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Abstract. We study the variational convergence of a family of two-dimensional Ginzburg-
Landau functionals arising in the study of superfluidity or thin-film superconductivity, as the
Ginzburg-Landau parameter ε tends to 0. In this regime and for large enough applied rotations
(for superfluids) or magnetic fields (for superconductors), the minimizers acquire quantized
point singularities (vortices). We focus on situations in which an unbounded number of vortices
accumulate along a prescribed Jordan curve or a simple arc in the domain. This is known to
occur in a circular annulus under uniform rotation, or in a simply connected domain with an
appropriately chosen rotational vector field. We prove that, suitably normalized, the energy
functionals Γ-converge to a classical energy from potential theory. Applied to global minimizers,
our results describe the limiting distribution of vortices along the curve in terms of Green
equilibrium measures.
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1. Introduction

The Ginzburg-Landau theories have had an enormous influence on both physics and
mathematics. Physicists employ Ginzburg-Landau models in modeling superconductiv-
ity, superfluidity, and, more recently, for rotating Bose-Einstein condensates (BECs), all
systems which present quantized defects commonly known as vortices. In mathematics,
starting with the work by Bethuel, Brezis & Hélein [6], many powerful methods have been
developed to study the physical London limit, i.e., as the Ginzburg-Landau parameter
ε tends to 0. This limit corresponds to the Thomas-Fermi regime in BEC, and to an
analogous regime in superfluids where the characteristic length scale ε is very small. In
a two-dimensional setting, vortices are essentially characterized as isolated zeroes of the
order parameter carrying a winding number, and in the London limit as point defects
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where energy concentration occurs. The question of whether energy minimizers develop
vortices, where they appear in the domain, and how many there should be (for given
boundary conditions, constant applied fields or angular velocities) has been analyzed in
many contexts and parameter regimes.

In this paper, we will focus on the following Ginzburg-Landau energy, arising for
instance in the physical context of a rotating superfluid. Considering a bounded simply
connected domain D ⊂ R

2, a smooth vector field V : R
2 → R

2, Ω > 0 and ε > 0, we
define the functional

u ∈ H1(D; C) 7→ Fε(u) :=

∫

D

{
1

2
|∇u|2 +

1

4ε2
(1 − |u|2)2 − ΩV (x) · j(u)

}
dx .

Identifying R
2 with the complex plane C, we denote by

j(u) := u ∧∇u ∈ L1(D; R2) ,

the pre-Jacobian of u. The L1-vector field j(u) may also be written as j(u) = (iu,∇u),
where (·, ·) is the standard inner product of two complex numbers, viewed as vectors
in R

2.

In the case of uniform rotation, that is V (x) = x⊥ = (−x2, x1) and with D a
disk, Serfaty [17] studied minimizers of a closely related functional (see Remark 1.5)
to determine the critical value Ω1 = Ω1(ε) of the angular speed Ω at which vortices
first appear (see also [10,11] for BECs). She finds that minimizers acquire vorticity at
Ω1 = k(D)| ln ε|+O(ln | ln ε|) for an explicitly determined constant k(D). In a series of pa-
pers, culminating with the publication of the research monograph [16], Sandier & Serfaty
developed powerful tools to study vortices in Ginzburg-Landau models. Although they
primarily work with the full Ginzburg-Landau model with magnetic field, the methods
apply as well to the functional Fε above. In particular, their results apply to the near-
critical regime in simply connected domains. In our setting, their results show that for any
simply connected domain D, the first order expansion of the critical value Ω1 for vortex
existence in minimizing configurations is also given by k(D)| ln ε| for some constant k(D).
Moreover the locus of concentration of vortices for Ω = Ω1 + o(| ln ε|) is given by the set
of maxima of |ζ|, with ζ the solution of the following boundary-value problem:

{
−∆ζ = curlV in D ,

ζ = 0 on ∂D .
(1.1)

The constant k(D) is then determined by

k(D) =
1

2|ζ|max
,

where |ζ|max denotes the maximum value of |ζ|. If, for instance, V is real-analytic and
curlV is nonnegative, then so is the solution ζ, and the maximum is generically attained
at a finite number of points in D (see e.g. [7]). In this situation, if Ω = Ω1 + o(| ln ε|),
minimizers exhibit vortex concentration at isolated points, and the number of vortices
remains uniformly bounded whenever Ω − Ω1 is of order O(ln | ln ε|), see [16,17,10,11].

The case of a multiply connected domain provides a slightly different qualitative
picture. In a work on rotating Bose-Einstein condensates, Aftalion, Alama & Bronsard [1]
considered a similar functional in a domain given by a circular annulus A (centered at the
origin) and again with uniform rotation V (x) = x⊥ (see Remark 1.5). Unlike the simply
connected case, minimizers in the annulus may have vorticity without vortices, as the
hole acquires positive winding at bounded rotation Ω. Then point vortices are nucleated
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inside the interior of A at a critical value Ω1, again of leading order | ln ε|. Solving
equation (1.1) in the annulus A, one finds out that the set of maxima of the function ζ
is given by a circle inside A (see Example 5.1). Hence one can expect that, rather than
accumulating at isolated points, vortices concentrate along this circle in the limit ε→ 0.
The main feature proved in [1] is that if Ω ∼ Ω1 + O(ln | ln ε|), then vortices are indeed
essentially supported by a circle Σ and that the total degree of these vortices is of order
ln | ln ε|. In other words, in the limit ε→ 0, infinitely many vortices concentrate on Σ, a
phenomenon that we call vortex concentration along a curve. However the question of the
distribution of the limiting vorticity around the circle was left open. Subsequent results
of Alama & Bronsard [2,3] extend the result of [1] to multiply connected domains and to
the full Ginzburg-Landau model with magnetic field and pinning potential. In contrast
with the previous case, concentration on curves might not be a generic phenomenon for
the Ginzburg-Landau model with magnetic field in a general multiply connected domain.
Indeed, in this setting the vector field V represents the electromagnetic potential and it
is an unknown of the problem. The results in [2,3] show that, for near-critical external
applied fields, the concentration set of vortices is also given by the set of maxima of a
certain potential related to V . This set may contain finitely many points and/or closed
loops. Assuming that it contains closed loops, they prove that vortex concentration along
a curve occurs, but the determination of the limiting vorticity was again left open.

To effectively separate the question of the nature of the concentration set from the
question of localizing vortices, we instead start with a simply connected domain D, and
we prescribe the function ζ with ζ ≥ 0 in D and ζ|∂D = 0, in such a way that ζ is
maximized on a prescribed curve Σ ⊂⊂ D. Then, we define

V (x) := −∇⊥ζ(x) =

(
∂ζ

∂x2
,− ∂ζ

∂x1

)

as our vector field. We will prove that vortices will be forced to accumulate on Σ as ε
tends to 0. The curve Σ can be either a smooth Jordan curve or a smooth embedded
simple arc, compactly contained in D. In this setting, we shall resolve the problem of
distribution of vortices along curves, both for minimizers and in the more general setting
of Γ-convergence. In the last section we will show that in a multiply connected domain,
and for more general vector fields V , the problem does not differ too much in nature,
and that a similar analysis can be performed.

To state our main result we must give more specific hypotheses on ζ and the angular
speed Ω. We assume that ζ satisfies the following assumptions:

(H1) ζ ∈ C0,1
0 (D), ζ ≥ 0 in D, and ζmax := maxx∈D ζ(x) > 0;

(H2) Σ := {x ∈ D : ζ(x) = ζmax} ⊂⊂ D is a Jordan curve or a simple embedded arc
of class C2.

We further assume that Ω = Ω(ε) is near to the critical value needed for the presence of
vortices. More precisely,

Ωε :=
| ln ε|
2ζmax

+ ω(ε) , (1.2)

for some function ω : (0,+∞) → (0,+∞) satisfiying ω(ε) → +∞ with | ln ε|−1ω(ε) → 0
as ε→ 0.

For u ∈ H1(D; C) we consider the rescaled functional

Fε(u) :=
1

ω2(ε)

∫

D

{
1

2
|∇u|2 +

1

4ε2
(1 − |u|2)2 + Ωε∇⊥ζ · j(u)

}
dx ,
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and for a nonnegative Radon measure µ on D, we define

I(µ) :=
1

2

∫∫

D×D
G(x, y) dµ(x) dµ(y) ,

where the function G denotes the Dirichlet Green’s function of the domain D, i.e., for
every y ∈ D, G(·, y) is the solution of

{
−∆G(·, y) = δy in D ′(D) ,

G(·, y) = 0 on ∂D .
(1.3)

Our main result deals with the Γ-convergence of the family of functionals {Fε}ε>0 as
ε→ 0, and it is stated (as usual) in terms of the vorticity distribution given by the weak
Jacobian, that is half the distributional curl of the pre-Jacobian (see e.g. [16]).

Theorem 1.1. Assume that (H1), (H2) and (1.2) hold. Let εn → 0+ be an arbitrary
sequence. Then,

(i) for any {un}n∈N ⊂ H1(D; C) satisfying supn Fεn
(un) < +∞, there exist a subse-

quence (not relabelled) and a nonnegative Radon measure µ in H−1(D) supported
by Σ such that

1

ω(εn)
curl j(un) −→

n→+∞
µ strongly in (C0,1

0 (D))∗ ; (1.4)

(ii) for any {un}n∈N ⊂ H1(D; C) such that (1.4) holds for some nonnegative Radon
measure µ in H−1(D) supported by Σ, we have

lim inf
n→+∞

Fεn
(un) ≥ I(µ) − ζmax µ(D) ;

(iii) for any nonnegative Radon measure µ in H−1(D) supported by Σ, there exists a
sequence {un}n∈N ⊂ H1(D; C) such that (1.4) holds and

lim
n→+∞

Fεn
(un) = I(µ) − ζmax µ(D) .

As it is well known, the Γ-convergence theory is well suited to study asymptotics in
minimization problems (see e.g. [9]). In this context, we shall derive from Theorem 1.1
the following convergence result for the vorticity of global minimizers, and hence solving
the problem on the limiting distribution of vortices along Σ, see Remark 1.3 below.

Corollary 1.1. Assume that (H1), (H2) and (1.2) hold. Let εn → 0+ be an arbitrary
sequence. For every integer n ∈ N, let un ∈ H1(D; C) be a minimizer of Fεn

. Then,

1

ω(εn)
curl j(un) −→

n→+∞
ζmax

2I∗
µ∗ strongly in (C0,1

0 (D))∗ ,

where µ∗ is the unique minimizer of I over all probability measures supported on Σ, and
I∗ := I(µ∗).

Remark 1.1. As a direct application of the results in [16] (see also [12]), we shall
see in Section 2 that for configurations {uε} with Fε-energy uniformly bounded from
above, the vorticity distribution curl j(uε) can be approximated (with respect to the
(C0,1

0 (D))∗–topology) by a measure of the form 2π
∑

i∈Iε
diδai

for some finite set of points
{ai}i∈Iε

⊂ D and integers {di}i∈Iε
⊂ Z. In other words, each point ai can be viewed as

an approximate vortex with winding number di. Thus the integer Dε =
∑

i∈Iε
|di| may
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be refered to as to approximate total vorticity of the configuration uε. It is commonly
known that approximate vortices carry a kinetic energy essentially greater than or equal
to πDε| ln ε| (see Section 2 for more details). With such an estimate in hand, and using
the arguments of Section 3, we actually obtain a more refined lower bound for the energy
than the one given by Theorem 1.1, claim (ii). More precisely, one has

lim inf
ε→0

1

ω2(ε)

(∫

D

1

2
|∇uε|2 +

1

4ε2
(1 − |uε|2)2 dx− πDε| ln ε|

)
≥ I(µ) ,

and

lim inf
ε→0

1

ω2(ε)

(
Ωε

∫

D
∇⊥ζ · j(uε) dx+ πDε| ln ε|

)
≥ −ζmax µ(D) .

As a consequence, if {uε} is any recovery sequence (in the sense of (iii) of Theorem 1.1),
the lim inf’s above become limits, and equality holds in each case. In analogy with [6],
we may then say that I(µ) plays the role of renormalized energy.

Remark 1.2 (Minimizers). From Corollary 1.1 and Remark 1.1, we deduce that if uε

is energy minimizing, then

Dε =
ζmax

4πI∗
ω(ε) + o(ω(ε)) as ε→ 0 ,

and from Theorem 1.1, the minimal value of the energy expands as

min
H1(D;C)

ω2(ε)Fε = −ζ
2
max

4I∗
ω2(ε) + o(ω2(ε)) .

Remark 1.3 (Equilibrium measures). The value I(µ) gives the electrostatic energy
of a positive charge distribution µ on the set Σ ⊂⊂ D. The minimizer µ∗ of I over all
probability measures on Σ is called the Green equilibrium measure in D associated to the
set Σ, and gives the equilibrium charge distribution of a charged conductor inside of a
neutral conducting shell, represented by ∂D. The value 1/I∗ is refered to as to the capacity
of the condenser (Σ, ∂D). The interested reader can find in [14] many results on the
existence and general (regularity) properties of the equilibrium measures as well as some
examples. For instance, if D is a disc and Σ is a concentric circle, then the equilibrium
measure µ∗ is the normalized arclength measure on Σ, see [14, Example II.5.13], and thus
vortices are asymptotically equidistributed along Σ as ε → 0. However for an arbitrary
curve Σ, the distribution is of course non-uniform in general. In case where Σ is an
embedded arc, it is even singular at the endpoints, see [14, Example II.5.14].

Remark 1.4. In the present results the structure and regularity assumptions on the
set Σ given in (H2) are mainly motivated by the physical context of [1,2,3]. However
it will be clear that (H2) can be relaxed into weaker statments. More precisely, the
proof of Theorem 1.1 relies on (H2) only for the Γ − lim sup inequality, i.e., claim (iii).
The construction of the recovery sequence (see Section 4) could be applied with minor
modifications if the set Σ is for instance a finite union of piecewise C2 arcs/Jordan curves.
Actually Σ could even have a more general structure such as a non-empty interior. In
this later case we assume that ∂Σ is made by finitely many arcs and Jordan curves of
class C2. Then, given a nonnegative Radon measure µ ∈ H1(D) supported by Σ, one can
construct a recovery sequence for µ applying the approximation techniques of Section 4
to µ ∂Σ and a more standard regularization procedure for µ int(Σ) as in [16].
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In Section 5 we will show how to apply the method to a multiply connected domain
and a more general vector field V . For simplicity, we shall consider only domains A which
are topological annuli, i.e., A = D\B, where D, B are simply connected and B ⊂⊂ D. For
multiply connected domains and/or a general field V , there is an extra step involved in the
analysis. Indeed, the leading order term in the minimal energy (of order | ln ε|2) is due to
the curl-free part of V which induces a diverging phase in any minimal configuration, and
to the vorticity in the hole B which acts as a sort of giant vortex (by analogy with [1]). In
other words, to get information on the internal vorticity, one has to perform a second order
Γ-convergence analysis. As in [2] we first describe minimizing vortexless configurations
(i.e., energy minimizers over S

1-valued maps) which nonetheless have vorticity around
the hole. Then we show that for arbitrary configurations, the energy due to the curl-free
part of V and the hole decouples nearly exactly (see Proposition 5.2). After separating
out this contribution to the energy, the residual energy functional resembles Fε above,
and the Γ-convergence analysis can be done in much the same way, with some care taken
to control the residual vorticity around the hole. The result is stated in Theorem 5.2.
The Γ-limit again involves a Green energy for measures supported by a prescribed set.

Remark 1.5 (Related funtionals). As mentioned earlier, the methods here may also
be applied to other Ginzburg-Landau functionals which have the same structure as Fε.
A simple variant is

F̃ε(u) =

∫

D

{
1

2
|(∇− iΩεV )u|2 +

1

4ε2
(1 − |u|2)2

}
dx .

This energy has been studied in more than one context. Serfaty considers in [17] the
minimization of this energy for rotating superfluids, with V = x⊥ and under a Dirichlet
boundary condition u|∂D = 0. The minimization of the same energy under natural (Neu-
mann) boundary conditions also arises in a simplified model of thin-film superconductors
introduced by Chapman, Du & Gunzburger [8] (see also Alama, Bronsard & Galvão-
Sousa [4]). In this setting, ΩεV (x) = Aε(x) represents the magnetic vector potential of
the externally applied magnetic field hex = ΩεcurlV . With Ωε satisfying (1.2), and a
sequence {uε} in the energy regime of Theorem 1.1 (which holds for minimizers under a
homogeneous Neumann boundary condition), the two energies agree very closely,

F̃ε(uε) = Fε(uε) +
Ω2

ε

2

∫

D
|V |2 dx+ o(1) as ε→ 0 .

In the case of the homogeneous Dirichlet boundary condition some care must be taken
since a singular boundary layer arises near ∂D as ε → 0 (see [17]), but otherwise the
result of Theorem 1.1 should remain essentially the same.

For annular domains, another functional which resembles Fε has been used in the
modeling of rotating BECs in certain anharmonic traps (see [1]),

Gε(u) =

∫

A

{
1

2
|∇u|2 +

1

4ε2
(a(x) − |u|2)2 − Ωε V (x) · j(u)

}
dx .

Here V (x) = x⊥ is the velocity field of uniform rotation, and the function a(x), positive
in A, gives the trapping potential which contains the condensate. It is shown in [1] that
Gε-minimizers develop as ε → 0, infinitely many vortices concentrating along a circle
for sufficently high rotation Ωε. We believe that similar results to the ones in Section 5
should hold, but the method is not directly applicable here. Indeed, our analysis is based
on “global energy estimates” of [16] (see (2.1) in Proposition 2.1) and the presence of
the inhomogeneity a(x) requires local estimates. Moreover the analysis of vortices for
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the energy Gε is complicated by the fact that a(x) vanishes on the boundary, and some
delicate estimates are required so as not to lose too much information near the boundary.

One may also consider the full Ginzburg-Landau model of superconductivity for com-
plex order parameter u : D → C and magnetic vector potential A : D → R

2. For the
Ginzburg-Landau model in a simply connected domain with constant applied magnetic
field, Sandier & Serfaty [16, Theorem 9.1] have proven a Γ-convergence theorem of the
form of Theorem 1.1 for applied fields of the form hex = HC1 + ω(ε), where in that case
it is appropriate to take ln | ln ε| . ω(ε) ≪ | ln ε|. This problem exhibits vortex concen-
tration at points, and the limiting energy is obtained by rescaling around the points of
concentration. The rescaled vorticity measures of minimizers converge to an equilibrium
measure associated to a different problem in potential theory, a “Gauss variation” prob-
lem whereby the charges are to be optimally placed in R

2 subject to an applied electric
field (see [14]). Concentration on curves is possible in multiply connected regions (see
[2,3]). The methods described here should apply in this situationl once adapted to the
magnetic setting, although the energy obtained as a Γ-limit should be for the Helmholtz
(and not the Laplace) Green’s function, −∆xH(x, y)+H(x, y) = δy(x). However, for the
full Ginzburg-Landau functional with magnetic field in general domains, it is an interest-
ing open problem in PDE to determine which (if any) non-symmetric multiply connected
domains exhibit vortex concentration on curves.

We finally mention a recent paper by Kashmar [13] exhibiting concentration on a circle
for a magnetic Ginzburg-Landau functional in the disc with an inhomogeneity a(x) as
above described by a radial step function (modelling for instance a superconducting body
made by two different species). Here again we believe that similar results should hold but
the method does not directly apply due to the inhomogeneity of the Ginzburg-Landau
energy density.

The plan of the paper is as follows. In Section 2 we prove assertion (i) of Theorem 1.1.
Section 3 tackles part (ii) of the theorem. The upper bound of statement (iii) is derived in
Section 4, completing the proof of Theorem 1.1. The proof of Corollary 1.1 is presented at
the end of Section 4. Section 5 sketches how the preceeding arguments must be modified
to treat annular domains.

Notations. For any open set B ⊂ D and any admissible map u, we denote by

Eε(u,B) :=

∫

B

{
1

2
|∇u|2 +

1

4ε2
(1 − |u|2)2

}
dx

the so-called Ginzburg-Landau energy of u in B. Given ε > 0 we define

Dε := {x ∈ D : dist (x, ∂D) > ε} ,
and for a sequence εn → 0+, we shall write ωn := ω(εn) and Ωn := Ωεn

.

2. Compactness of normalized weak Jacobians

This section is devoted to the proof of claim (i) in Theorem 1.1. The key ingredient to
prove compactness of normalized weak Jacobians is the so-called “vortex balls construc-
tion” taken from [16, Theorem 4.1].

Proposition 2.1. There exists a constant ε0 > 0 such that for any 0 < ε < ε0 and any
u ∈ H1(D; C) ∩ C1(D) satisfying Eε(u,D) ≤ √

ε, the following holds. For any C0ε
1/4 <

r < 1 there exists a finite collection of disjoint closed balls Br = {B(ai, ρi)}i∈Ir
such

that, writing Bi := B(ai, ρi),
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(i) r =
∑

i∈Ir

ρi ;

(ii)
{
|1 − |u|| ≥ ε1/8

}
∩ Dε ⊂ Dε ∩

⋃

i∈Ir

Bi =: V ;

(iii) setting di := deg(u, ∂Bi) if Bi ⊂ Dε, and di := 0 otherwise,

Eε(u, V ) ≥ πDr

(
ln

(
r

εDr

)
− C1

)
, (2.1)

where Dr :=
∑

i∈Ir

|di| is assumed to be positive;

(iv) Dr ≤ C2| ln ε|−1Eε(u,D) ;

and C0, C1, C2 are universal constants. Moreover, if C0ε
1/4 < r1 < r2 < 1 and B1, B2

are the corresponding families of balls, then every ball of B1 is included in a ball of B2.

In the remainder of this section, we consider an arbitrary sequence εn → 0+. In
the following lemma, we prove an upper bound on the Ginzburg-Landau energy for a
sequence having an Fεn

-energy uniformly bounded from above. It will allow us to apply
the previous proposition to such a sequence.

Lemma 2.1. Assume that (H1) and (1.2) hold. Let {un}n∈N be a sequence in H1(D; C)
such that supn Fεn

(un) < +∞. Then there exists a constant C independent of n such
that ‖un‖L4(D) ≤ C and Eεn

(un,D) ≤ C| ln εn|2.

Proof. Observe that

Eεn
(un,D) = ω2

nFεn
(un)−Ωn

∫

D
∇⊥ζ · j(un) dx ≤ Ωn‖∇ζ‖∞

∫

D
|un||∇un|dx+O(ω2

n)

≤ 1

4

∫

D
|∇un|2dx+ Ω2

n‖∇ζ‖2
∞

∫

D
|un|2dx+O(ω2

n) . (2.2)

In particular,
∫

D

(
|un|4 − 2(1 + 2ε2nΩ2

n‖∇ζ‖2
∞)|un|2 + 1

)
dx ≤ O(ε2nω

2
n) ,

so that ‖un‖L4(D) ≤ C for a constant C independent of n. Inserting this estimate in
(2.2), the announced result follows easily.

The first step in proving compactness of the normalized Jacobians is to show that
the approximate total vorticity is bounded by the excess rotation ωn. We emphasize that
here Σ could be any compact subset of D.

Proposition 2.2. Assume that (H1) and (1.2) hold. Let {un}n∈N be a sequence in
H1(D; C) ∩ C1(D) such that supn Fεn

(un) < +∞. Then there exist rn → 0+ and a
sequence of families of balls Brn

= {B(an
i , ρi,n)}i∈Irn

as in Proposition 2.1 such that
Drn

≤ Cωn for some constant C > 0 independent of n.

Proof. Let rn := | ln εn|−4. In view of Lemma 2.1 we can apply Proposition 2.1 to un

with r = rn and n large enough. For each such n we denote by Brn
= {B(an

i , ρi,n)}i∈Irn

the corresponding family of balls. For convenience we write In := Irn
, Bn

i := B(an
i , ρi,n),

di,n := deg(u, ∂Bn
i ) if Bn

i ⊂ Dεn
, di,n = 0 otherwise, and Dn := Drn

.
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Step 1. We first claim that

Ωn

∫

D
∇⊥ζ · j(un) dx = −2πΩn

∑

i∈In

di,n ζ(a
n
i ) + o(1) as n→ +∞ . (2.3)

Indeed, applying [16, Theorem 6.1] with the balls {Bn
i }i∈In

we derive the estimate
∥∥∥∥curl j(un) − 2π

∑

i∈In

di,n δan
i

∥∥∥∥
(C0,1

0
(D))∗

≤ Crn
(
1 + Eεn

(un,D)
)
≤ C| ln εn|−2 , (2.4)

thanks to Lemma 2.1. Then (2.3) follows since Ωn = O(| ln εn|) and ζ ∈ C0,1
0 (D).

Step 2. Without loss of generality we may assume that ωn = O(Dn), otherwise there
is nothing to prove. In view of claim (iv) in Proposition 2.1 and Lemma 2.1, we have
Dn ≤ O(| ln εn|). Next, combining the lower bound (2.1) with (2.3), we infer that

O(ω2
n) ≥ ω2

nFεn
(un) ≥ πDn

(
| ln εn| − C ln | ln εn|

)
− 2πΩn

∑

i∈In

di,nζ(a
n
i ) +

+

∫

D\∪i∈In Bn
i

|∇un|2 dx+ o(1) (2.5)

as n→ +∞.
Let us now fix a sequence ηn → 0+ such that

max{ωn, ln | ln εn|} = o(ηn| ln εn|) as n→ +∞ . (2.6)

We group the vortex balls into the following classes and we define:

D∗
n :=

∑

i∈I∗
n

di,n , I∗n :=
{
i ∈ In : di,n ≥ 0 and ζ(an

i ) > ζmax − ηn

}
;

D+
n =

∑

i∈I+
n

di,n , I+
n :=

{
i ∈ In : di,n ≥ 0 and ζ(an

i ) ≤ ζmax − ηn

}
;

D−
n :=

∑

i∈I−
n

|di,n| , I−n :=
{
i ∈ In : di,n < 0

}
.

Observe that Dn = D∗
n +D+

n +D−
n . We claim that

D+
n ≤ C

max{ωn, ln | ln εn|}Dn

ηn| ln εn|
, (2.7)

D−
n ≤ C

max{ωn, ln | ln εn|}Dn

| ln εn|
, (2.8)

Dn ≤ Cmax{ωn, ln | ln εn|} , (2.9)

for a constant C > 0 independent of n. In particular, if ω2
n = o(| ln εn|), then we can

choose ηn satisfying in addition max{ω2
n, (ln | ln εn|)2} = o(ηn| ln εn|), and consequently

(2.9) yields D+
n = D−

n = 0 for n large enough.

We evaluate the lower bound for each class of vortex ball separately. First, we use the
explicit form of Ωn (see (1.2)) and the bound ζ(x) ≤ ζmax to obtain,

πD∗
n| ln εn| − 2πΩn

∑

i∈I∗
n

di,nζ(a
n
i ) ≥ −2πωnζmaxD

∗
n . (2.10)

For negative degrees we have the simple estimate

πD−
n | ln εn| − 2πΩn

∑

i∈I−
n

di,nζ(a
n
i ) ≥ πD−

n | ln εn| . (2.11)
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Then for the vortex balls staying away from Σ, we have

πD+
n | ln εn| − 2πΩn

∑

i∈I+
n

di,nζ(a
n
i ) ≥ (π| ln εn| − 2πΩnζmax)D

+
n +

+ 2πΩn

∑

i∈I+
n

di,n(ζmax − ζ(an
i )) ≥ D+

n (−2πωnζmax + 2πΩnηn) ≥

≥ CΩnηnD
+
n , (2.12)

since ωn = o(ηnΩn). We now insert (2.10), (2.11) and (2.12) into (2.5),

O(ω2
n) ≥ πDn (| ln εn| − C1 ln | ln εn|) − 2πΩn

∑

i∈In

di,nζ(a
n
i ) +

∫

D\∪Bn
i

|∇un|2dx+ o(1)

≥ −πC1Dn ln | ln εn| − 2πωnζmaxD
∗
n + πD−

n | ln εn| + CηnΩnD
+
n +

+

∫

D\∪Bn
i

|∇un|2dx .
(2.13)

Rearranging all terms we derive

D−
n | ln εn| +D+

n ηnΩn ≤ C
(
ωnD

∗
n + ln | ln εn|Dn + ω2

n

)

≤ Cmax{ωn, ln | ln εn|}Dn ,

which proves (2.7) and (2.8).
To prove (2.9), we argue as in [2, pg. 58–60] to obtain a constant C ′ > 0 (independent

of n) such that
∫

D\∪Bn
i

|∇un|2dx ≥ C ′D2
n . (2.14)

Accepting (2.14) we return to the lower bound (2.13) to deduce

D2
n − C (ωn + ln | ln εn|)Dn ≤ O(ω2

n) ,

so that Dn ≤ Cmax{ωn, ln | ln εn|} and estimate (2.9) is established.
It remains to show (2.14). To this aim we identify an annular band lying outside of

Σ and use the fact that the total degree is approximately constant in that band. Since
the boundary ∂D is assumed to be smooth, there exists 0 < δ0 <

1
2dist (Σ, ∂D) such that

the function ̺(x) := dist (x, ∂D) is smooth in Dδ0
εn

with

Dδ0

εn
:= {x ∈ D : εn < ̺(x) ≤ δ0} .

The level sets

Ct := {x ∈ D : ̺(x) = t} ,

are smooth and diffeomorphic to ∂D for all t ∈ [0, δ0]. Define the set Tn ⊂ [0, δ0] by

Tn := {t ∈ (εn, δ0] : Ct ∩ ∪i∈In
Bn

i = ∅} .

By the choice of rn and claim (i) in Proposition 2.1, Tn is a finite union of disjoint
intervals and L1((εn, δ0] \Tn) ≤ O(| ln εn|−4). From claim (ii) in Proposition 2.1, we can
define the degree of un on Ct for every t ∈ Tn, i.e.,

Dn(t) := deg

(
un

|un|
, Ct

)
=

1

2π

∫

Ct

un

|un|
∧ ∇τ

(
un

|un|

)
dH1 ,
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where ∇τ denotes the tangential derivative along Ct oriented counterclockwise. Setting
In(t) := {i ∈ In : ̺(an

i ) ≥ ρi,n + t} (ρi,n being the radius of the ball Bn
i ), we have

Dn(t) =
∑

i∈In(t)

di,n .

Using (2.7) and (2.8) we infer that for n large enough,

Dn(t) ≥ Dn − 2D−
n −D+

n ≥ 1

2
Dn for every t ∈ Tn .

Denote vn := un/|un|. In view of claim (ii) in Proposition 2.1, using the Coarea Formula
and Jensen Inequality we can estimate for n large enough,

∫

D\∪Bn
i

|∇un|2dx ≥
∫

Dδ0
εn\∪Bn

i

|un|2|∇vn|2dx ≥ 1

2

∫ δ0

εn

( ∫

Ct

|∇vn|2dH1

)
dt ≥

≥ 1

2

∫

Tn

( ∫

Ct

|vn ∧∇τvn|2dH1

)
dt ≥ 2π2

∫

Tn

|Dn(t)|2
H1(Ct)

dt ≥ C ′D2
n ,

which completes the proof of (2.14).

Step 3. If ln | ln εn| ≤ o(ωn) the conclusion follows from (2.7), (2.8) and (2.9). If ωn ≤
O(ln | ln εn|) we must refine our lower bound by growing the vortex balls. First observe
that in this regime, (2.7) and (2.8) ensures that

D−
n = D+

n = 0 (2.15)

for n large so that each ball Bn
i ⊂ Dεn

carries a nonnegative degree and Dn = D∗
n.

We choose a new radius sn := e−
√

ωn and thus sn > rn for n large enough. We now
reapply Proposition 2.1 with r = sn to obtain a new family of larger balls {B̃n

j }j∈Jn
,

each new ball B̃n
j containing one or more of the smaller balls {Bn

i }. By claim (ii) in
Proposition 2.1 and (2.15) we have Dsn

= Dn. Using the lower bound (2.1) together
with (2.3) and (2.15), we can argue as in Step 2 to derive

O(ω2
n) ≥ ω2

nFεn
(un) ≥ πDn

(
ln

(
sn

εnDn

)
− C1

)
− 2πΩnζmaxDn + C ′D2

n

≥ πDn

(
ln

(
sn

Dn

)
− C1

)
− 2πωnζmaxDn + C ′D2

n . (2.16)

Next we distinguish two cases. First assume that lnDn ≤ O(ωn). In this case, (2.16) yields
the inequality D2

n−CωnDn ≤ O(ω2
n) (with C > 0 independent of n) so that Dn ≤ O(ωn)

as claimed. If ωn = o(lnDn), we obtain the bound D2
n −CDn lnDn ≤ O(ω2

n) which also
yields Dn ≤ O(ωn), and the proof of Proposition 2.2 is complete.

We are now ready to prove claim (i) in Theorem 1.1.

Theorem 2.1. Assume that (H1) and (1.2) hold. Let εn → 0+ and let {un}n∈N be a
sequence in H1(D; C) such that supn Fεn

(un) < +∞. Then there exist a subsequence (not
relabelled) and a nonnegative Radon measure µ supported by Σ such that

µn :=
1

ωn
curl j(un) −→

n→+∞
µ strongly in

(
C0,1

0 (D)
)∗
.
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Proof. Step 1. We first assume that {un}n∈N ⊂ H1(D; C)∩C1(D). Using the notations
of the previous proof, we apply Proposition 2.2 to obtain the family of vortex balls
{Bn

i }i∈In
. Define the measure

µ̄n :=
2π

ωn

∑

i∈In

di,nδan
i
.

Since Dn ≤ O(ωn) we have |µ̄n|(D) ≤ C for a constant C independent of n. Therefore,
up to a subsequence, µ̄n ⇀ µ as n→ +∞ weakly* in the sense of measures on D for some
finite Radon measure µ. We claim that µ is nonnegative and supported by Σ. Indeed,
decompose µ̄n in its Hahn decomposition, i.e., write µ̄n = µ̄+

n − µ̄−
n where µ̄+

n and −µ̄−
n

are respectively the positive and the negative parts of µ̄n. Then we have

µ̄−
n (D) =

2πD−
n

ωn
→ 0 as n→ +∞ ,

thanks to (2.8), and the nonnegativity of µ follows. Now consider the sequence of sets
Vn := {ζ(x) ≤ ζmax − ηn} where ηn is given by (2.6). In view of (2.7), we have

µ̄+
n (Vn) =

2πD+
n

ωn
→ 0 ,

which clearly implies that suppµ ⊂ Σ.
By the compact embedding (C0

0 (D))∗ →֒ (C0,1
0 (D))∗, we deduce that µ̄n → µ strongly

in (C0,1
0 (D))∗. On the other hand, (2.4) yields

∥∥µn − µ̄n

∥∥
(C01

0
(D))∗

−→
n→+∞

0 ,

and the conclusion follows.

Step 2. We now consider the general case. In view of the strong continuity of the functional
Fεn

under strong H1-convergence, we can find a sequence {ũn}n∈N ⊂ H1(D; C)∩C1(D)
such that for every n,

‖un − ũn‖H1(D) ≤ εn , (2.17)

and

Fεn
(ũn) ≤ Fεn

(un) + 1 , (2.18)

so that supn Fεn
(ũn) < +∞.

Given an arbitrary ϕ ∈ C0,1
0 (D) satisfying |∇ϕ| ≤ 1, we estimate

∣∣∣∣
∫

D

(
j(un) − j(ũn)

)
· ∇⊥ϕdx

∣∣∣∣ ≤

≤ ‖un − ũn‖L2(D)‖∇un‖L2(D) + ‖ũn‖L2(D)‖∇(un − ũn)‖L2(D) ≤ Cεn| ln εn| ,

using (2.17) and (2.18) together with Lemma 2.1. As a consequence, setting µ̃n :=
ω−1

n curl j(ũn), we have
∥∥µn − µ̃n

∥∥
(C01

0
(D))∗

−→
n→+∞

0 . (2.19)

Applying Step 1 to {ũn}, up to a subsequence we have µ̃n → µ in (C0,1
0 (D))∗ for some

nonnegative Radon measure µ supported by Σ. Then (2.19) yields µn → µ in (C0,1
0 (D))∗

and the proof is complete.
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3. The lower bound inequality

This section is devoted to the proof of claim (ii) in Theorem 1.1 that we summarize in
the following result.

Theorem 3.1. Assume that (H1) and (1.2) hold. Let εn → 0+ be an arbitrary sequence
and let {un}n∈N ⊂ H1(D; C) be such that

µn =
1

ωn
curl j(un) −→

n→+∞
µ strongly in (C0,1

0 (D))∗ , (3.1)

for some nonnegative Radon measure µ supported by Σ. Then,

lim inf
n→+∞

Fεn
(un) ≥ I(µ) − ζmax µ(D) . (3.2)

In particular, if the left hand side in (3.2) is finite, then µ ∈ H−1(D).

Proof. We will use in this proof the notations of the previous section. Without loss of
generality, we may assume that

lim inf
n→+∞

Fεn
(un) = lim

n→+∞
Fεn

(un) < +∞ . (3.3)

Moreover, by Step 2 in the proof of Theorem 2.1, we may also assume that {un}n∈N ⊂
H1(D; C) ∩ C1(D). We shall distinguish two cases.

Case 1. We first assume that ln | ln εn| ≤ o(ωn). We consider the family of vortex balls
{Bn

i }i∈In
constructed in the proof of Proposition 2.2, and we refer to it for the notations.

Arguing as in (2.3) we obtain

Ωn

∫

D
∇⊥ζ · j(un) dx = −π| ln εn|

ζmax

∑

i∈In

di,nζ(a
n
i ) + ωn

∫

D
∇⊥ζ · j(un) dx+ o(1)

≥ −πDn| ln εn| − ω2
n〈µn, ζ〉 + o(1) (3.4)

as n→ +∞, where 〈·, ·〉 denotes the duality pairing (C0,1
0 )∗–C0,1

0 .
Combining the lower bound (2.1) with (3.4), we infer that

ω2
nFεn

(un) ≥ πDn

(
ln

(
rn

εnDn

)
− C1

)
+

1

2

∫

D\∪Bn
i

|∇un|2dx+ Ωn

∫

D
∇⊥ζ · j(un) dx

≥ πDn

(
ln

(
rn
Dn

)
− C1

)
+

1

2

∫

D\∪Bn
i

|∇un|2dx− ω2
n〈µn, ζ〉 + o(1) ,

Since rn = | ln εn|−4 andDn ≤ O(ωn) by Proposition 2.2, dividing the previous inequality
by ω2

n yields

Fεn
(un) ≥ 1

2ω2
n

∫

D\∪Bn
i

|∇un|2dx− 〈µn, ζ〉 + o(1)

≥ 1

2ω2
n

∫

D\∪Bn
i

|∇un|2dx− ζmaxµ(D) + o(1) .

In the last inequality, we have used (3.1) and the fact that µ is supported by Σ. In view
of claim (ii) in Proposition 2.1, we estimate

∫

D\∪Bn
i

|∇un|2dx ≥ 1

1 + ε
1/4
n

∫

Dεn\∪Bn
i

|j(un)|2dx .
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Next we define

j̃n(x) :=

{
ω−1

n j(un(x)) if x ∈ Dεn
\ ⋃

i∈In
Bn

i ,

0 otherwise ,
(3.5)

so that by (3.3),

O(1) ≥ Fεn
(un) ≥ 1

2

∫

D
|j̃n(x)|2dx− ζmaxµ(D) + o(1) . (3.6)

Hence there exist a subsequence εn → 0 (not relabelled) and j∗ ∈ L2(D; R2) such that
j̃n ⇀ j∗ weakly in L2(D; R2) as n→ +∞. By lower semicontinuity, we have

lim
n→+∞

Fεn
(un) ≥ 1

2

∫

D
|j∗|2dx− ζmaxµ(D) . (3.7)

It remains to tie the limit j∗ to the limit µ of the normalized weak Jacobians. To this aim
we fix ϕ ∈ D(D). Using Lemma 2.1, claim (i) in Proposition 2.1 and Hölder Inequality,
we estimate∣∣∣∣

∫

∪Bn
i

∇⊥ϕ · j(un) dx

∣∣∣∣ ≤
(
L2

(
∪i∈In

Bn
i

))1/4‖∇ϕ‖∞‖un‖L4(D)‖∇un‖L2(D)

≤ C r1/2
n | ln εn| = o(1) .

Since suppϕ ⊂ Dεn
for n large enough, we deduce that

∫

D
∇⊥ϕ · j∗ dx = lim

n→+∞

∫

D
∇⊥ϕ · j̃n dx = lim

n→+∞
ω−1

n

∫

Dεn\∪Bn
i

∇⊥ϕ · j(un) dx =

= lim
n→+∞

ω−1
n

∫

D
∇⊥ϕ · j(un) dx = − lim

n→+∞
〈µn, ϕ〉 = −

∫

D
ϕdµ .

Consequently,

curl j∗ = µ in D
′(D) . (3.8)

In particular, µ ∈ H−1(D) since j∗ ∈ L2(D; R2).
Next we introduce hµ ∈ H1

0 (D) to be the unique solution of
{
−∆hµ = µ in H−1(D) ,

hµ = 0 on ∂D .

In view of (3.8) and the definition of hµ, we have

curl
(
j∗ + ∇⊥hµ

)
= 0 in H−1(D) ,

so that we can find gµ ∈ H1(D) satisfying ∇gµ = j∗ + ∇⊥hµ. Therefore,
∫

D
|j∗|2dx =

∫

D
|∇hµ|2dx+

∫

D
|∇gµ|2dx ,

since an integration by parts yields
∫
D ∇⊥hµ · ∇gµ = 0 (using the fact hµ is constant on

∂D). Going back to (3.7), we infer that

lim
n→+∞

Fεn
(un) ≥ 1

2

∫

D
|∇hµ|2dx− ζmaxµ(D) .

On the other hand, using the Green representation of hµ, we have

1

2

∫

D
|∇hµ|2 dx =

1

2

∫∫

D×D
G(x, y) dµ(x) dµ(y) = I(µ) ,
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and the conclusion follows.

Case 2. We now treat the case ωn ≤ O(ln | ln εn|). Consider the family of vortex balls
{B̃n

j }j∈Jn
(of size sn = e−

√
ωn) constructed in Step 3 in the proof of Proposition 2.2.

Recall that this family satisfies Dsn
= Dn for n large. Combining the lower bound (2.1)

for the family {B̃n
j }j∈Jn

with (3.4), we derive

ω2
nFεn

(un) ≥ πDn

(
ln

(
sn

Dn

)
− C1

)
+

1

2

∫

D\∪B̃n
j

|∇un|2dx− ω2
n〈µn, ζ〉 + o(1) .

Then arguing as in (3.6), we infer that

Fεn
(un) ≥ 1

2

∫

D
|ĵn(x)|2dx− ζmaxµ(D) + o(1) ,

where

ĵn(x) :=

{
ω−1

n j(un(x)) if x ∈ Dεn
\ ∪j∈Jn

B̃n
j ,

0 otherwise .

As previously, up to a subsequence we have ĵn ⇀ j∗ weakly in L2(D; R2), and

lim
n→+∞

Fεn
(un) ≥ 1

2

∫

D
|j∗(x)|2dx− ζmaxµ(D) .

Now it remains to show that curl j∗ = µ in D ′(D), and then the proof can be completed
as in Step 1.

We proceed as before, taking an arbitrary ϕ ∈ D(D) and using the weak formulation
of the Jacobians. The key observation is that the contribution of the vortex balls will be
negligible provided we can restrict our choice of test functions ϕ to functions constant
in each vortex ball. This can be achieved thanks to [16, Proposition 9.6], i.e., given an
arbitrary ϕ ∈ D(D), there exists a modified function ϕ̃n which is constant on each ball
Bn

j and such that

‖ϕ− ϕ̃n‖C0,α(D) ≤ Cs1−α
n , ‖∇ϕ−∇ϕ̃n‖L1(D) ≤ Csn (3.9)

for each 0 ≤ α ≤ 1. Moreover, ϕ̃n has compact support in D for n large enough. From
(3.9) and the L2-boundedness of the normalized currents ĵn, we derive

∣∣∣∣
∫

D

(
∇⊥ϕ−∇⊥ϕ̃n

)
· ĵn dx

∣∣∣∣ ≤ ‖ĵn‖L2(D)‖∇ϕ−∇ϕ̃n‖L2(D) ≤ Cs1/2
n . (3.10)

Then (3.9), (3.10) and the strong convergence of µn to µ yield

∫

D
∇⊥ϕ · j∗ dx = lim

n→+∞

∫

D
∇⊥ϕ · ĵn dx = lim

n→+∞

∫

D
∇⊥ϕ̃n · ĵn dx =

= lim
n→+∞

ω−1
n

∫

D
∇⊥ϕ̃n · j(un) dx = lim

n→+∞

(
−

∫

D
ϕ̃ndµ+ 〈µ−µn, ϕ̃n〉

)
= −

∫

D
ϕdµ ,

and the conclusion follows.
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4. The upper bound inequality

Throughout this section we shall use the following notation. For a nonnegative Radon
measure µ ∈ H−1(D) compactly supported in D, we denote by hµ ∈ H1

0 (D) the solution
of {

−∆hµ = µ in H−1(D) ,

hµ = 0 on ∂D .
(4.1)

Using the Green representation hµ(x) =
∫
D G(x, y) dµ(y), we have

I(µ) =
1

2

∫

D
|∇hµ|2 dx ,

and the following elementary lemma holds.

Lemma 4.1. Let {µn}n∈N be a sequence of nonnegative Radon measure in H−1(D) with
compact support in D. Assume that µn ⇀ µ weakly* as measures on D as n→ +∞, for
some µ ∈ H−1(D) compactly supported in D. Then I(µn) → I(µ) if and only if hµn

→ hµ

strongly in H1(D) as n→ +∞.

We may now start the proof of claim (iii) in Theorem 1.1 in the case where the
measure µ is absolutely continuous with respect to H1 Σ.

Proposition 4.1. Assume that (H1), (H2) and (1.2) hold. Let εn → 0+ be an arbitrary
sequence. For every nonnegative Radon measure µ of the form

µ = f(x)H1 Σ (4.2)

with f ∈ L∞(Σ), there exists a sequence {un}n∈N ⊂ H1(D; C) such that

1

ωn
curl j(un) −→

n→+∞
µ strongly in (C0,1

0 (D))∗ ,

and

lim
n→+∞

Fεn
(un) = I(µ) − ζmaxµ(D) .

Proof. Without loss of generality we may assume that f 6≡ 0, the case µ = 0 being
easily true. It is well known that a measure of the form (4.2) belongs to H−1(D), see e.g.
[18, Theorem 4.7.5].

We recall that the Dirichlet Green’s function G in D defined by (1.3) satisfies

(i) G(x, y) ≥ 0 for every x ∈ D \ {y} and for every y ∈ D;
(ii) for any compact set K ⊂⊂ D there exists a constant CK such that

∣∣∣∣G(x, y) +
1

2π
ln |x− y|

∣∣∣∣ ≤ CK (4.3)

for all y ∈ K and x ∈ D.

In the three first steps below, we assume that the density function f does not vanish
on Σ, i.e., f ≥ δ H1-a.e. on Σ for some constant δ > 0. The general case is considered in
Step 4.

Step 1. We will construct a trial function using the Green function G(x, y) in the spirit
of [15]. Let γ : [0, ℓ] → Σ be an arclength parametrization of the curve Σ (so that
ℓ = H1(Σ)), and define for t ∈ [0, ℓ],

M(t) := µ
(
γ([0, t])

)
.
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Then M(·) is strictly increasing, M(0) = 0, and M(ℓ) = µ(Σ) = µ(D). Moreover M(·) is
continuous since µ ∈ H−1(D) and thus atomless.

Next we introduce for n large enough,

Dn :=

[
ωnµ(Σ)

2π

]
,

where [·] denotes the integer part. Since M is continuous and increasing, we can define
for k = 0, . . . , Dn,

tk,n := M−1
(
2πkω−1

n

)
.

Now we set for k = 0, . . . , Dn,

an
k := γ(tk,n) ,

and we claim that

Cω−1
n ≤ |an

k − an
k−1| ≤ 2πδ−1ω−1

n (4.4)

for each k ∈ {1, . . . , Dn} and for some constant C > 0 independent of n. Write Σk :=
γ([tk−1,n, tk,n]) for k = 1, . . . , Dn so that Σk is a smooth curve whose end-points are an

k

and an
k−1. By construction, we have

2πω−1
n = M(tk,n) −M(tk−1,n) = µ

(
Σk

)
≥ δH1

(
Σk

)
≥ δ|an

k − an
k−1| .

Now the curve Σ being smooth and |an
k − an

k−1| small for n large, we deduce

2πω−1
n = µ

(
Σk

)
≤ ‖f‖L∞(Σ)H1

(
Σk

)
≤ C‖f‖L∞(Σ)|an

k − an
k−1| .

Define the family of measures

µ̄n :=
2π

ωn

Dn∑

k=1

δan
k
.

We claim that µ̄n ⇀ µ weakly* as measures on D and µ̄n(D) → µ(D). To prove the
weak* convergence of µ̄n, we fix an arbitrary function ψ ∈ C0

0 (D). Observe that by (4.4)
and the smoothness of Σ, we have diam(Σk) ≤ C0ω

−1
n for a constant C0 independent of

k and n. Therefore, using µ(Σk) = 2πω−1
n we derive

∣∣∣∣
∫

D
ψ dµ−

∫

D
ψ dµ̄n

∣∣∣∣ =

∣∣∣∣
Dn∑

k=1

∫

Σk

(
ψ(x)−ψ(an

k )
)
dµ

∣∣∣∣+o(1) ≤ Cµ(D)osc(ψ,C0ω
−1
n )+o(1) ,

where

osc(ψ,C0ω
−1
n ) := sup

|x−y|≤C0ω−1
n

|ψ(x) − ψ(y)| −→
n→+∞

0 ,

and the claim is proved.
Next we must regularize the measure µ̄n. Let us define for k = 1, . . . , Dn,

fk,n(x) :=
1

πε2n
χBεn (an

k
) ,

where χBεn (an
k
) denotes the characteristic function of the ball Bεn

(an
k ). Set

fn(x) :=
2π

ωn

Dn∑

k=1

fk,n(x) and µ̂n := fn(x)L2 D . (4.5)
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Since εn = o(ω−1
n ), the functions fk,n have disjoint supports for n large by (4.4). As a

consequence, µ̂n(D) = µ̄n(D) → µ(D). Since µ̄n ⇀ µ, one may also easily check that
µ̂n ⇀ µ weakly* as measures on D.

Step 2. According to (4.1), we introduce

hn := hωnµ̂n
= ωnhµ̂n

.

Then
∫

D
|∇hn|2dx = ω2

n

∫∫

D×D
G(x, y) fn(x)fn(y) dxdy (4.6)

= 4π2
Dn∑

i,j=1

∫∫

D×D
G(x, y)fi,n(x)fj,n(y) dxdy . (4.7)

We need to estimate the integral term in the right handside of (4.6). We proceed as in
[1] and we provide some details for the reader’s convenience. Let N0 ⊂⊂ D be a small
tubular neighborhood of Σ. Let 0 < α < 1 be given small, and set ∆α := {(x, y) ∈
D ×D : |x− y| < α}. Since G is continuous on (N0 ×N0) \ ∆α, and the support of µ̂n

lies in N0 for n large, by the weak* convergence of µ̂n to µ we have

Iα := lim
n→+∞

∫∫

(D×D)\∆α

G(x, y) fn(x)fn(y)dxdy =

=

∫∫

(N0×N0)\∆α

G(x, y)dµ(x)dµ(y) ≤
∫∫

D×D
G(x, y)dµ(x)dµ(y) = 2I(µ) . (4.8)

Near the diagonal ∆α we split the sum in (4.7) in two terms. Using (4.3) we estimate

IIn
α := 4π2

Dn∑

i=1

∫∫

∆α

G(x, y) fi,n(x)fi,n(y)dxdy =

= 4

Dn∑

i=1

∫∫

B1(0)×B1(0)

G (an
i + εnz1, a

n
i + εnz2) dz1dz2

≤ 4

Dn∑

i=1

∫∫

B1(0)×B1(0)

(
1

2π
ln

(
1

εn|z1 − z2|

)
+ C

)
dz1dz2

≤ 2πDn| ln εn| +O(ωn) , (4.9)

and

IIIn
α := 4π2

∑

0<|an
i −an

j |<α

∫∫

∆α

G(x, y) fi,n(x) fj,n(y)dxdy ≤

≤ C
∑

0<|an
i −an

j |<α

∣∣ln |an
i − an

j |
∣∣ . (4.10)

By the smoothness of Σ and (4.4), there exists a constant c0 > 0 independent of n such
that for every i 6= j and every (x, y) ∈ Σi × Σj ,

|an
i − an

j | ≥ c0|x− y| .
Since µ ∈ H−1(D) and it is supported by Σ, the map (x, y) 7→

∣∣ ln(c0|x− y|)
∣∣ belongs to

L1(Σ × Σ, µ⊗ µ). Therefore, by the Mean Value Theorem, for every i 6= j we can find a
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pair (xn
i , y

n
j ) ∈ Σi × Σj such that

ω2
n

4π2

∫∫

Σi×Σj

∣∣ ln(c0|x− y|)
∣∣dµ(y)dµ(x) =

∣∣ ln(c0|xn
i − yn

j |)
∣∣ ,

noticing that 4π2ω−2
n = µ(Σi)µ(Σj). Applying the previous inequality to (xn

i , y
n
j ) we

deduce from (4.10) that for n large,

IIIn
α ≤ C

∑

0<|an
i −an

j |<α

∣∣ ln(c0|xn
i − yn

j |)
∣∣

≤ Cω2
n

∑

0<|an
i −an

j |<α

∫∫

Σi×Σj

∣∣ ln(c0|x− y|)
∣∣dµ(y)dµ(x)

≤ Cω2
n

∫∫

(Σ×Σ)∩∆2α

∣∣ ln(c0|x− y|)
∣∣dµ(y)dµ(x) . (4.11)

On the other hand µ ∈ H−1(D) so it is atomless, and thus µ ⊗ µ does not charge
{x = y}∩D×D. Consequently the integral term in the right handside of (4.11) vanishes
as α→ 0+. Hence,

lim
α→0+

lim sup
n→+∞

ω−2
n IIIn

α = 0 . (4.12)

Gathering (4.8), (4.9) and (4.12) yields

lim sup
n→+∞

( ∫∫

D×D
G(x, y) fn(x)fn(y) dxdy − 2πDn| ln εn|ω−2

n

)
≤

≤ lim sup
α→0+

(
Iα + lim sup

n→+∞

(
(IIn

α − 2πDn| ln εn|)ω−2
n + ω−2

n IIIn
α

))
≤ 2I(µ) ,

and in view of (4.6), we conclude that

1

2

∫

D
|∇hn|2dx ≤ πDn | ln εn| + ω2

nI(µ) + o(ω2
n) . (4.13)

Step 3. We shall now define a complex-valued order parameter un associated to hn. We
proceed as follows. Since

curl
(
−∇⊥hn

)
= −∆hn = ωnfn (4.14)

is supported by ∪kBεn
(an

k ), we may locally define a phase φn in D \ ∪kBεn
(an

k ) by

∇φn(x) = −∇⊥hn(x) for x ∈ D \ ∪kBεn
(an

k ) .

In fact, since the balls Bεn
(an

k ) are pairwise disjoint (assuming n large enough) and the
mass of ωnfn is quantized in each such ball, it is easy to show that φn is single-valued
modulo 2π, i.e., for any smooth Jordan curve Θ inside D \ ∪kBεn

(an
k ),

1

2π

∫

Θ

∇φn · τ ∈ Z ,

where τ : Θ → S
1 is any smooth vector field tangent to Θ. Hence exp(iφn(x)) is well

defined for every x ∈ D \ ∪kBεn
(an

k ).
Then consider a smooth cut-off function ρ : R → [0, 1] such that ρ(t) ≡ 1 for t ≥ 2,

and ρ(t) ≡ 0 for t ≤ 1. Define

ρn(x) :=





ρ

( |x− an
k |

εn

)
if x ∈ B2εn

(an
k ) for some k = 1, . . . , Dn ,

1 otherwise ,

(4.15)



20 S. Alama, L. Bronsard & V. Millot

and observe that

Eεn
(ρn,D) = O(ωn) . (4.16)

Then set

un(x) :=

{
ρn(x)eiφn(x) for x ∈ D \ ∪kBεn

(an
k ) ,

0 otherwise .

One may easily check that un ∈ H1(D; C). We claim that

µn = ω−1
n curl j(un) −→

n→+∞
µ strongly in (C0,1

0 (D))∗ . (4.17)

A simple computation gives

j(un) = ρ2
n∇φn = −ρ2

n∇⊥hn a.e. in D .

Given ϕ ∈ C0,1
0 (D) satisfying |∇ϕ| ≤ 1, we deduce from (4.14) and the previous indentity,

〈µn, ϕ〉 =
1

ωn

∫

D
∇ϕ · ∇hndx+

1

ωn

∫

D
(ρ2

n − 1)∇ϕ · ∇hndx

= 〈µ̂n, ϕ〉 +
1

ωn

∫

∪kB2εn (an
k
)

(ρ2
n − 1)∇ϕ · ∇hndx . (4.18)

In view of the compact embedding (C0
0 (D))∗ →֒ (C0,1

0 (D))∗, µ̂n → µ strongly in
(C0,1

0 (D))∗. Hence we can estimate using (4.13),

|〈µn − µ, ϕ〉| ≤
∥∥µ̂n − µ

∥∥
(C0,1

0
(D))∗

+ ω−1
n

(
L2(∪kB2εn

(an
k ))

)1/2‖∇hn‖L2(D) ≤

≤
∥∥µ̂n − µ

∥∥
(C0,1

0
(D))∗

+ Cεn| ln εn|1/2 −→
n→+∞

0 , (4.19)

and (4.17) is proved.
We now compute the energy Fεn

(un). We infer from (4.13) and (4.16) that

Eεn
(un,D) = Eεn

(ρn,D) +
1

2

∫

D\∪kBεn (an
k
)

ρ2
n|∇φn|2dx ≤

≤ 1

2

∫

D
|∇hn|2 +O(ωn) ≤ πDn | ln εn| + ω2

nI(µ) + o(ω2
n) , (4.20)

and it remains to evaluate the interaction with the rotation potential. First (4.17) yields

Ωn

∫

D
∇⊥ζ · j(un) dx =

| ln εn|
2ζmax

∫

D
∇⊥ζ · j(un) dx− ω2

n〈µn, ζ〉 =

=
| ln εn|
2ζmax

∫

D
∇⊥ζ · j(un) dx− ζmaxµ(D)ω2

n + o(ω2
n) .

Arguing as in (4.18)-(4.19) we derive

∫

D
∇⊥ζ · j(un) dx = −ωn〈µ̂n, ζ〉 +O(εnωn| ln εn|1/2) =

= −2π

Dn∑

k=1

1

πε2n

∫

Bεn (an
k
)

ζ(x)dx+ o(εn| ln εn|3/2) = −2πDnζmax + o(εn| ln εn|3/2) ,

and consequently,

Ωn

∫

D
∇⊥ζ · j(un) dx = −πDn| ln εn| − ζmaxµ(D)ω2

n + o(ω2
n) . (4.21)



Γ-convergence of 2D Ginzburg-Landau functionals 21

Combining (4.20) with (4.21) finally leads to

Fεn
(un) ≤ I(µ) − ζmaxµ(D) + o(1) .

In view of Theorem 3.1, the conclusion follows taking the lim sup as n → +∞ in the
previous inequality.

Step 4. We now consider the case where the density f is allowed to vanish. Let {δk} ⊂ R

be a sequence decreasing to 0 as k → +∞. Then for k ∈ N, we consider the measure

µk := µ+ δkH1 Σ =
(
f(x) + δk

)
H1 Σ .

By monotone convergence, one has

I(µk) −→
k→+∞

I(µ) and µk(D) −→
k→+∞

µ(D) . (4.22)

Obviously µk also converges to µ strongly in (C0,1
0 (D))∗. Applying Step 1 to Step 3, we

find for every k ∈ N a sequence {vk
n}n∈N ⊂ H1(D; C) such that ω−1

n curl j(vk
n) → µk

strongly in (C0,1
0 (D))∗ and Fεn

(vk
n) → I(µk) − ζmaxµk(D) as n → +∞. Hence for every

k ∈ N, we can find Nk ∈ N such that for every n ≥ Nk,

‖ω−1
n curl j(vk

n) − µ‖(C0,1
0

(D))∗ ≤ 2−k

and
∣∣Fεn

(vk
n) − I(µ) + ζmaxµ(D)

∣∣ ≤ 2−k .

Moreover we can assume without loss of generality that the sequence of integers {Nk}k∈N

is strictly increasing. Therefore given any integer n large enough, there is a unique kn ∈ N

such that Nkn
≤ n < Nkn+1, and kn → +∞ as n→ +∞. We may then define un := vkn

n .
By construction, the sequence {un} satisfies the required properties.

To consider the case of a general measure µ in H−1(D), we shall need the following
continuity lemma.

Lemma 4.2. Let µ be a nonnegative Radon measure in H−1(D) such that suppµ ⊂⊂ D.
For ξ ∈ R

2, let τξµ be the translated measure defined by

τξµ(B) = µ(−ξ +B) for any Borel set B ⊂ R
2 .

Then there exists 0 < δ < dist (suppµ, ∂D) such that τξµ ∈ H−1(D) for every ξ ∈ Bδ(0),
and the mapping ξ 7→ hτξµ ∈ H1(D) is strongly continuous on Bδ(0).

Proof. For δ > 0 we set D̃δ := {x ∈ R
2 , dist (x,D) < 2δ}. Then choose δ > 0 such that

∂D̃δ is smooth and 2δ < dist (suppµ, ∂D). For every ξ ∈ Bδ(0) we have D ⊂⊂ ξ + D̃δ,
supp τξµ = ξ + suppµ ⊂ D and dist (ξ + suppµ, ∂D) > δ.

Obviously µ ∈ H−1(D̃δ) and we can set h̄ ∈ H1(D̃δ) to be the unique solution of
{
−∆h̄ = µ in D̃δ ,

h̄ = 0 on D̃δ .

By our choice of δ, the function h̄ is smooth in the δ-neighborhood of ∂D. Next, for
ξ ∈ Bδ(0) we denote by h̄ξ ∈ H1(D) the function defined by h̄ξ := h̄(x − ξ) for x ∈ D.
Observe that h̄ξ ∈ H1(D) and −∆h̄ξ = τξµ in D. Hence τξµ ∈ H−1(D).

Now consider a sequence {ξn} ⊂ Bδ(0) such that ξn → ξ ∈ Bδ(0) as n→ +∞. Denote
hn := hτξn µ. We have ∆(h̄ξn

−hn) = 0 in D and (h̄ξn
−hn) = h̄(x−ξn) on ∂D. By standard
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elliptic estimates, (h̄ξn
− hn) strongly converges in H1(D) to the harmonic function in

D equal to h̄(x − ξ) on ∂D, that is h̄ξ − hτξµ. On the other hand, h̄ξn
→ h̄ξ strongly

in H1(D) by strong continuity of translations in H1. Therefore hn → hτξ
strongly in

H1(D), and the proof is complete.

Theorem 4.1. Assume that (H1), (H2) and (1.2) hold. Let εn → 0+ be an arbitrary
sequence. For every nonnegative Radon measure µ ∈ H−1(D) supported by Σ, there exists
a sequence {un}n∈N ⊂ H1(D; R2) such that

1

ωn
curl j(un) −→

n→+∞
µ strongly in (C0,1

0 (D))∗ ,

and

lim
n→+∞

Fεn
(un) = I(µ) − ζmaxµ(D) .

Proof. We shall prove that for any nonnegative Radon measure µ ∈ H−1(D) supported
by Σ, there exists a sequence of nonnegative Radon measures {µk}k∈N of the form (4.2)
such that µk → µ strongly in (C0,1

0 (D))∗, µk(D) → µ(D) and

I(µk) → I(µ) as k → +∞ . (4.23)

Assuming that such a sequence exists, Proposition 4.1 yields for each k a sequence
{vk

n}n∈N ⊂ H1(D; R2) such that ω−1
n curl j(vk

n) → µk strongly in (C0,1
0 (D))∗ and

Fεn
(vk

n) → I(µk) − ζmaxµk(D) as n → +∞. It then suffices to apply the diagonal argu-
ment used in the proof of Proposition 4.1, Step 4, to construct the required sequence.

Step 1. We first consider the case where Σ is a segment in D. Without loss of generality
we may assume that Σ = [a, b] × {0} ⊂⊂ D for some a, b ∈ R with a < b. Assume in
addition that Σ′ := suppµ ⊂⊂]a, b[×{0}. We shall regularize the measure µ using the
following standard procedure. Consider a smooth function ̺ ∈ C∞(R) such that ̺ ≥ 0,
supp ̺ ⊂ [−1, 1] and

∫
R
̺ = 1. For a positive integer k and x = (x1, x2) ∈ R

2, we
introduce ̺k(x) := k̺(kx1), and we define

gk(x) :=

∫

Σ′

̺k(x− y) dµ(y) .

By construction, the function gk is nonnegative, smooth and supported by [a, b] × R for
k large enough. Next we define for k large the measure

µk := gk(x)H1 Σ .

One may easily check that µk ∈ H−1(D), µk(D) → µ(D) and that µk ⇀ µ weakly* in
the sense of measures on D as k → +∞. In particular, µk → µ strongly in (C0,1

0 (D))∗.
We claim that (4.23) holds. Indeed, using Fubini’s theorem we first derive that

I(µk) =
1

2

∫∫

Σ×Σ

G(z, z′) dµk(z)dµk(z′) =

=
1

2

∫∫

Σ′×Σ′

( ∫∫

(Σ∩B 1
k

(x))×(Σ∩B 1
k

(y))

G(z, z′)̺k(z−x)̺k(z′−y) dH1
zdH1

z′

)
dµ(x)dµ(y) .
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Next we observe that for k large enough, we have Σ ∩ B 1
k
(x) = (x1, 0) + Jk with Jk :=

(−1
k ,

1
k )×{0} for every x = (x1, x2) ∈ Σ′. Changing variables in (z, z′) and using Fubini’s

theorem again, we obtain

I(µk) =
1

2

∫∫

Σ′×Σ′

( ∫∫

Jk×Jk

G(x+ ξ, y + ξ′)̺k(ξ)̺k(ξ′) dH1
ξdH1

ξ′

)
dµ(x)dµ(y)

=
1

2

∫∫

Jk×Jk

( ∫∫

Σ′×Σ′

G(x+ ξ, y + ξ′) dµ(x)dµ(y)

)
̺k(ξ)̺k(ξ′) dH1

ξdH1
ξ′

=
1

2

∫∫

Jk×Jk

( ∫∫

D×D
G(x, y) d(τξµ)(x)d(τξ′µ)(y)

)
̺k(ξ)̺k(ξ′) dH1

ξdH1
ξ′ .

From the Green representation of hτξµ we infer that for every (ξ, ξ′) ∈ Jk × Jk,

∫∫

D×D
G(x, y) d(τξµ)(x)d(τξ′µ)(y) =

∫

D

(
∇hτξµ

)
·
(
∇hτξ′µ

)
dx .

Then from Lemma 4.2 we deduce that the function

Θ : (ξ, ξ′) 7→
∫

D

(
∇hτξµ

)
·
(
∇hτξ′µ

)
dx

is continuous on Bδ(0) ×Bδ(0) for some 0 < δ < dist (Σ, ∂D). Therefore,

lim
k→+∞

I(µk) = lim
k→+∞

1

2

∫∫

Jk×Jk

Θ(ξ, ξ′)̺k(ξ)̺k(ξ′) dH1
ξdH1

ξ′ =
1

2
Θ(0, 0) = I(µ) ,

and (4.23) is proved.

Step 2. We now consider the case where Σ is a smooth embedded arc. We further assume
that there exists a C1-diffeomorphism Φ : D → D such that Φ(x) = x in a neighborhood
of ∂D and Σ̄ := Φ(Σ) is a segment compactly included in D. Let µ be a nonnegative
Radon measure in H−1(D) whose support is compactly included in the relative interior
of Σ. Denote by µ̄ the push-forward of µ through Φ, i.e., µ̄ := Φ#µ. Then supp µ̄ is
compactly included in the relative interior of Σ̄ and µ̄ ∈ H−1(D). Indeed, we easily check
that

I(µ̄) =
1

2

∫∫

Σ̄×Σ̄

G(x, y) dµ̄(x)dµ̄(y) =
1

2

∫∫

Σ×Σ

G
(
Φ(x),Φ(y)

)
dµ(x)dµ(y)

≤ 1

4π

∫∫

Σ×Σ

ln
∣∣Φ(x) − Φ(y)

∣∣ dµ(x)dµ(y) + C

≤ 1

4π

∫∫

Σ×Σ

ln |x− y| dµ(x)dµ(y) + C < +∞ ,

where we have used (4.3) and the constant C only depends on Σ, µ(Σ) and ‖∇Φ‖L∞(D).
Therefore we can apply Step 1 to µ̄ to find a sequence of measures {µ̄k}k∈N of the

form (4.2) such that supp µ̄k ⊂ Σ̄, µ̄k(D) → µ̄(D), µ̄k ⇀ µ̄ weakly* as measures on D,
and I(µ̄k) → I(µ̄) as k → +∞. Then we set µk := (Φ−1)#µ̄k for every integer k. Observe
that µk is of the form (4.2). Indeed, writing µ̄k = ḡk(x)H1 Σ̄ with ḡk ∈ C0(Σ̄), the area
formula (see e.g. [5]) yields

µk = ḡk ◦ Φ(x)|∇τΦ(x)|H1 Σ ,

where ∇τΦ denotes the tangential gradient of Φ along Σ. Then one may check that
µk(D) → µ(D), µk ⇀ µ weakly* as measures on D as k → +∞.
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We claim that (4.23) holds. First write

I(µk) =
1

2

∫∫

Σ̄×Σ̄

G
(
Φ−1(x),Φ−1(y)

)
dµ̄k(x)dµ̄k(y)

=
1

2

∫∫

Σ̄×Σ̄

S
(
Φ−1(x),Φ−1(y)

)
dµ̄k(x)dµ̄k(y)

+
1

4π

∫∫

Σ̄×Σ̄

ln

(
1

|Φ−1(x) − Φ−1(y)|

)
dµ̄k(x)dµ̄k(y)

= : Ik + IIk , (4.24)

where S denotes the regular part of the Green function G, i.e.,

S(x, y) := G(x, y) +
1

2π
ln |x− y|

(which is a locally smooth function on D ×D). Since µ̄k converges weakly* as measures
to µ̄, we have

µ̄k ⊗ µ̄k ⇀ µ̄⊗ µ̄ weakly* as measures on D ×D , (4.25)

and we deduce that

lim
k→+∞

Ik =
1

2

∫∫

Σ̄×Σ̄

S
(
Φ−1(x),Φ−1(y)

)
dµ̄(x)dµ̄(y) =

1

2

∫∫

Σ×Σ

S(x, y) dµ(x)dµ(y) .

(4.26)
Next we consider a decreasing sequence αn → 0. For every integer n, we introduce

a smooth cut-off function χn ∈ C∞(D × D) such that 0 ≤ χn ≤ 1, χn(x, y) = 0 if
|Φ−1(x) − Φ−1(y)| ≥ αn, and χn(x, y) = 1 if |Φ−1(x) − Φ−1(y)| ≤ αn+1. Note since
µ̄ ∈ H−1(D), the measure µ̄ has no atoms, and hence µ̄⊗ µ̄ does not charge the diagonal
{x = y} ∩ D ×D. Consequently, χn → 0 µ̄⊗ µ̄–a.e. in D ×D. Then write

IIk =
1

4π

∫∫

Σ̄×Σ̄

χn(x, y) ln

(
1

|Φ−1(x) − Φ−1(y)|

)
dµ̄k(x)dµ̄k(y) +

+
1

4π

∫∫

Σ̄×Σ̄

(1 − χn(x, y)) ln

(
1

|Φ−1(x) − Φ−1(y)|

)
dµ̄k(x)dµ̄k(y) =: IIIn

k + IV n
k .

(4.27)

By the choice of χn and (4.25), we have for every n,

lim
k→+∞

IV n
k =

1

4π

∫∫

Σ̄×Σ̄

(1 − χn(x, y)) ln

(
1

|Φ−1(x) − Φ−1(y)|

)
dµ̄(x)dµ̄(y) .

Next observe that

C1

|x− y| ≤
1∣∣Φ−1(x) − Φ−1(y)

∣∣ ≤ C2

|x− y| for every (x, y) ∈ D ×D, x 6= y , (4.28)

for some constants C1 > 0 and C2 > 0 independent of x and y. Since I(µ̄) < +∞,
estimate (4.3) tells us that the function ln |x− y| belongs to L1(D×D, µ̄⊗ µ̄). Therefore
we may apply the dominated convergence theorem to derive

lim
n→+∞

lim
k→+∞

IV n
k =

1

4π

∫∫

Σ̄×Σ̄

ln

(
1

|Φ−1(x) − Φ−1(y)|

)
dµ̄(x)dµ̄(y) . (4.29)
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Let us now treat the term IIIn
k . We first deduce from (4.28) that

1

4π

∫∫

Σ̄×Σ̄

χn(x, y) ln

(
C1

|x− y|

)
dµ̄k(x)dµ̄k(y) ≤ IIIn

k ≤

≤ 1

4π

∫∫

Σ̄×Σ̄

χn(x, y) ln

(
C2

|x− y|

)
dµ̄k(x)dµ̄k(y) . (4.30)

Since the function

G(x, y)− χn(x, y)

2π
ln

(
Ci

|x− y|

)
= S(x, y) +

1 − χn(x, y)

2π
ln |x− y| − χn(x, y)

2π
ln(Ci)

is locally smooth in D ×D and I(µ̄k) → I(µ̄), we infer from (4.25) that

lim
k→+∞

1

4π

∫∫

Σ̄×Σ̄

χn(x, y) ln

(
Ci

|x− y|

)
dµ̄k(x)dµ̄k(y) =

1

4π

∫∫

Σ̄×Σ̄

χn(x, y) ln

(
Ci

|x− y|

)
dµ̄(x)dµ̄(y) for i = 1, 2 . (4.31)

Using that χn → 0 µ̄ ⊗ µ̄–a.e. and ln |x − y| belongs to L1(D × D, µ̄ ⊗ µ̄), we infer as
previously that

lim
n→+∞

1

4π

∫∫

Σ̄×Σ̄

χn(x, y) ln

(
Ci

|x− y|

)
dµ̄(x)dµ̄(y) = 0 for i = 1, 2 . (4.32)

Combining (4.30), (4.31) and (4.32) we derive

lim
n→+∞

lim inf
k→+∞

IIIn
k = lim

n→+∞
lim sup
k→+∞

IIIn
k = 0 ,

which yields together with (4.27) and (4.29),

lim
k→+∞

IIk =
1

4π

∫∫

Σ̄×Σ̄

ln

(
1

|Φ−1(x) − Φ−1(y)|

)
dµ̄(x)dµ̄(y)

=
1

4π

∫∫

Σ×Σ

ln

(
1

|x− y|

)
dµ(x)dµ(y) . (4.33)

Then (4.23) follows gathering (4.24), (4.26) and (4.33).

Step 3. We now consider the general Σ case. If Σ is an embedded arc, we may assume
without loss of generality that Σ ⊂ Σ′ for some C2–Jordan curve Σ′ compactly included
in D. Hence it suffices to consider the case where Σ is a Jordan curve. We shall use the
following lemma. Its proof is postponed at the end of the section.

Lemma 4.3. Assume that Σ is a C2-Jordan curve. Then there exists δ1 > 0 such that
for every x0 ∈ Σ, there exists a C1-diffeomorphism Φ : D → D satisfying Φ(x) = x in a
neighborhood of ∂D and such that Φ(Σ∩Bδ1

(x0)) is a segment compactly included in D.

Now let γ : [0, 1] → Σ be a constant speed parametrization of Σ. Let N be a positive
integer to be chosen and set tn = n/N for n = 0, . . . , N , and

Σn := γ([tn−1, tn]) for n = 1, . . . , N .

We choose N in such a way that diam(Σn) ≤ δ1 for each n, where the constant δ1 is given
by Lemma 4.3. Setting xn = γ((tn−1 + tn)/2) for n = 1, . . . , N , we can apply Lemma 4.3
to each xn to find a C1-diffeomorphism Φn : D → D such that Φn(Σn) is a segment
compactly included in D, and Φn(x) = x in a neighborhood of ∂D.
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Let µ be an arbitrary nonnegative Radon measure in H−1(D) supported by Σ. Con-
sider a decreasing sequence αk → 0 and define for k large enough,

Σk
n := γ([tn−1 + αk, tn − αk]) , µk

n := µ Σk
n for n = 1, . . . , N .

Oviously µk
n ∈ H−1(D) with suppµk

n ⊂ Σk
n. Applying Step 2 for each n and k, we

find a sequence of measures {µk
n,m}m∈N of the form (4.2) such that suppµk

n,m ⊂ Σn,
µk

n,m(D) → µk
n(D), µk

n,m ⇀ µk
n weakly* as measures on D, and I(µk

n,m) → I(µk
n) as

m→ +∞. Define the measures

µk
m :=

N∑

n=1

µk
n,m and µk :=

N∑

n=1

µk
n = µ (∪nΣk

n) .

Then µk
m(D) → µk(D) and µk

m ⇀ µk weakly* as measures on D as m→ +∞. In addition,
from Lemma 4.1 we infer that hµk

n,m
→ hµk

n
strongly in H1(D) for every integers n and

k. Hence

I(µk
m) =

1

2

N∑

i,j=1

∫∫

D×D
G(x, y) dµk

i,mdµ
k
j,m =

1

2

N∑

i,j=1

∫

D
∇hµk

i,m
· ∇hµk

j,m
dx

−→
m→+∞

1

2

N∑

i,j=1

∫

D
∇hµk

i
· ∇hµk

j
dx =

1

2

N∑

i,j=1

∫∫

D×D
G(x, y) dµk

i dµ
k
j = I(µk) .

Next recall that µ is atomless. Hence, by monotone convergence we have µk(D) →
µ(D) and I(µk) → I(µ) as k → +∞, as well as the weak* convergence of µk to µ.
Consequently,

lim
k→+∞

lim
m→+∞

|µk
m(D) − µ(D)| = lim

k→+∞
lim

m→+∞
|I(µk

m) − I(µ)|

= lim
k→+∞

lim
m→+∞

‖µk
m − µ‖(C0,1

0
(D))∗ = 0

(here we use again the compact embedding (C0
0 (D))∗ →֒ (C0,1

0 (D))∗), and the conclusion
follows for a suitable diagonal sequence µk = µk

mk
.

Proof of Lemma 4.3. By assumption on Σ, there exists δ0 > 0 such that for every x0 ∈ Σ,
Σ∩B2δ0

(x0) is the graph of a C2-function and B2δ0
(x0) ⊂ D. Now fix x0 ∈ Σ and write

every x ∈ D as x = x0 + sτ + tτ⊥ where τ denotes a unit tangent vector to Σ at x0.
Then Σ ∩ B2δ0

(x0) = {x0 + sτ + f(s)τ⊥ , s ∈ [smin, smax]} for some 0 > smin ≥ −2δ0,
0 < smax ≤ 2δ0, and a C2-function f : [smin, smax] → R satisfying f(0) = f ′(0) = 0. Since
Σ is C2, there exists a constant κ > 0 which only depends on Σ such that |f ′′(s)| ≤ κ
for every s ∈ [smin, smax]. Hence we may choose δ0 smaller if necessary (uniformly with
respect to x0) in such a way that |f ′| ≤ 1. Then smin ≤ −δ0, smax ≥ δ0 and Σ ∩ Bδ(x0)
is still a connected arc for any δ ≤ 2δ0.

Set δ1 := δ0/(2 + κ). We claim that Σ∩Bδ1
(x0) satisfies the requirement. Indeed, we

may construct a C1-diffeomorphism Φ : D → D as follows. Consider a smooth cut-off
function χ : R

2 → R such that 0 ≤ χ ≤ 1, χ(x) = 1 if |x| ≤ δ1, χ(x) = 0 if |x| ≥ 2δ0 and
|∇χ| ≤ δ−1

0 . Then we set for x ∈ D,

Φ(x) := x− χ(x− x0)f
(
(x− x0) · τ

)
τ⊥ .

The reader may check that Φ maps D into D, Φ is one-to-one and defines a C1-
diffeomorphism. Moreover Φ(Σ ∩ Bδ1

(x0)) = {x0 + sτ , −δ1 ≤ s ≤ δ1} is a segment
compactly included in D.
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Proof of Corollary 1.1. Step 1. For any nonnegative Radon measure µ supported by
Σ we have

I(µ) − ζmaxµ(D) ≥ I∗(µ(D))2 − ζmaxµ(D) , (4.34)

and equality holds if and only if µ = λµ∗ for some constant λ ≥ 0. We recall that µ∗
is the unique minimizer of I among all probability measures supported by Σ and that
I∗ := I(µ∗). The existence and uniqueness of µ∗ is classical, and we refer to [14] for
further details. Optimizing (4.34) with respect to λ for measures of the form µ = λµ∗, we
derive that ζmax

2I∗
µ∗ is the unique minimizer of µ 7→ I(µ)− ζmaxµ(D) over all nonnegative

Radon measures supported by Σ.

Step 2. Let εn → 0+ be an arbitrary sequence. The existence of a minimizer un of Fεn

is classical and follows from standard arguments based on coercivity and lower semi-
continuity properties of Fεn

. We first observe that Fεn
(un) ≤ Fεn

(1) = 0. Hence, by
Theorem 1.1, there exists a subsequence {εnk

} such that

1

ωnk

j(unk
) → µ0 strongly in (C0,1

0 (D))∗ as k → +∞,

for some nonnegative Radon measure µ0 ∈ H−1(D) supported by Σ. Moreover,

lim inf
k→+∞

Fεnk
(unk

) ≥ I(µ0) − ζmaxµ0(D) . (4.35)

On the other hand, by Theorem 1.1, any nonnegative Radon measure µ ∈ H−1(D)
supported by Σ can be strongly approximated in (C0,1

0 (D))∗ by some sequence {ω−1
nk
j(vk)}

with {vk} ⊂ H1(D; C) satisfying

lim
k→+∞

Fεnk
(vk) = I(µ) − ζmaxµ(D) .

Since Fεnk
(unk

) ≤ Fεnk
(vk) we infer that µ0 minimizes µ 7→ I(µ) − ζmaxµ(D) over all

nonnegative Radon measures supported by Σ. Consequently, µ0 = ζmax

2I∗
µ∗ and the lim inf

in (4.35) is actually a limit. Then the result along the full sequence {εn} follows from a
standard argument on the uniqueness of the limit.

5. Γ–convergence analysis for annular domains

In this section we briefly show how to extend the above techniques to the case of a
multiply connected domain. The method we outline here may be applied for any finite
number of holes (see [2]), but for simplicity we restrict to domains which are topological
annuli. Let D denote a simply connected domain in R

2 with smooth boundary, and
B ⊂⊂ D a smooth, simply connected domain compactly contained inside D. Then let
A := D \ B. For u ∈ H1(A; C) we define the functional

Jε(u) :=

∫

A

{
1

2
|∇u|2 +

1

4ε2
(|u|2 − 1)2 − ΩεV (x) · j(u)

}
dx .

Here the given vector field V : R
2 → R

2 is assumed (for simplicity) to be locally Lipschitz
continuous. We are interested in the asymptotic behavior of Jε as ε→ 0, with an angular
speed Ωε as in (1.2).

5.1. Asymptotic vorticity of the hole

For multiply connected domains, the highest order term in an expansion of the minimal
energy is partially due to the turning of the phase of a minimizer around the holes. The
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first step in studying vortices in the interior is to identify the asymptotic vorticity of the
hole, and then split the energy into contributions from the hole and from the interior. To
this purpose we first study the minimization of the functional Jε over S

1–valued maps.
Observe that for S

1–valued maps, the functional Jε only depends on the angular speed
and not anymore on ε itself, i.e., for every u ∈ H1(A; S1),

Jε(u) = HΩ(u) :=

∫

A

{
1

2
|∇u|2 − ΩV (x) · j(u)

}
dx ,

with Ω = Ωε. We are therefore interested in minimizing HΩ over the class H1(A; S1),
and here Ω > 0 could be any positive parameter. It is well known that maps in H1(A; S1)
are classified by their topological degree, i.e., their winding number around the hole B.
Hence, minimizing first in each homotopy class and then choosing the lowest energy level,
one reaches the minimum of the energy of HΩ, i.e.,

minHΩ = min
d∈Z

g(d,Ω) , (5.1)

where

g(d,Ω) := min
{
HΩ(u) : u ∈ H1(A; S1) , deg u = d

}
. (5.2)

Concerning the minimization problem (5.2), we have the following result.

Proposition 5.1. For every d ∈ Z, the minimization problem (5.2) admits a unique
solution ud up to a (complex) multiplicative constant of modulus one. Moreover,

g(d,Ω) =
1

2

∫

A

{
|∇Φd|2 − Ω2|V |2

}
dx , (5.3)

where Φd is the unique solution of the linear equation




−∆Φd = Ω curlV in A ,

Φd = 0 on ∂D ,

Φd = const. on ∂B ,
∫

∂B

∂Φd

∂ν
= 2πd− Ω

∫

∂B
V · τ

(5.4)

Proof. We follow here some of the arguments in [6, Chap. 1], and we provide some
details for the reader conveniance.

Step 1. We claim that for any u ∈ H1(A; S1) such that deg u = d, we have

HΩ(u) ≥ 1

2

∫

A

{
|∇Φd|2 − Ω2|V |2

}
dx .

Indeed, we first observe that curl j(u) = 0 since u is S
1-valued. On the other hand,

∇⊥Φd + ΩV is also curl-free and
∫

∂B

(
j(u) −∇⊥Φd − ΩV

)
· τ = 2πd−

∫

∂B

∂Φd

∂ν
− Ω

∫

∂B
V · τ = 0 ,

so that we can find a scalar function H ∈ H1(A) such that j(u) = ∇H + ∇⊥Φd + ΩV .
Since u is S

1-valued, we have |∇u|2 = |j(u)|2, and thus

HΩ(u) =
1

2

∫

A

{
|j(u) − ΩV |2 − Ω2|V |2

}
dx

=
1

2

∫

A

{
|∇Φd|2 − Ω2|V |2

}
dx+

1

2

∫

A
|∇H|2dx+

∫

A
∇⊥Φd · ∇H dx .
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Then, using the fact that the function Φd is constant on ∂A, an integration by parts
yields

∫
A ∇⊥Φd · ∇H dx = 0 and the claim follows.

Step 2. We claim that there exists ud ∈ H1(A; S1) such that deg ud = d and

j(ud) = ∇⊥Φd + ΩV .

Indeed, since curl(∇⊥Φd + ΩV ) = 0 and

1

2π

∫

∂B
(∇⊥Φd + ΩV ) · τ = d ∈ Z ,

we may locally define a scalar function ψ in A such that

∇ψ = ∇⊥Φd + ΩV .

Then ud := exp(iψ) is well defined and satisfies the required properties. Clearly the
construction of ud is unique modulo a constant phase, and the proof is complete.

In order to solve problem (5.1), it now suffices to express (5.3) explicitely in terms of
the integer d. To this purpose, we first introduce the solution ξ of the linear problem





∆ξ = 0 in A ,

ξ = 0 on ∂D ,

ξ = 1 on ∂B .
(5.5)

The function ξ is smooth in A and 0 ≤ ξ ≤ 1 by the maximum principle. Moreover,
the Dirichlet energy of ξ is the so-called H1-capacity of B inside D which we denote by
cap(B), i.e.,

cap(B) :=

∫

A
|∇ξ|2 dx = −

∫

∂B

∂ξ

∂ν
> 0 . (5.6)

Next we consider the unique solution ζ of
{
−∆ζ = curlV in A ,

ζ = 0 on ∂A .
(5.7)

From the Lipschitz assumption on V and standard elliptic regularity, we infer that ζ
belongs to C1,α

0 (A) for every 0 ≤ α < 1. We set

γV :=

∫

∂D

{
∂ζ

∂ν
+ V · τ

}
.

Observing that (5.7) implies
∫

∂B

∂ζ

∂ν
= γV −

∫

∂B
V · τ ,

we find that for every integer d, the function Φd determined by (5.4) is explicitly given
by

Φd =

(
γV Ω − 2πd

cap(B)

)
ξ + Ω ζ . (5.8)

Moreover, using (5.5), (5.6) and (5.7) we readily obtain that for every d ∈ Z,

1

2

∫

A

{
|∇Φd|2 − Ω2|V |2

}
dx =

|γV Ω − 2πd|2
2cap(B)

− Ω2

2

∫

A

{
|V |2 − |∇ζ|2

}
dx .
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As a consequence, an integer dΩ is a minimizer in (5.1) if and only if dΩ minimizes the
function d ∈ Z 7→ |γV Ω − 2πd|.

We may now state our result concerning problem (5.1).

Theorem 5.1. Up to multiplicative constants of modulus one, the minimization problem
(5.1) admits exactly two solutions (of distinct topological degree) if γV Ω/π is an odd
integer, and a unique solution otherwise. Moreover, if dΩ ∈ Z is a minimizer in (5.1),
then dΩ ∈

{
[γV Ω

2π ], [γV Ω
2π ] + 1

}
where [·] denotes the integer part, and

minHΩ = −Ω2

2

∫

A

{
|V |2 − |∇ζ|2

}
dx+O(1) as Ω → +∞ . (5.9)

5.2. The Γ–convergence result

To state the parallel Γ-convergence result for the anular domain case we must give more
specific hypotheses on the potential V and the angular speed Ωε. In addition to the
Lipschitz regularity, we assume in the sequel that V satisfies the following assumptions:

(H1’) the solution ζ of (5.7) is such that ζmax := maxx∈A ζ(x) = maxx∈A |ζ(x)| > 0;

(H2’) the set Σ := {x ∈ A : ζ(x) = ζmax} ⊂⊂ A is a Jordan curve or a simple embedded
arc of class C2.

We note that in (H1’), the assumption that ζmax is achieved at positive values of ζ is not
restrictive. Indeed, considering the complex conjugate of an admissible function replaces
V by −V in the energy and hence ζ by −ζ.

As for the simply connected domain case, we assume that Ωε is near the critical value
needed for the presence of vortices which again reads

Ωε =
| ln ε|
2ζmax

+ ω(ε) , (5.10)

for some positive function ω satisfying ω(ε) → +∞ with ω(ε) ≤ o(| ln ε|) as ε → 0+,
exactly as in (1.2).

In the sequel, for an arbitrary sequence εn → 0+, we will denote by u⋆
n a minimizer

of HΩn
, i.e., a solution of (5.1), and its corresponding topological degree will be denoted

by dn. For brievety we shall also write (5.8) as

Φn := Φdn
= αnξ + Ωnζ with αn :=

γV Ωn − 2πdn

cap(B)
.

We emphasize that αn = O(1) as n→ +∞ thanks to Theorem 5.1.

For v ∈ H1(A; C), we now define

F εn
(v) := ω−2

n

∫

A

{ |∇v|2
2

+
(1 − |v|2)2

4ε2n
+ ∇⊥Φn · j(v)

}
dx .

The following proposition shows that the functional F εn
(ū⋆

nu) captures the energy in-
duced by interior vorticity of a given configuration u.

Proposition 5.2 (Energy decomposition). Assume that (5.10) holds. Let εn → 0+

be an arbitrary sequence and {un}n∈N ⊂ H1(A; C). Then, setting vn = ū⋆
nun ∈ H1(A; C),

we have

sup
n

Ω−2
n Jεn

(un) < +∞ if and only if sup
n

Ω−2
n ω2

nF εn
(vn) < +∞ . (5.11)
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Moreover, if one of the conditions in (5.11) holds, then

Jεn
(un) = minHΩn

+ ω2
nF εn

(vn) + o(1) as n→ +∞ . (5.12)

Proof. Straightforward computations yield

|∇un|2
2

= |un|2
|∇u⋆

n|2
2

+
|∇vn|2

2
+ j(u⋆

n) · j(vn) ,

and

j(un) = |un|2j(u⋆
n) + j(vn) . (5.13)

By the proof of Proposition 5.1, we have j(u⋆
n) = ∇⊥Φn + ΩnV . Hence,

Jεn
(un) = minHΩn

+ ω2
nF εn

(vn) +

∫

A
(|un|2 − 1)

{ |∇u⋆
n|2

2
− ΩnV · j(u⋆

n)

}
dx .

Then we observe that

‖∇u⋆
n‖L∞(A) = ‖j(u⋆

n)‖L∞(A) = ‖∇⊥Φn + ΩnV ‖L∞(A) = O(Ωn) .

Therefore,
∣∣∣∣
∫

A
(|un|2 − 1)

{ |∇u⋆
n|2

2
− ΩnV · j(u⋆

n)

}
dx

∣∣∣∣ ≤ O
(
εnΩ2

n

√
Eεn

(un,A)
)
.

Since |un| = |vn|, we also have the same estimate as above with Eεn
(vn,A) instead of

Eεn
(un,A). Assuming that one of the conditions in (5.11) holds and arguing as in (2.2),

we derive that either
√
Eεn

(un,A) ≤ O(Ωn), or
√
Eεn

(vn,A) ≤ O(Ωn). Consequently,
if one of the conditions in (5.11) is satisfied, (5.12) holds and the conclusion follows
combining (5.12) with (5.9).

For a nonnegative Radon measure µ on A, we define

Ī(µ) :=
1

2

∫∫

A×A
Ḡ(x, y) dµ(x) dµ(y) ,

where the function Ḡ denotes the Dirichlet Green’s function of the domain A, i.e., for
every y ∈ A, Ḡ(·, y) is the solution of

{
−∆Ḡ(·, y) = δy in D ′(A) ,

Ḡ(·, y) = 0 on ∂A .
(5.14)

We may now state the Γ-convergence result for annular domains which involves the family
of “reduced” functionals {F ε}ε>0.

Theorem 5.2. Assume that (H1’), (H2’) and (5.10) hold. Let εn → 0+ be an arbitrary
sequence. Then,

(i) for any {vn}n∈N ⊂ H1(D; C) satisfying supn F εn
(vn) < +∞, there exist a subse-

quence (not relabelled) and a nonnegative Radon measure µ in H−1(A) supported by
Σ such that

1

ω(εn)
curl j(vn) −→

n→+∞
µ strongly in (C0,1

0 (A))∗ ; (5.15)
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(ii) for any {vn}n∈N ⊂ H1(D; C) such that (5.15) holds for some nonnegative Radon
measure µ in H−1(A) supported by Σ, we have

lim inf
n→+∞

F εn
(vn) ≥ Ī(µ) − ζmax µ(A) ;

(iii) for any nonnegative Radon measure µ in H−1(A) supported by Σ, there exists a
sequence {vn}n∈N ⊂ H1(A; C) such that (5.15) holds and

lim
n→+∞

F εn
(vn) = Ī(µ) − ζmax µ(A) .

As in the simply connected case this Γ-convergence result could lead to the asymptotic
description of the vorticity in F ε-global minimizers. Actually Theorem 5.2 combined with
Proposition 5.2 also gives the asymptotic behavior of vorticity in Jε-global minimizers.
The key observation here is that minimizers for Jε yield quasi-minimizers for F ε, and
conversely.

Corollary 5.1. Assume that (H1’), (H2’) and (5.10) hold. Let εn → 0+ be an arbitrary
sequence. For every integer n ∈ N, let un ∈ H1(A; C) be a minimizer of Jεn

(·). Then,

1

ω(εn)
curl j(un) −→

n→+∞
ζmax

2Ī∗
µ̄∗ strongly in (C0,1

0 (A))∗ ,

where µ̄∗ is the unique minimizer of Ī(·) over all probability measures supported by Σ,
and Ī∗ := Ī(µ̄∗). In addition,

Jεn
(un) = −Ω2

n

2

∫

A

{
|V |2 − |∇ζ|2

}
dx− ζ2

max

4Ī∗
ω2

n + o(ω2
n) . (5.16)

We conclude this subsection with an elementary example motivated by [1,2,3].

Example 5.1. Assume that D = B1(0), B = Bρ(0) for some 0 < ρ < R and V (x) = x⊥.
Then the solution ζ of (5.7) is given by

ζ(x) = −|x|2
2

+
R2 − ρ2

2 ln(R/ρ)
ln |x| + ρ2 lnR−R2 ln ρ

2 ln(R/ρ)
.

In particular, the set Σ is given by the concentric circle Br∗
(0) with

r∗ =

√
R2 − ρ2

2 ln(R/ρ)
∈ (ρ,R) .

Here again, the uniform measure µ∗ = (2πr∗)−1dH1 Σ turns out to be the Green
equilibrium measure for Σ in A, i.e., Ī(µ∗) = Ī∗. Indeed, one may easily check that the
function

h∗(x) =





ln(R/r∗)
2π(ln(R/r∗) + ln(r∗/ρ))

ln(|x|/ρ) if ρ ≤ |x| ≤ r∗ ,

ln(r∗/ρ)
2π(ln(R/r∗) + ln(r∗/ρ))

ln(R/|x|) if r∗ ≤ |x| ≤ R ,

solves −∆h∗ = µ∗ in A with h∗|∂A = 0. Hence h∗(x) =
∫
A Ḡ(x, y) dµ∗(y), and since h∗

is constant on Σ the conclusion follows from Theorem II.5.12 in [14].
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5.3. Compactness of normalised weak Jacobians

In this subsection we shall be concerned with the proof of claim (i) in Theorem 5.2.
We consider an arbitrary sequence εn → 0+. For any {vn}n∈N ⊂ H1(D; C) satisfying
supn F εn

(vn) < +∞, we first derive exactly as in Lemma 2.1 the estimates

Eεn
(vn,A) ≤ O(| ln εn|2) and ‖vn‖L4(A) ≤ O(1) . (5.17)

Hence, assuming in addition that {vn}n∈N ⊂ C1(A), we can apply the vortex ball con-
struction in Proposition 2.1 with A in place of D, and Aε := {x ∈ A : dist(x, ∂A) > ε}
in place of Dε. We choose again r = rn := | ln εn|−4, thus obtaining a finite collection
of disjoint closed balls {B(an

i , ρi,n)}i∈In
(written Bn

i := B(an
i , ρi,n)), with associated

degrees di,n and total approximate vorticity

Dn :=
∑

i∈In

|di,n| ,

as in Proposition 2.1.
The first difference with the simply connected case arises in an estimate analogue to

(2.3), as we must take into account an additional contribution to the potential term due
to the boundary ∂B. Since one or more of the vortex balls Bn

i may intersect ∂Aε \ ∂Dε,
we will need to perturb this boundary slightly. When calculating the boundary term it
will be convenient to choose a level set of ξ . For 0 < s < t < 1, denote by

σt := {x ∈ A : ξ(x) = t}, and As,t := {x ∈ A : s < ξ < t} . (5.18)

As an easy consequence of the Maximum Principle and the Hopf boundary lemma, each
curve σt is smooth and the family {σt}0<t<1 realizes a foliation of A. Then, for every
t ∈ (0, 1) the curve σt is diffeomorphic to ∂B, and the set At,1 is a neighborhood of ∂B
in A. Now we shall choose an appropriate level set of ξ. Define

Jn =
{
t ∈ (0, 1) : σt ∩ (∪i∈In

Bn
i ) = ∅

}
. (5.19)

We note that the measure of the complement (0, 1) \ Jn is of the same order as rn =
| ln εn|−4. Hence we can find tn ∈ Jn such that the level curve γn := σtn

satisfies

εn < dist (γn, ∂B) ≤ O(| ln εn|−3) ,

and consequently tn = 1 +O(| ln εn|−3).
This construction allows us to define to topological degree of vn around γn since vn

does not vanish on γn, i.e.,

δn := deg

(
vn

|vn|
, γn

)
.

Then an approximate total vorticity in A of the configuration vn is given by |δn| +Dn.

We may now state the following proposition which parallels Proposition 2.2.

Proposition 5.3. Assume that (H1’) and (5.10) hold. Let {vn}n∈N ⊂ H1(D; C)∩C1(A),
Dn and δn as above. Then |δn| +Dn ≤ O(ωn).

Proof. Step 1. Arguing exactly as in the proof of (2.3), we first derive

Ωn

∫

A
∇⊥ζ · j(vn) = −2πΩn

∑

i∈In

di,nζ(a
n
i ) + o(1) . (5.20)
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Then following essentially the proof of Lemma 3.4 in [2], we obtain
∫

A
∇⊥ξ · j(vn) = −2π

∑

i∈In

di,nξ(a
n
i ) − 2πtnδn + o(1) . (5.21)

Here the fact that γn is a level set of ξ is essential in obtaining the degree δn from the
boundary term when integrating by parts.

Step 2. As in the proof of Proposition 2.2, we may assume that ωn ≤ O(Dn + |δn|). From
(5.17) and claim (iv) in Proposition 2.1, we have Dn ≤ O(| ln εn|). Then we infer from
(2.1), (5.20) and (5.21) that

O(ω2
n) ≥ ω2

nF εn
(vn) ≥ πDn

(
| ln εn| − C ln | ln εn|

)
− 2πΩn

∑

i∈In

di,nζ(a
n
i ) − 2π|αn|Dn

− 2π|αn||δn| +
∫

A\∪i∈In Bn
i

|∇vn|2 dx+ o(1) , (5.22)

where we have used the fact that 0 ≤ ξ ≤ 1 and 0 < tn < 1.
Next we consider a sequence ηn → 0 as in (2.6), and we group the vortex balls into

different classes as in the proof of Proposition 2.2 (we refer to it for the notation). Exactly
as in (2.10) and (2.12), we derive that

πD∗
n| ln εn| − 2πΩn

∑

i∈I∗
n

di,nζ(a
n
i ) ≥ −2πωnζmaxD

∗
n , (5.23)

and

πD+
n | ln εn| − 2πΩn

∑

i∈I+
n

di,nζ(a
n
i ) ≥ CΩnηnD

+
n . (5.24)

For negative degrees, we observe that {ζ ≤ 0} ∩ Σ = ∅ since ζmax = |ζ|max > 0. Hence
we can estimate as for the class I+

n ,

πD−
n | ln εn| − 2πΩn

∑

i∈I−
n

di,nζ(a
n
i ) ≥ πD−

n | ln εn| − 2πΩn

∑

i∈I−
n ,ζ(an

i )≤0

di,nζ(a
n
i )

≥ CΩnηnD
−
n . (5.25)

Inserting (5.23), (5.24) and (5.25) in (5.22) yields

O(ω2
n) ≥ −πC1Dn ln | ln εn| − 2πωnζmaxDn + CηnΩn(D+

n +D−
n )

− 2π|αn||δn| +
1

2

∫

A\∪Bn
i

|∇vn|2dx . (5.26)

Using the fact that |αn| = O(1), we easily deduce the estimate

D+
n +D−

n ≤ C
max{ωn, ln | ln εn|}(Dn + |δn|)

ηn| ln εn|
, (5.27)

for a constant C > 0 independent of n.
We claim that

∫

A\∪Bn
i

|∇vn|2dx ≥ C(Dn + |δn|)2 . (5.28)

Accepting (5.28), we infer from (5.26) that

(Dn + |δn|)2 − Cmax{ωn, ln | ln εn|}(Dn + |δn|) ≤ O(ω2
n) ,
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which clearly implies

Dn + |δn| ≤ O(max{ωn, ln | ln εn|}) . (5.29)

To prove (5.28) we introduce

t0 := 1/2 min{t ∈ (0, 1) : σt ∩ Σ 6= ∅} , t1 := 1/2(1 + max{t ∈ (0, 1) : σt ∩ Σ 6= ∅}) ,
and

J1
n :=

{
t ∈ (εn, t0) : σt ∩ (∪i∈In

Bn
i ) = ∅

}
, J2

n :=
{
t ∈ (t1, tn) : σt ∩ (∪i∈In

Bn
i ) = ∅

}
.

Then dist (σt,Σ) ≥ C > 0 for every t ∈ J1
n ∪ J2

n and min(L1(J1
n),L1(J2

n)) ≥ C > 0 for a
constant C independent of n. Next we consider

Dn(t) := deg

(
vn

|vn|
, σt

)
.

If 2|δn| ≥ Dn and n large enough, we estimate using (5.27),

|Dn(t)| ≥
∣∣|δn| −D+

n −D−
n

∣∣ ≥ 1

2
|δn| ≥ C(Dn + |δn|) for every t ∈ J2

n . (5.30)

In the opposite case 2|δn| < Dn (and n large), we have in view of (5.27),

|Dn(t)| ≥
∣∣Dn −D+

n − 2D−
n − |δn|

∣∣ ≥ 1

4
Dn ≥ C(Dn + |δn|) for every t ∈ J1

n . (5.31)

Set ṽn := vn/|vn|. Using claim (ii) in Proposition 2.1, the Coarea Formula and Jensen
Inequality, we derive from (5.30) and (5.31) that

∫

A\∪Bn
i

|∇vn|2 dx ≥ C

∫

A\∪Bn
i

|∇ṽn|2|∇ξ| dx ≥ C

∫

J1
n∪J2

n

( ∫

σt

|∇ṽn|2
)
dt

≥ C

∫

J1
n∪J2

n

( ∫

σt

|ṽn ∧∇τ ṽn|2dH1

)
dt ≥ C

∫

J1
n∪J2

n

|Dn(t)|2
H1(σt)

dt ≥ C(Dn + |δn|)2 ,

and (5.28) is proved (here we have also used the fact that |∇ξ| does not vanish in A).

Step 3. If ln | ln εn| = o(ωn), the conclusion follows from (5.27) and (5.29). If ωn =
O(ln | ln εn|), we refine the lower bound by growing the vortex balls as already performed
in Step 3 of the proof of Proposition 2.2. Following the same arguments with minor
modifications yields the announced result, so we omit the details.

Proof of Theorem 5.2, claim (i). In view of Proposition 5.3 and estimate (5.27), we
can follow the proof of Theorem 2.1, considering first a sequence {vn}n∈N ⊂ H1(D; C) ∩
C1(A) and then the general case.

5.4. The lower bound inequality

Proof of Theorem 5.2, claim(ii). We shall use the notations of Subsection 5.3. With-
out loss of generality, we may assume that

lim inf
n→+∞

F εn
(vn) = lim

n→+∞
F εn

(vn) < +∞ . (5.32)

As in the proof of Theorem 3.1, we may also assume that {un}n∈N ⊂ H1(D; C)∩C1(D).
We shall only consider the case ln | ln εn| = o(ωn) since the other case can be completed
as we already pursued in the proof of Theorem 3.1.
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By Proposition 5.3 and (5.21), we have
∣∣∣∣αn

∫

A
∇⊥ξ · j(vn) dx

∣∣∣∣ = O(ωn) .

Then we can argue exactly as in (3.6) to derive that

F εn
(vn) ≥ 1

2ω2
n

∫

Aεn\∪Bn
i

|j(vn)|2 − ζmaxµ(A) + o(1) .

Setting j̃n(x) as in (3.5) (with Aεn
in place of Dεn

), up to a subsequence we have j̃n ⇀ j∗
weakly in L2(A; R2) as n→ +∞. By lower semicontinuity, we obtain

lim inf
n→+∞

F εn
(vn) ≥ 1

2

∫

A
|j∗|2 − ζmaxµ(A) . (5.33)

In addition, arguing as in the proof of (3.8), we deduce that

curl j∗ = µ in D
′(A) ,

and thus µ ∈ H−1(D) since j∗ ∈ L2(A; R2).
Next we introduce hµ ∈ H1

0 (A) to be the unique solution of
{
−∆hµ = µ in H−1(A) ,

hµ = 0 on ∂A ,

and we set

h̄µ := hµ +
1

cap(B)

( ∫

∂B
j∗ · τ +

∂hµ

∂ν

)
ξ .

By construction, we have curl (j∗ + ∇⊥h̄µ) = 0 in H−1(A) and
∫

∂B(j∗ + ∇⊥h̄µ) · τ = 0.
Hence there exists g ∈ H1(A) such that j∗ + ∇⊥h̄µ = ∇g. Arguing as in the proof of
Proposition 5.1, we derive

∫

A
|j∗|2 =

∫

A
|∇h̄µ|2 +

∫

A
|∇g|2 ≥

∫

A
|∇h̄µ|2 . (5.34)

Then using (5.5) and hµ|∂A = 0, we obtain
∫
A ∇hµ · ∇ξ = 0, so that

∫

A
|∇h̄µ|2 =

∫

A
|∇hµ|2 +

1

cap(B)

( ∫

∂B
j∗ · τ +

∂hµ

∂ν

)2

≥
∫

A
|∇hµ|2 . (5.35)

Finally, using the Green representation of hµ we obtain

1

2

∫

A
|∇hµ|2 dx =

1

2

∫∫

A×A
G(x, y) dµ(x)dµ(y) , (5.36)

and the conclusion follows gathering (5.33), (5.34), (5.35) and (5.36).

5.5. The upper bound inequality

Proof of Theorem 5.2, claim(iii). We present here the proof in the case where the
measure µ ∈ H−1(A) is absolutely continuous with respect to H1 Σ, and more precisely
for µ of the form (4.2) with a nonvanishing density function f . The general case follows
by approximation as already pursued in Section 4.

For such a measure µ we first proceed exactly as in Step 1 of the proof of Proposi-
tion 4.1, and we refer to it for the notation. For each integer n, we consider the function
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fn as defined in (4.5) and we set µ̂n := fnL2 A. Then µ̂n ⇀ µ weakly* as measures on
A as n→ +∞. Next we consider the solution hn of

{
−∆hn = ωnfn in A ,

hn = 0 on ∂A .

Arguing exactly as in Step 2 of the proof of Proposition 4.1, we derive that

1

2

∫

A
|∇hn|2 dx ≤ πDn| ln εn| + ω2

nĪ(µ) + o(ω2
n) .

Next we introduce

h̄n := hn +
κn

cap(B)
ξ with κn :=

∫

∂B

∂hn

∂ν
− 2π

[
1

2π

∫

∂B

∂hn

∂ν

]
,

where [·] denotes the integer part. Noticing that κn = O(1) we deduce

1

2

∫

A
|∇h̄n|2 dx =

1

2

∫

A
|∇hn|2 dx+

κ2
n

2cap(B)2

∫

A
|∇ξ|2 dx

≤ πDn| ln εn| + ω2
nĪ(µ) + o(ω2

n) . (5.37)

In view of (5.6) we have

1

2π

∫

∂B

∂h̄n

∂ν
=

[
1

2π

∫

∂B

∂hn

∂ν

]
∈ Z ,

and since ξ is harmonic in A,

1

2π

∫

∂Bεn (an
k
)

∂h̄n

∂ν
=

1

2π

∫

∂Bεn (an
k
)

∂hn

∂ν
= −1 for every k = 1, . . . , Dn .

Hence, for any smooth Jordan curve Θ inside A \ ∪kBεn
(an

k ),

1

2π

∫

Θ

∇⊥h̄n · τ ∈ Z ,

where τ : Θ → S
1 is any smooth vector field tangent to Θ. Consequently, we may locally

define a phase φn in A \ ∪kBεn
(an

k ) by

∇φn(x) = −∇⊥h̄n(x) , x ∈ A \ ∪kBεn
(an

k ) ,

and then the map exp(iφn(x)) is well defined for every x ∈ A \ ∪kBεn
(an

k ).
Finally we consider a profile function ρn as defined in (4.15) and we set

vn(x) :=

{
ρn(x)eiφn(x) for x ∈ A \ ∪kBεn

(an
k ) ,

0 otherwise .

Since −∆h̄n = ωnµ̂n in A, using (5.37) we may proceed as in the proof of Proposition 4.1
Step 3, to prove that

ω−1
n curl j(vn) → µ strongly in (C0,1

0 (A))∗ as n→ +∞ ,

and that

Eεn
(vn,A) ≤ πDn| ln εn| + ω2

nĪ(µ) + o(ω2
n) . (5.38)

To evaluate the rotation part of the energy, we first argue as for (4.21) to obtain

Ωn

∫

A
∇ζ⊥ · j(vn) dx = −πDn| ln εn| − ζmaxµ(A)ω2

n + o(ω2
n) . (5.39)
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In a similar way we derive that

αn

∫

A
∇⊥ξ · j(vn) dx = −αn

∫

A
∇h̄n · ∇ξ dx+ o(1) = −αnκn + o(1) = O(1) , (5.40)

since αn = O(1) and κn = O(1). Then the conclusion follows gathering (5.38), (5.39)
and (5.40).

5.6. Application to Jε-minimizers

Proof of Corollay 5.1. Let εn → 0+ be an arbitrary sequence. As for Corollary 1.1, the
existence of minimizers for Jεn

and F εn
is classical, we omit the details. Then for every

n ∈ N, let un ∈ H1(A; C) be a minimizer of Jεn
. Since Jεn

(un) ≤ minHΩn
= O(Ω2

n), we
can apply Proposition 5.2 to the sequence {un}n∈N to infer that

minHΩn
≥ Jεn

(un) = minHΩn
+ ω2

nF εn
(vn) + o(1) , (5.41)

with vn := ū⋆
nun. On the other hand, for any minimizer ṽn ∈ H1(A; C) of F εn

, we have
F εn

(ṽn) ≤ F εn
(1) = 0. Hence Proposition 5.2 yields

Jεn
(un) ≤ Jεn

(u⋆
nṽn) = minHΩn

+ ω2
n minF εn

+ o(1) . (5.42)

Combining (5.41) with (5.42), we infer that ω2
nF εn

(vn) ≤ o(1) and that {vn} is a sequence
of quasi-minimizers for {F εn

}, i.e.,

F εn
(vn) = minF εn

+ o(1) (5.43)

as n→ +∞. By Theorem 5.2 there exists a subsequence {εnk
} such that

ω−1
nk
j(vnk

) → µ0

strongly in (C0,1
0 (A))∗ for some nonnegative Radon measure µ0 ∈ H−1(A) supprted by

Σ. Using (5.43) together with claims (ii) and (iii) in Theorem 5.2, we deduce as in the
proof of Corollary 1.1 that µ0 minimizes µ 7→ Ī(µ)−ζmaxµ(A) over all nonnegative Radon
measures supported by Σ. The minimizer is again unique and given by

µ0 =
ζmax

2Ī∗
µ̄∗ ,

whence the convergence of ω−1
n j(vn) along the full sequence (recall that Ī∗ = Ī(µ∗) and

that µ̄∗ is the minimizer of Ī over all probality measures supported by Σ, see [14]). In
addition,

lim
n→+∞

F εn
(vn) = Ī(µ0) − ζmaxµ0(A) = −ζ

2
max

4Ī∗
,

which combined with (5.41) and (5.9) yields (5.16).
Next it remains to prove that

ω−1
n curl j(un) −→

n→+∞
µ0

strongly in (C0,1
0 (A))∗. Indeed, given an arbitrary function ϕ ∈ C0,1

0 (A), we have

1

ωn

∫

A
j(un) · ∇⊥ϕ =

1

ωn

∫

A
j(vn) · ∇⊥ϕ+

1

ωn

∫

A
|vn|2j(u⋆

n) · ∇⊥ϕ

= 〈µ0, ϕ〉 +
1

ωn

∫

A
(|vn|2 − 1)j(u⋆

n) · ∇⊥ϕ + o(1) ,
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where we have used (5.13) and the fact that curl j(u⋆
n) = 0 in A. Arguing as in the proof

of Proposition 5.2 we estimate
∣∣∣∣

1

ωn

∫

A
(|vn|2 − 1)j(u⋆

n) · ∇⊥ϕ

∣∣∣∣ ≤ C
εn

ωn
‖j(u⋆

n)‖L∞(A)

√
Eεn

(vn) ≤ C
εnΩ2

n

ωn
= o(1) ,

where the constant C only depends on ϕ, and the proof is complete.
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[6] F. Bethuel, H. Brezis & F. Hélein : Ginzburg-Landau vortices, Progress in Nonlinear

Differential Equations and their Applications 13, Birkhäuser, Boston MA (1994).
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