+1

t = (Ak + Ak
GLS)

−1(bk + bk
GLS) (39)

The criterion used for convergence is |‖∇φ‖−1| < ε , with ε a sufficiently small

number. The method is applied only over a small area around the front, i.e. Ω0∪Ω1,

Fig. 1.

3.4 The Complete Algorithm

As the preceding re-initialisation step is achieved using an enrichment, a slight mod-

ification must be applied to the propagation scheme. First, we project the converged

solution at the re-initialisation step, φ̂n
t , onto the classical Galerkin space:

∀x ∈ Ω, min(φ̂t −φt) (40)

In a discrete format we then have:

φt = M−1
∫

Ω
NTφ̂n

t dV (41)

We subsequently combine this equation with the propagation equation (13) to

obtain:

φt+∆t = M−1
∫

Ω
NT(φ̂n

t −∆tVn)dV (42)
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The zero-isolevel contour is not completely maintained when the last equation is

used with a vanishing velocity. However, we have found that it generally removes

high-frequency oscillations that can arise from the initialisation step. This property

is interesting since it prevents the appearance of artificial shocks without need for

auxiliary measures [9].

The method is completed by an approach to construct an initial field, φ(x,t = 0),
from a measured discrete field, e.g. a bitmap picture, where the interface is defined

as a difference in contrast. For convenience, we reduce the picture to a binary scalar

function P : Ω → R, defined by:

∀x ∈ Ω, P(x) =

{
β if the pixel value at x is superior to s

−β else
(43)

where s is a threshold that states the limit of the contrast difference. Next, the

distance between P and φ is minimised on the domain Ω:

∀x ∈ Ω, min
φ :Ω→R

(φ(x)−P(x)) (44)

This expression can be cast in a variational formulation along the same lines as

before, and leads to a discrete (finite element) formulation given by:

φ = M−1
∫

Ω
NTP(x)dV (45)

To further improve the accuracy of the approximation of ‖∇φ‖ = 1, the two values

carried by P are related to the median element size, i.e. β = He
2

, where He stands for

the mean element size of the mesh.

The resulting algorithm (Algorithm 1) thus exhibits two main steps. The first

step – the initialisation stage – results in the initial field φ and includes a propagation

Algorithm 1 Algorithm for finite element level set computations

Require: ∀x ∈ Ω, P(x) and Vn(x) known

φt=0 ← M−1
∫

Ω NTP(x) dV

repeat

φ̂
k+1

t ← (Ak +Ak
GLS)

−1
(
bk +bk

GLS

)

until

∣∣∣∣‖∇φ̂
k+1

t ‖−‖∇φ̂
k

t ‖

∣∣∣∣ < ε

φt=0 ← M−1
∫

Ω NTφ̂ n
t dV

repeat

repeat

φ̂
k+1

t ← (Ak +Ak
GLS)

−1
(
bk +bk

GLS

)

until

∣∣∣∣‖∇φ̂
k+1

t ‖−‖∇φ̂
k

t ‖

∣∣∣∣ < ε

φt+∆t ← M−1
∫

Ω NT(φ̂ n
t −∆tVn) dV

until t = T
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Fig. 2 Initial position of the

two circular contours

Fig. 3 Expanding circles at a constant velocity for different discretisations with linear shape

functions. From left to right: 10×10, 20×20, and 40×40 elements

step with a zero velocity. This will initiate the propagation with an already projected

field. The second step is the propagation and the initialisation to the signed distance.

The initialisation to the signed distance is done every step a priori, notwithstanding

whether the error criterion on the gradient norm is satisfied or not.

4 Example

As example we show the computation of two expanding circular contours. The ini-

tial positions of the circles, which are used for the initialisation of the level set field

are shown in Fig. 2. After initialisation, the velocity field is chosen constant and the

time step depends on the discretisation according to the CFL criterion.

When linear polynomials are used as the finite element shape functions, the pro-

jection space for signed distance field is rather poor. Indeed, the only signed distance

function that can be represented properly is that which represents straight lines.

Figure 3 underscores this, since the performance in terms of a neat representation

of the curved contour is not impressive, although the results of course improve with

mesh refinement. The results show a marked improvement when quadratic poly-

nomials are used as the finite element base functions, Fig. 4. Indeed, the results

obtained for this case on a 10×10 mesh are already better than those computed for

the finest mesh (40×40) with linear interpolants.
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Fig. 4 Expanding circles at a constant velocity for different discretisations with quadratic shape

functions. From left to right: 10×10, 20×20, and 40×40 elements

5 Concluding Remarks

In this contribution we have presented a finite element approach to solve the evo-

lution equation for level set functions. The first element of the approach is the

extension of the velocity field that is normally known only at the zero-isolevel

contour to the entire domain of interest. This done via a standard orthogonality

requirement between the gradients of the level set function and the extended veloc-

ity field, which is tantamount to the requirement that the norm of the gradient of

the level set function maintains a unit value. The latter equation is solved through-

out the domain using a finite element method. Secondly, a unit constant gradient

norm is maintained in the propagation equation. Prior to the propagation step a re-

initialisation to the signed distance is performed for this. Here, a major difficulty is

to enforce the vanishing of the level set function at the zero-isolevel contour dur-

ing the re-initialisation. Indeed, this requirement induces a Dirichlet condition at

an internal boundary, for which a straightforward solution was not readily avail-

able. Herein, this internal boundary condition has been imposed by exploiting the

partition-of-unity property of finite element shape functions, which enables the

imposition of a possibly non-zero internal boundary condition of the Dirichlet type

in a rigorous and elegant fashion. The resulting equations can be solved in a manner

that is now well established for the partition-of-unity method. To improve stabil-

ity the discretised equations are augmented by Galerkin-Least Squares terms. A

qualitative example that involves expanding circular contours is given to demon-

strate the versatility of the method in two-dimensional applications with curved

discontinuities.
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16. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements.

International Journal for Numerical Methods in Engineering 50: 993–1013.
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