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We study the variational convergence of a family of two-dimensional Ginzburg-Landau functionals arising in the study of superfluidity or thin-film superconductivity, as the Ginzburg-Landau parameter ε tends to 0. In this regime and for large enough applied rotations (for superfluids) or magnetic fields (for superconductors), the minimizers acquire quantized point singularities (vortices). We focus on situations in which an unbounded number of vortices accumulate along a prescribed Jordan curve or a simple arc in the domain. This is known to occur in a circular annulus under uniform rotation, or in a simply connected domain with an appropriately chosen rotational vector field. We prove that, suitably normalized, the energy functionals Γ-converge to a classical energy from potential theory. Applied to global minimizers, our results describe the limiting distribution of vortices along the curve in terms of Green equilibrium measures.

Introduction

The Ginzburg-Landau theories have had an enormous influence on both physics and mathematics. Physicists employ Ginzburg-Landau models in modeling superconductivity, superfluidity, and, more recently, for rotating Bose-Einstein condensates (BECs), all systems which present quantized defects commonly known as vortices. In mathematics, starting with the work by Bethuel, Brezis & Hélein [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF], many powerful methods have been developed to study the physical London limit, i.e., as the Ginzburg-Landau parameter ε tends to 0. This limit corresponds to the Thomas-Fermi regime in BEC, and to an analogous regime in superfluids where the characteristic length scale ε is very small. In a two-dimensional setting, vortices are essentially characterized as isolated zeroes of the order parameter carrying a winding number, and in the London limit as point defects where energy concentration occurs. The question of whether energy minimizers develop vortices, where they appear in the domain, and how many there should be (for given boundary conditions, constant applied fields or angular velocities) has been analyzed in many contexts and parameter regimes.

In this paper, we will focus on the following Ginzburg-Landau energy, arising for instance in the physical context of a rotating superfluid. Considering a bounded simply connected domain D ⊂ R 2 , a smooth vector field V : R 2 → R 2 , Ω > 0 and ε > 0, we define the functional

u ∈ H 1 (D; C) → F ε (u) := D 1 2 |∇u| 2 + 1 4ε 2 (1 -|u| 2 ) 2 -Ω V (x) • j(u) dx .
Identifying R 2 with the complex plane C, we denote by

j(u) := u ∧ ∇u ∈ L 1 (D; R 2 ) ,
the pre-Jacobian of u. The L 1 -vector field j(u) may also be written as j(u) = (iu, ∇u), where (•, •) is the standard inner product of two complex numbers, viewed as vectors in R 2 .

In the case of uniform rotation, that is V (x) = x ⊥ = (-x 2 , x 1 ) and with D a disk, Serfaty [START_REF] Serfaty | On a model of rotating superfluids[END_REF] studied minimizers of a closely related functional (see Remark 1.5) to determine the critical value Ω 1 = Ω 1 (ε) of the angular speed Ω at which vortices first appear (see also [START_REF] Ignat | The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate[END_REF][START_REF] Ignat | Energy expansion and vortex location for a two-dimensional rotating Bose-Einstein condensate[END_REF] for BECs). She finds that minimizers acquire vorticity at Ω 1 = k(D)| ln ε|+O(ln | ln ε|) for an explicitly determined constant k(D). In a series of papers, culminating with the publication of the research monograph [START_REF] Sandier | Vortices in the Magnetic Ginzburg-Landau Model[END_REF], Sandier & Serfaty developed powerful tools to study vortices in Ginzburg-Landau models. Although they primarily work with the full Ginzburg-Landau model with magnetic field, the methods apply as well to the functional F ε above. In particular, their results apply to the nearcritical regime in simply connected domains. In our setting, their results show that for any simply connected domain D, the first order expansion of the critical value Ω 1 for vortex existence in minimizing configurations is also given by k(D)| ln ε| for some constant k(D). Moreover the locus of concentration of vortices for Ω = Ω 1 + o(| ln ε|) is given by the set of maxima of |ζ|, with ζ the solution of the following boundary-value problem:

-∆ζ = curl V in D , ζ = 0 on ∂D . (1.1) 
The constant k(D) is then determined by

k(D) = 1 2|ζ| max ,
where |ζ| max denotes the maximum value of |ζ|. If, for instance, V is real-analytic and curl V is nonnegative, then so is the solution ζ, and the maximum is generically attained at a finite number of points in D (see e.g. [START_REF] Bers | Partial Differential Equations[END_REF]). In this situation, if Ω = Ω 1 + o(| ln ε|), minimizers exhibit vortex concentration at isolated points, and the number of vortices remains uniformly bounded whenever Ω -Ω 1 is of order O(ln | ln ε|), see [START_REF] Sandier | Vortices in the Magnetic Ginzburg-Landau Model[END_REF][START_REF] Serfaty | On a model of rotating superfluids[END_REF][START_REF] Ignat | The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate[END_REF][START_REF] Ignat | Energy expansion and vortex location for a two-dimensional rotating Bose-Einstein condensate[END_REF].

The case of a multiply connected domain provides a slightly different qualitative picture. In a work on rotating Bose-Einstein condensates, Aftalion, Alama & Bronsard [START_REF] Aftalion | Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate[END_REF] considered a similar functional in a domain given by a circular annulus A (centered at the origin) and again with uniform rotation V (x) = x ⊥ (see Remark 1.5). Unlike the simply connected case, minimizers in the annulus may have vorticity without vortices, as the hole acquires positive winding at bounded rotation Ω. Then point vortices are nucleated inside the interior of A at a critical value Ω 1 , again of leading order | ln ε|. Solving equation (1.1) in the annulus A, one finds out that the set of maxima of the function ζ is given by a circle inside A (see Example 5.1). Hence one can expect that, rather than accumulating at isolated points, vortices concentrate along this circle in the limit ε → 0. The main feature proved in [START_REF] Aftalion | Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate[END_REF] is that if Ω ∼ Ω 1 + O(ln | ln ε|), then vortices are indeed essentially supported by a circle Σ and that the total degree of these vortices is of order ln | ln ε|. In other words, in the limit ε → 0, infinitely many vortices concentrate on Σ, a phenomenon that we call vortex concentration along a curve. However the question of the distribution of the limiting vorticity around the circle was left open. Subsequent results of Alama & Bronsard [START_REF] Alama | Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains[END_REF][START_REF] Alama | Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions[END_REF] extend the result of [START_REF] Aftalion | Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate[END_REF] to multiply connected domains and to the full Ginzburg-Landau model with magnetic field and pinning potential. In contrast with the previous case, concentration on curves might not be a generic phenomenon for the Ginzburg-Landau model with magnetic field in a general multiply connected domain. Indeed, in this setting the vector field V represents the electromagnetic potential and it is an unknown of the problem. The results in [START_REF] Alama | Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains[END_REF][START_REF] Alama | Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions[END_REF] show that, for near-critical external applied fields, the concentration set of vortices is also given by the set of maxima of a certain potential related to V . This set may contain finitely many points and/or closed loops. Assuming that it contains closed loops, they prove that vortex concentration along a curve occurs, but the determination of the limiting vorticity was again left open.

To effectively separate the question of the nature of the concentration set from the question of localizing vortices, we instead start with a simply connected domain D, and we prescribe the function ζ with ζ ≥ 0 in D and ζ| ∂D = 0, in such a way that ζ is maximized on a prescribed curve Σ ⊂⊂ D. Then, we define

V (x) := -∇ ⊥ ζ(x) = ∂ζ ∂x 2
, -∂ζ ∂x 1 as our vector field. We will prove that vortices will be forced to accumulate on Σ as ε tends to 0. The curve Σ can be either a smooth Jordan curve or a smooth embedded simple arc, compactly contained in D. In this setting, we shall resolve the problem of distribution of vortices along curves, both for minimizers and in the more general setting of Γ-convergence. In the last section we will show that in a multiply connected domain, and for more general vector fields V , the problem does not differ too much in nature, and that a similar analysis can be performed.

To state our main result we must give more specific hypotheses on ζ and the angular speed Ω. We assume that ζ satisfies the following assumptions:

(H1) ζ ∈ C 0,1 0 (D), ζ ≥ 0 in D, and 
ζ max := max x∈D ζ(x) > 0; (H2) Σ := {x ∈ D : ζ(x) = ζ max } ⊂⊂ D is a Jordan curve or a simple embedded arc of class C 2 .
We further assume that Ω = Ω(ε) is near to the critical value needed for the presence of vortices. More precisely,

Ω ε := | ln ε| 2ζ max + ω(ε) , (1.2) 
for some function ω : (0, +∞) → (0, +∞) satisfiying ω(ε) → +∞ with | ln ε| -1 ω(ε) → 0 as ε → 0.

For u ∈ H 1 (D; C) we consider the rescaled functional

F ε (u) := 1 ω 2 (ε) D 1 2 |∇u| 2 + 1 4ε 2 (1 -|u| 2 ) 2 + Ω ε ∇ ⊥ ζ • j(u) dx ,
and for a nonnegative Radon measure µ on D, we define

I(µ) := 1 2 D×D G(x, y) dµ(x) dµ(y) ,
where the function G denotes the Dirichlet Green's function of the domain D, i.e., for every y ∈ D, G(•, y) is the solution of

-∆G(•, y) = δ y in D ′ (D) , G(•, y) = 0 on ∂D . (1.3)
Our main result deals with the Γ-convergence of the family of functionals {F ε } ε>0 as ε → 0, and it is stated (as usual) in terms of the vorticity distribution given by the weak Jacobian, that is half the distributional curl of the pre-Jacobian (see e.g. [START_REF] Sandier | Vortices in the Magnetic Ginzburg-Landau Model[END_REF]).

Theorem 1.1. Assume that (H1), (H2) and (1.2) hold. Let ε n → 0 + be an arbitrary sequence. Then, (i) for any {u n } n∈N ⊂ H 1 (D; C) satisfying sup n F εn (u n ) < +∞, there exist a subsequence (not relabelled) and a nonnegative Radon measure µ in H -1 (D) supported by Σ such that

1 ω(ε n ) curl j(u n ) -→ n→+∞ µ strongly in (C 0,1 0 (D)) * ; (1.4) (ii) for any {u n } n∈N ⊂ H 1 (D; C) such that (1.4) holds for some nonnegative Radon measure µ in H -1 (D) supported by Σ, we have lim inf n→+∞ F εn (u n ) ≥ I(µ) -ζ max µ(D) ;
(iii) for any nonnegative Radon measure µ in H -1 (D) supported by Σ, there exists a sequence {u n } n∈N ⊂ H 1 (D; C) such that (1.4) holds and

lim n→+∞ F εn (u n ) = I(µ) -ζ max µ(D) .
As it is well known, the Γ-convergence theory is well suited to study asymptotics in minimization problems (see e.g. [START_REF] Maso | An Introduction to Γ-convergence[END_REF]). In this context, we shall derive from Theorem 1.1 the following convergence result for the vorticity of global minimizers, and hence solving the problem on the limiting distribution of vortices along Σ, see Remark 1.3 below.

Corollary 1.1. Assume that (H1), (H2) and (1.2) hold. Let ε n → 0 + be an arbitrary sequence. For every integer n ∈ N, let u n ∈ H 1 (D; C) be a minimizer of F εn . Then,

1 ω(ε n ) curl j(u n ) -→ n→+∞ ζ max 2I * µ * strongly in (C 0,1 0 (D)) * ,
where µ * is the unique minimizer of I over all probability measures supported on Σ, and I * := I(µ * ).

Remark 1.1. As a direct application of the results in [START_REF] Sandier | Vortices in the Magnetic Ginzburg-Landau Model[END_REF] (see also [START_REF] Jerrard | The Jacobian and the Ginzburg-Landau energy[END_REF]), we shall see in Section 2 that for configurations {u ε } with F ε -energy uniformly bounded from above, the vorticity distribution curl j(u ε ) can be approximated (with respect to the (C 0,1 0 (D)) * -topology) by a measure of the form 2π i∈Iε d i δ ai for some finite set of points {a i } i∈Iε ⊂ D and integers {d i } i∈Iε ⊂ Z. In other words, each point a i can be viewed as an approximate vortex with winding number d i . Thus the integer D ε = i∈Iε |d i | may be refered to as to approximate total vorticity of the configuration u ε . It is commonly known that approximate vortices carry a kinetic energy essentially greater than or equal to πD ε | ln ε| (see Section 2 for more details). With such an estimate in hand, and using the arguments of Section 3, we actually obtain a more refined lower bound for the energy than the one given by Theorem 1.1, claim (ii). More precisely, one has lim inf

ε→0 1 ω 2 (ε) D 1 2 |∇u ε | 2 + 1 4ε 2 (1 -|u ε | 2 ) 2 dx -πD ε | ln ε| ≥ I(µ) ,
and

lim inf ε→0 1 ω 2 (ε) Ω ε D ∇ ⊥ ζ • j(u ε ) dx + πD ε | ln ε| ≥ -ζ max µ(D) .
As a consequence, if {u ε } is any recovery sequence (in the sense of (iii) of Theorem 1.1), the lim inf's above become limits, and equality holds in each case. In analogy with [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF], we may then say that I(µ) plays the role of renormalized energy.

Remark 1.2 (Minimizers). From Corollary 1.1 and Remark 1.1, we deduce that if u ε is energy minimizing, then

D ε = ζ max 4πI * ω(ε) + o(ω(ε)) as ε → 0 ,
and from Theorem 1.1, the minimal value of the energy expands as min

H 1 (D;C) ω 2 (ε)F ε = - ζ 2 max 4I * ω 2 (ε) + o(ω 2 (ε)) .
Remark 1.3 (Equilibrium measures). The value I(µ) gives the electrostatic energy of a positive charge distribution µ on the set Σ ⊂⊂ D. The minimizer µ * of I over all probability measures on Σ is called the Green equilibrium measure in D associated to the set Σ, and gives the equilibrium charge distribution of a charged conductor inside of a neutral conducting shell, represented by ∂D. The value 1/I * is refered to as to the capacity of the condenser (Σ, ∂D). The interested reader can find in [START_REF] Saff | Logarithmic Potentials with External Fields[END_REF] many results on the existence and general (regularity) properties of the equilibrium measures as well as some examples. For instance, if D is a disc and Σ is a concentric circle, then the equilibrium measure µ * is the normalized arclength measure on Σ, see [START_REF] Saff | Logarithmic Potentials with External Fields[END_REF]Example II.5.13], and thus vortices are asymptotically equidistributed along Σ as ε → 0. However for an arbitrary curve Σ, the distribution is of course non-uniform in general. In case where Σ is an embedded arc, it is even singular at the endpoints, see [START_REF] Saff | Logarithmic Potentials with External Fields[END_REF]Example II.5.14].

Remark 1.4. In the present results the structure and regularity assumptions on the set Σ given in (H2) are mainly motivated by the physical context of [START_REF] Aftalion | Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate[END_REF][START_REF] Alama | Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains[END_REF][START_REF] Alama | Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions[END_REF]. However it will be clear that (H2) can be relaxed into weaker statments. More precisely, the proof of Theorem 1.1 relies on (H2) only for the Γlim sup inequality, i.e., claim (iii).

The construction of the recovery sequence (see Section 4) could be applied with minor modifications if the set Σ is for instance a finite union of piecewise C 2 arcs/Jordan curves. Actually Σ could even have a more general structure such as a non-empty interior. In this later case we assume that ∂Σ is made by finitely many arcs and Jordan curves of class C 2 . Then, given a nonnegative Radon measure µ ∈ H 1 (D) supported by Σ, one can construct a recovery sequence for µ applying the approximation techniques of Section 4 to µ ∂Σ and a more standard regularization procedure for µ int(Σ) as in [START_REF] Sandier | Vortices in the Magnetic Ginzburg-Landau Model[END_REF].

In Section 5 we will show how to apply the method to a multiply connected domain and a more general vector field V . For simplicity, we shall consider only domains A which are topological annuli, i.e., A = D \B, where D, B are simply connected and B ⊂⊂ D. For multiply connected domains and/or a general field V , there is an extra step involved in the analysis. Indeed, the leading order term in the minimal energy (of order | ln ε| 2 ) is due to the curl-free part of V which induces a diverging phase in any minimal configuration, and to the vorticity in the hole B which acts as a sort of giant vortex (by analogy with [START_REF] Aftalion | Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate[END_REF]). In other words, to get information on the internal vorticity, one has to perform a second order Γ-convergence analysis. As in [START_REF] Alama | Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains[END_REF] we first describe minimizing vortexless configurations (i.e., energy minimizers over S 1 -valued maps) which nonetheless have vorticity around the hole. Then we show that for arbitrary configurations, the energy due to the curl-free part of V and the hole decouples nearly exactly (see Proposition 5.2). After separating out this contribution to the energy, the residual energy functional resembles F ε above, and the Γ-convergence analysis can be done in much the same way, with some care taken to control the residual vorticity around the hole. The result is stated in Theorem 5.2. The Γ-limit again involves a Green energy for measures supported by a prescribed set.

Remark 1.5 (Related funtionals). As mentioned earlier, the methods here may also be applied to other Ginzburg-Landau functionals which have the same structure as

F ε . A simple variant is Fε (u) = D 1 2 |(∇ -iΩ ε V )u| 2 + 1 4ε 2 (1 -|u| 2 ) 2 dx .
This energy has been studied in more than one context. Serfaty considers in [START_REF] Serfaty | On a model of rotating superfluids[END_REF] the minimization of this energy for rotating superfluids, with V = x ⊥ and under a Dirichlet boundary condition u| ∂D = 0. The minimization of the same energy under natural (Neumann) boundary conditions also arises in a simplified model of thin-film superconductors introduced by Chapman, Du & Gunzburger [START_REF] Chapman | On the Lawrence-Donaich and anisotropic Ginzburg-Landau models for layered superconductors[END_REF] (see also Alama, Bronsard & Galvão-Sousa [START_REF] Alama | Thin film limits for Ginzburg-Landau with strong applied magnetic fields[END_REF]). In this setting, Ω ε V (x) = A ε (x) represents the magnetic vector potential of the externally applied magnetic field h ex = Ω ε curl V . With Ω ε satisfying (1.2), and a sequence {u ε } in the energy regime of Theorem 1.1 (which holds for minimizers under a homogeneous Neumann boundary condition), the two energies agree very closely,

Fε (u ε ) = F ε (u ε ) + Ω 2 ε 2 D |V | 2 dx + o(1) as ε → 0 .
In the case of the homogeneous Dirichlet boundary condition some care must be taken since a singular boundary layer arises near ∂D as ε → 0 (see [START_REF] Serfaty | On a model of rotating superfluids[END_REF]), but otherwise the result of Theorem 1.1 should remain essentially the same. For annular domains, another functional which resembles F ε has been used in the modeling of rotating BECs in certain anharmonic traps (see [START_REF] Aftalion | Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate[END_REF]),

G ε (u) = A 1 2 |∇u| 2 + 1 4ε 2 (a(x) -|u| 2 ) 2 -Ω ε V (x) • j(u) dx .
Here V (x) = x ⊥ is the velocity field of uniform rotation, and the function a(x), positive in A, gives the trapping potential which contains the condensate. It is shown in [START_REF] Aftalion | Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate[END_REF] that G ε -minimizers develop as ε → 0, infinitely many vortices concentrating along a circle for sufficently high rotation Ω ε . We believe that similar results to the ones in Section 5 should hold, but the method is not directly applicable here. Indeed, our analysis is based on "global energy estimates" of [START_REF] Sandier | Vortices in the Magnetic Ginzburg-Landau Model[END_REF] (see (2.1) in Proposition 2.1) and the presence of the inhomogeneity a(x) requires local estimates. Moreover the analysis of vortices for the energy G ε is complicated by the fact that a(x) vanishes on the boundary, and some delicate estimates are required so as not to lose too much information near the boundary. One may also consider the full Ginzburg-Landau model of superconductivity for complex order parameter u : D → C and magnetic vector potential A : D → R 2 . For the Ginzburg-Landau model in a simply connected domain with constant applied magnetic field, Sandier & Serfaty [START_REF] Sandier | Vortices in the Magnetic Ginzburg-Landau Model[END_REF]Theorem 9.1] have proven a Γ-convergence theorem of the form of Theorem 1.1 for applied fields of the form h ex = H C1 + ω(ε), where in that case it is appropriate to take ln | ln ε| ω(ε) ≪ | ln ε|. This problem exhibits vortex concentration at points, and the limiting energy is obtained by rescaling around the points of concentration. The rescaled vorticity measures of minimizers converge to an equilibrium measure associated to a different problem in potential theory, a "Gauss variation" problem whereby the charges are to be optimally placed in R 2 subject to an applied electric field (see [START_REF] Saff | Logarithmic Potentials with External Fields[END_REF]). Concentration on curves is possible in multiply connected regions (see [START_REF] Alama | Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains[END_REF][START_REF] Alama | Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions[END_REF]). The methods described here should apply in this situationl once adapted to the magnetic setting, although the energy obtained as a Γ-limit should be for the Helmholtz (and not the Laplace) Green's function, -∆ x H(x, y) + H(x, y) = δ y (x). However, for the full Ginzburg-Landau functional with magnetic field in general domains, it is an interesting open problem in PDE to determine which (if any) non-symmetric multiply connected domains exhibit vortex concentration on curves.

We finally mention a recent paper by Kashmar [START_REF] Kachmar | Magnetic vortices for a Ginzburg-Landau energy with discontinuous constraint[END_REF] exhibiting concentration on a circle for a magnetic Ginzburg-Landau functional in the disc with an inhomogeneity a(x) as above described by a radial step function (modelling for instance a superconducting body made by two different species). Here again we believe that similar results should hold but the method does not directly apply due to the inhomogeneity of the Ginzburg-Landau energy density.

The plan of the paper is as follows. In Section 2 we prove assertion (i) of Theorem 1.1. Section 3 tackles part (ii) of the theorem. The upper bound of statement (iii) is derived in Section 4, completing the proof of Theorem 1.1. The proof of Corollary 1.1 is presented at the end of Section 4. Section 5 sketches how the preceeding arguments must be modified to treat annular domains.

Notations.

For any open set B ⊂ D and any admissible map u, we denote by

E ε (u, B) := B 1 2 |∇u| 2 + 1 4ε 2 (1 -|u| 2 ) 2 dx
the so-called Ginzburg-Landau energy of u in B. Given ε > 0 we define

D ε := {x ∈ D : dist (x, ∂D) > ε} ,
and for a sequence ε n → 0 + , we shall write ω n := ω(ε n ) and Ω n := Ω εn .

Compactness of normalized weak Jacobians

This section is devoted to the proof of claim (i) in Theorem 1.1. The key ingredient to prove compactness of normalized weak Jacobians is the so-called "vortex balls construction" taken from [16, Theorem 4.1].

Proposition 2.1. There exists a constant ε 0 > 0 such that for any 0 < ε < ε 0 and any

u ∈ H 1 (D; C) ∩ C 1 (D) satisfying E ε (u, D) ≤ √ ε, the following holds. For any C 0 ε 1/4 < r < 1 there exists a finite collection of disjoint closed balls B r = {B(a i , ρ i )} i∈Ir such that, writing B i := B(a i , ρ i ), (i) r = i∈Ir ρ i ; (ii) |1 -|u|| ≥ ε 1/8 ∩ D ε ⊂ D ε ∩ i∈Ir B i =: V ; (iii) setting d i := deg(u, ∂B i ) if B i ⊂ D ε , and 
d i := 0 otherwise, E ε (u, V ) ≥ πD r ln r εD r -C 1 , (2.1) 
where D r :=

i∈Ir |d i | is assumed to be positive; (iv) D r ≤ C 2 | ln ε| -1 E ε (u, D) ; and C 0 , C 1 , C 2 are universal constants. Moreover, if C 0 ε 1/4 < r 1 < r 2 < 1 and B 1 , B 2
are the corresponding families of balls, then every ball of B 1 is included in a ball of B 2 .

In the remainder of this section, we consider an arbitrary sequence ε n → 0 + . In the following lemma, we prove an upper bound on the Ginzburg-Landau energy for a sequence having an F εn -energy uniformly bounded from above. It will allow us to apply the previous proposition to such a sequence.

Lemma 2.1. Assume that (H1) and (1.2) hold. Let {u n } n∈N be a sequence in H 1 (D; C) such that sup n F εn (u n ) < +∞. Then there exists a constant C independent of n such that u n L 4 (D) ≤ C and E εn (u n , D) ≤ C| ln ε n | 2 . Proof. Observe that E εn (u n , D) = ω 2 n F εn (u n ) -Ω n D ∇ ⊥ ζ • j(u n ) dx ≤ Ω n ∇ζ ∞ D |u n ||∇u n |dx + O(ω 2 n ) ≤ 1 4 D |∇u n | 2 dx + Ω 2 n ∇ζ 2 ∞ D |u n | 2 dx + O(ω 2 n ) . (2.2)
In particular,

D |u n | 4 -2(1 + 2ε 2 n Ω 2 n ∇ζ 2 ∞ )|u n | 2 + 1 dx ≤ O(ε 2 n ω 2 n ) , so that u n L 4 (D) ≤ C for a constant C independent of n. Inserting this estimate in (2.
2), the announced result follows easily.

The first step in proving compactness of the normalized Jacobians is to show that the approximate total vorticity is bounded by the excess rotation ω n . We emphasize that here Σ could be any compact subset of D. Proposition 2.2. Assume that (H1) and (1.2) hold. Let {u n } n∈N be a sequence in

H 1 (D; C) ∩ C 1 (D) such that sup n F εn (u n ) < +∞.
Then there exist r n → 0 + and a sequence of families of balls

B rn = {B(a n i , ρ i,n )} i∈Ir n as in Proposition 2.1 such that D rn ≤ Cω n for some constant C > 0 independent of n. Proof. Let r n := | ln ε n | -4 .
In view of Lemma 2.1 we can apply Proposition 2.1 to u n with r = r n and n large enough. For each such n we denote by B rn = {B(a n i , ρ i,n )} i∈Ir n the corresponding family of balls. For convenience we write

I n := I rn , B n i := B(a n i , ρ i,n ), d i,n := deg(u, ∂B n i ) if B n i ⊂ D εn , d i,n = 0 otherwise, and D n := D rn .
Step 1. We first claim that

Ω n D ∇ ⊥ ζ • j(u n ) dx = -2πΩ n i∈In d i,n ζ(a n i ) + o(1) as n → +∞ . (2.3)
Indeed, applying [16, Theorem 6.1] with the balls {B n i } i∈In we derive the estimate 

curl j(u n ) -2π i∈In d i,n δ a n i (C 0,1 0 (D)) * ≤ Cr n 1 + E εn (u n , D) ≤ C| ln ε n | -2 ,
O(ω 2 n ) ≥ ω 2 n F εn (u n ) ≥ πD n | ln ε n | -C ln | ln ε n | -2πΩ n i∈In d i,n ζ(a n i ) + + D\∪ i∈In B n i |∇u n | 2 dx + o(1) (2.5)
as n → +∞.

Let us now fix a sequence

η n → 0 + such that max{ω n , ln | ln ε n |} = o(η n | ln ε n |) as n → +∞ . (2.6) 
We group the vortex balls into the following classes and we define:

D * n := i∈I * n d i,n , I * n := i ∈ I n : d i,n ≥ 0 and ζ(a n i ) > ζ max -η n ; D + n = i∈I + n d i,n , I + n := i ∈ I n : d i,n ≥ 0 and ζ(a n i ) ≤ ζ max -η n ; D - n := i∈I - n |d i,n | , I - n := i ∈ I n : d i,n < 0 . Observe that D n = D * n + D + n + D - n . We claim that D + n ≤ C max{ω n , ln | ln ε n |}D n η n | ln ε n | , (2.7) 
D - n ≤ C max{ω n , ln | ln ε n |}D n | ln ε n | , (2.8) 
D n ≤ C max{ω n , ln | ln ε n |} , (2.9) 
for a constant C > 0 independent of n. In particular, if

ω 2 n = o(| ln ε n |), then we can choose η n satisfying in addition max{ω 2 n , (ln | ln ε n |) 2 } = o(η n | ln ε n |)
, and consequently (2.9) yields D + n = D - n = 0 for n large enough. We evaluate the lower bound for each class of vortex ball separately. First, we use the explicit form of Ω n (see (1.2)) and the bound ζ(x) ≤ ζ max to obtain,

πD * n | ln ε n | -2πΩ n i∈I * n d i,n ζ(a n i ) ≥ -2πω n ζ max D * n .
(2.10)

For negative degrees we have the simple estimate

πD - n | ln ε n | -2πΩ n i∈I - n d i,n ζ(a n i ) ≥ πD - n | ln ε n | . (2.11)
Then for the vortex balls staying away from Σ, we have

πD + n | ln ε n | -2πΩ n i∈I + n d i,n ζ(a n i ) ≥ (π| ln ε n | -2πΩ n ζ max ) D + n + + 2πΩ n i∈I + n d i,n (ζ max -ζ(a n i )) ≥ D + n (-2πω n ζ max + 2πΩ n η n ) ≥ ≥ CΩ n η n D + n , (2.12) 
since ω n = o(η n Ω n ). We now insert (2.10), (2.11) and (2.12) into (2.5),

O(ω 2 n ) ≥ πD n (| ln ε n | -C 1 ln | ln ε n |) -2πΩ n i∈In d i,n ζ(a n i ) + D\∪B n i |∇u n | 2 dx + o(1) ≥ -πC 1 D n ln | ln ε n | -2πω n ζ max D * n + πD - n | ln ε n | + Cη n Ω n D + n + + D\∪B n i |∇u n | 2 dx . (2.13)
Rearranging all terms we derive

D - n | ln ε n | + D + n η n Ω n ≤ C ω n D * n + ln | ln ε n |D n + ω 2 n ≤ C max{ω n , ln | ln ε n |}D n ,
which proves (2.7) and (2.8).

To prove (2.9), we argue as in [2, pg. 58-60] to obtain a constant C ′ > 0 (independent of n) such that

D\∪B n i |∇u n | 2 dx ≥ C ′ D 2 n . (2.14)
Accepting (2.14) we return to the lower bound (2.13) to deduce

D 2 n -C (ω n + ln | ln ε n |) D n ≤ O(ω 2 n ) , so that D n ≤ C max{ω n , ln | ln ε n |} and estimate (2.9) is established.
It remains to show (2.14). To this aim we identify an annular band lying outside of Σ and use the fact that the total degree is approximately constant in that band. Since the boundary ∂D is assumed to be smooth, there exists 0 < δ 0 < 1 2 dist (Σ, ∂D) such that the function ̺(x) := dist (x, ∂D) is smooth in D δ0 εn with

D δ0 εn := {x ∈ D : ε n < ̺(x) ≤ δ 0 } .
The level sets 

C t := {x ∈ D : ̺(x) = t} ,
T n := {t ∈ (ε n , δ 0 ] : C t ∩ ∪ i∈In B n i = ∅} .
By the choice of r n and claim (i) in Proposition 2.1, T n is a finite union of disjoint intervals and

L 1 ((ε n , δ 0 ] \ T n ) ≤ O(| ln ε n | -4
). From claim (ii) in Proposition 2.1, we can define the degree of u n on C t for every t ∈ T n , i.e.,

D n (t) := deg u n |u n | , C t = 1 2π Ct u n |u n | ∧ ∇ τ u n |u n | dH 1 ,
where ∇ τ denotes the tangential derivative along C t oriented counterclockwise. Setting I n (t) := {i ∈ I n : ̺(a n i ) ≥ ρ i,n + t} (ρ i,n being the radius of the ball B n i ), we have

D n (t) = i∈In(t) d i,n .
Using (2.7) and (2.8) we infer that for n large enough,

D n (t) ≥ D n -2D - n -D + n ≥ 1 2 D n for every t ∈ T n . Denote v n := u n /|u n |.
In view of claim (ii) in Proposition 2.1, using the Coarea Formula and Jensen Inequality we can estimate for n large enough,

D\∪B n i |∇u n | 2 dx ≥ D δ 0 εn \∪B n i |u n | 2 |∇v n | 2 dx ≥ 1 2 δ0 εn Ct |∇v n | 2 dH 1 dt ≥ ≥ 1 2 Tn Ct |v n ∧ ∇ τ v n | 2 dH 1 dt ≥ 2π 2 Tn |D n (t)| 2 H 1 (C t ) dt ≥ C ′ D 2 n ,
which completes the proof of (2.14).

Step 

O(ω 2 n ) ≥ ω 2 n F εn (u n ) ≥ πD n ln s n ε n D n -C 1 -2πΩ n ζ max D n + C ′ D 2 n ≥ πD n ln s n D n -C 1 -2πω n ζ max D n + C ′ D 2 n . (2.16) 
Next we distinguish two cases. First assume that ln D n ≤ O(ω n ). In this case, (2.16) yields the inequality

D 2 n -Cω n D n ≤ O(ω 2 n ) (with C > 0 independent of n) so that D n ≤ O(ω n ) as claimed. If ω n = o(ln D n ), we obtain the bound D 2 n -CD n ln D n ≤ O(ω 2 n ) which also yields D n ≤ O(ω n ),
and the proof of Proposition 2.2 is complete.

We are now ready to prove claim (i) in Theorem 1.1.

Theorem 2.1. Assume that (H1) and (1.2) hold. Let ε n → 0 + and let {u n } n∈N be a sequence in H 1 (D; C) such that sup n F εn (u n ) < +∞. Then there exist a subsequence (not relabelled) and a nonnegative Radon measure µ supported by Σ such that

µ n := 1 ω n curl j(u n ) -→ n→+∞ µ strongly in C 0,1 0 (D) * .
Proof 

μ+ n (V n ) = 2πD + n ω n → 0 ,
which clearly implies that supp µ ⊂ Σ. By the compact embedding (C 0 0 (D)) * ֒→ (C 0,1 0 (D)) * , we deduce that μn → µ strongly in (C 0,1 0 (D)) * . On the other hand, (2.4) yields

µ n -μn (C 01 0 (D)) * -→ n→+∞ 0 ,
and the conclusion follows.

Step 2. We now consider the general case. In view of the strong continuity of the functional F εn under strong H 1 -convergence, we can find a sequence {ũ n } n∈N ⊂ H 1 (D; C) ∩ C 1 (D) such that for every n,

u n -ũn H 1 (D) ≤ ε n , (2.17) 
and

F εn (ũ n ) ≤ F εn (u n ) + 1 , (2.18) 
so that sup n F εn (ũ n ) < +∞.

Given an arbitrary ϕ ∈ C 0,1 0 (D) satisfying |∇ϕ| ≤ 1, we estimate Applying

D j(u n ) -j(ũ n ) • ∇ ⊥ ϕ dx ≤ ≤ u n -ũn L 2 (D) ∇u n L 2 (D) + ũn L 2 (D) ∇(u n -ũn ) L 2 (D) ≤ Cε n | ln ε n | , using (2.17
Step 1 to {ũ n }, up to a subsequence we have μn → µ in (C 0,1 0 (D)) * for some nonnegative Radon measure µ supported by Σ. Then (2.19) yields µ n → µ in (C 0,1 0 (D)) * and the proof is complete.

The lower bound inequality

This section is devoted to the proof of claim (ii) in Theorem 1.1 that we summarize in the following result. Theorem 3.1. Assume that (H1) and (1.2) hold. Let ε n → 0 + be an arbitrary sequence and let {u n } n∈N ⊂ H 1 (D; C) be such that

µ n = 1 ω n curl j(u n ) -→ n→+∞ µ strongly in (C 0,1 0 (D)) * , (3.1) 
for some nonnegative Radon measure µ supported by Σ. Then,

lim inf n→+∞ F εn (u n ) ≥ I(µ) -ζ max µ(D) . (3.2)
In particular, if the left hand side in (3.2) is finite, then µ ∈ H -1 (D).

Proof. We will use in this proof the notations of the previous section. Without loss of generality, we may assume that

lim inf n→+∞ F εn (u n ) = lim n→+∞ F εn (u n ) < +∞ . (3.3)
Moreover, by Step 2 in the proof of Theorem 2.1, we may also assume that

{u n } n∈N ⊂ H 1 (D; C) ∩ C 1 (D).
We shall distinguish two cases.

Case 1. We first assume that ln

| ln ε n | ≤ o(ω n ).
We consider the family of vortex balls {B n i } i∈In constructed in the proof of Proposition 2.2, and we refer to it for the notations. Arguing as in (2.3) we obtain

Ω n D ∇ ⊥ ζ • j(u n ) dx = - π| ln ε n | ζ max i∈In d i,n ζ(a n i ) + ω n D ∇ ⊥ ζ • j(u n ) dx + o(1) ≥ -πD n | ln ε n | -ω 2 n µ n , ζ + o(1) (3.4) 
as n → +∞, where •, • denotes the duality pairing (C 0,1 0 ) * -C 0,1 0 . Combining the lower bound (2.1) with (3.4), we infer that

ω 2 n F εn (u n ) ≥ πD n ln r n ε n D n -C 1 + 1 2 D\∪B n i |∇u n | 2 dx + Ω n D ∇ ⊥ ζ • j(u n ) dx ≥ πD n ln r n D n -C 1 + 1 2 D\∪B n i |∇u n | 2 dx -ω 2 n µ n , ζ + o(1) , Since r n = | ln ε n | -4 and D n ≤ O(ω n ) by Proposition 2.2, dividing the previous inequality by ω 2 n yields F εn (u n ) ≥ 1 2ω 2 n D\∪B n i |∇u n | 2 dx -µ n , ζ + o(1) ≥ 1 2ω 2 n D\∪B n i |∇u n | 2 dx -ζ max µ(D) + o(1) .
In the last inequality, we have used (3.1) and the fact that µ is supported by Σ. In view of claim (ii) in Proposition 2.1, we estimate

D\∪B n i |∇u n | 2 dx ≥ 1 1 + ε 1/4 n Dε n \∪B n i |j(u n )| 2 dx . Next we define jn (x) := ω -1 n j(u n (x)) if x ∈ D εn \ i∈In B n i , 0 otherwise , (3.5) 
so that by (3.3),

O(1) ≥ F εn (u n ) ≥ 1 2 D | jn (x)| 2 dx -ζ max µ(D) + o(1) . (3.6) 
Hence there exist a subsequence ε n → 0 (not relabelled) and j * ∈ L 2 (D; R 2 ) such that jn ⇀ j * weakly in L 2 (D; R 2 ) as n → +∞. By lower semicontinuity, we have

lim n→+∞ F εn (u n ) ≥ 1 2 D |j * | 2 dx -ζ max µ(D) . (3.7) 
It remains to tie the limit j * to the limit µ of the normalized weak Jacobians. To this aim we fix ϕ ∈ D(D). Using Lemma 2.1, claim (i) in Proposition 2.1 and Hölder Inequality, we estimate

∪B n i ∇ ⊥ ϕ • j(u n ) dx ≤ L 2 ∪ i∈In B n i 1/4 ∇ϕ ∞ u n L 4 (D) ∇u n L 2 (D) ≤ C r 1/2 n | ln ε n | = o(1) . Since supp ϕ ⊂ D εn for n large enough, we deduce that D ∇ ⊥ ϕ • j * dx = lim n→+∞ D ∇ ⊥ ϕ • jn dx = lim n→+∞ ω -1 n Dε n \∪B n i ∇ ⊥ ϕ • j(u n ) dx = = lim n→+∞ ω -1 n D ∇ ⊥ ϕ • j(u n ) dx = -lim n→+∞ µ n , ϕ = - D ϕ dµ .
Consequently,

curl j * = µ in D ′ (D) . (3.8) 
In particular, µ ∈ H -1 (D) since j * ∈ L 2 (D; R 2 ).

Next we introduce h µ ∈ H 1 0 (D) to be the unique solution of

-∆h µ = µ in H -1 (D) , h µ = 0 on ∂D .
In view of (3.8) and the definition of h µ , we have

curl j * + ∇ ⊥ h µ = 0 in H -1 (D) , so that we can find g µ ∈ H 1 (D) satisfying ∇g µ = j * + ∇ ⊥ h µ . Therefore, D |j * | 2 dx = D |∇h µ | 2 dx + D |∇g µ | 2 dx ,
since an integration by parts yields D ∇ ⊥ h µ • ∇g µ = 0 (using the fact h µ is constant on ∂D). Going back to (3.7), we infer that

lim n→+∞ F εn (u n ) ≥ 1 2 D |∇h µ | 2 dx -ζ max µ(D) .
On the other hand, using the Green representation of h µ , we have

1 2 D |∇h µ | 2 dx = 1 2 D×D G(x, y) dµ(x) dµ(y) = I(µ) ,
and the conclusion follows.

Case 2. We now treat the case ω n ≤ O(ln | ln ε n |). Consider the family of vortex balls { Bn j } j∈Jn (of size s n = e -√ ωn ) constructed in Step 3 in the proof of Proposition 2.2. Recall that this family satisfies D sn = D n for n large. Combining the lower bound (2.1) for the family { Bn j } j∈Jn with (3.4), we derive

ω 2 n F εn (u n ) ≥ πD n ln s n D n -C 1 + 1 2 D\∪ Bn j |∇u n | 2 dx -ω 2 n µ n , ζ + o(1) .
Then arguing as in (3.6), we infer that

F εn (u n ) ≥ 1 2 D | ĵn (x)| 2 dx -ζ max µ(D) + o(1) , where ĵn (x) := ω -1 n j(u n (x)) if x ∈ D εn \ ∪ j∈Jn Bn j , 0 otherwise .
As previously, up to a subsequence we have ĵn ⇀ j * weakly in L 2 (D; R 2 ), and

lim n→+∞ F εn (u n ) ≥ 1 2 D |j * (x)| 2 dx -ζ max µ(D) .
Now it remains to show that curl j * = µ in D ′ (D), and then the proof can be completed as in Step 1.

We proceed as before, taking an arbitrary ϕ ∈ D(D) and using the weak formulation of the Jacobians. The key observation is that the contribution of the vortex balls will be negligible provided we can restrict our choice of test functions ϕ to functions constant in each vortex ball. This can be achieved thanks to [16, Proposition 9.6], i.e., given an arbitrary ϕ ∈ D(D), there exists a modified function φn which is constant on each ball B n j and such that

ϕ -φn C 0,α (D) ≤ Cs 1-α n , ∇ϕ -∇ φn L 1 (D) ≤ Cs n (3.9)
for each 0 ≤ α ≤ 1. Moreover, φn has compact support in D for n large enough. From (3.9) and the L 2 -boundedness of the normalized currents ĵn , we derive

D ∇ ⊥ ϕ -∇ ⊥ φn • ĵn dx ≤ ĵn L 2 (D) ∇ϕ -∇ φn L 2 (D) ≤ Cs 1/2 n . (3.10) 
Then (3.9), (3.10) and the strong convergence of µ n to µ yield

D ∇ ⊥ ϕ • j * dx = lim n→+∞ D ∇ ⊥ ϕ • ĵn dx = lim n→+∞ D ∇ ⊥ φn • ĵn dx = = lim n→+∞ ω -1 n D ∇ ⊥ φn • j(u n ) dx = lim n→+∞ - D φn dµ + µ -µ n , φn = - D ϕ dµ ,
and the conclusion follows.

The upper bound inequality

Throughout this section we shall use the following notation. For a nonnegative Radon measure µ ∈ H -1 (D) compactly supported in D, we denote by h µ ∈ H 1 0 (D) the solution of

-∆h µ = µ in H -1 (D) , h µ = 0 on ∂D . (4.1)
Using the Green representation h µ (x) = D G(x, y) dµ(y), we have We may now start the proof of claim (iii) in Theorem 1.1 in the case where the measure µ is absolutely continuous with respect to H 1 Σ. Proposition 4.1. Assume that (H1), (H2) and (1.2) hold. Let ε n → 0 + be an arbitrary sequence. For every nonnegative Radon measure µ of the form

I(µ) = 1 2 D |∇h µ | 2 dx
µ = f (x) H 1 Σ (4.2) with f ∈ L ∞ (Σ), there exists a sequence {u n } n∈N ⊂ H 1 (D; C) such that 1 ω n curl j(u n ) -→ n→+∞ µ strongly in (C 0,1 0 (D)) * ,
and

lim n→+∞ F εn (u n ) = I(µ) -ζ max µ(D) .
Proof. Without loss of generality we may assume that f ≡ 0, the case µ = 0 being easily true. It is well known that a measure of the form (4.2) belongs to H -1 (D), see e.g.

[18, Theorem 4.7.5]. We recall that the Dirichlet Green's function G in D defined by (1.3) satisfies (i) G(x, y) ≥ 0 for every x ∈ D \ {y} and for every y ∈ D;

(ii) for any compact set K ⊂⊂ D there exists a constant C K such that

G(x, y) + 1 2π ln |x -y| ≤ C K (4.3)
for all y ∈ K and x ∈ D.

In the three first steps below, we assume that the density function f does not vanish on Σ, i.e., f ≥ δ H 1 -a.e. on Σ for some constant δ > 0. The general case is considered in Step 4.

Step 1. We will construct a trial function using the Green function G(x, y) in the spirit of [START_REF] Sandier | A rigorous derivation of a free-boundary problem arising in superconductivity[END_REF]. Let γ : [0, ℓ] → Σ be an arclength parametrization of the curve Σ (so that ℓ = H 1 (Σ)), and define for t ∈ [0, ℓ], M (t) := µ γ([0, t]) .

Then M (•) is strictly increasing, M (0) = 0, and M (ℓ) = µ(Σ) = µ(D). Moreover M (•) is continuous since µ ∈ H -1 (D) and thus atomless.

Next we introduce for n large enough,

D n := ω n µ(Σ) 2π ,
where [•] denotes the integer part. Since M is continuous and increasing, we can define for k = 0, . . . , D n ,

t k,n := M -1 2πkω -1 n .
Now we set for k = 0, . . . , D n ,

a n k := γ(t k,n
) , and we claim that

Cω -1 n ≤ |a n k -a n k-1 | ≤ 2πδ -1 ω -1 n (4.4)
for each k ∈ {1, . . . , D n } and for some constant C > 0 independent of n. Write Σ k := γ([t k-1,n , t k,n ]) for k = 1, . . . , D n so that Σ k is a smooth curve whose end-points are a n k and a n k-1 . By construction, we have 2πω We claim that μn ⇀ µ weakly* as measures on D and μn (D) → µ(D). To prove the weak* convergence of μn , we fix an arbitrary function ψ ∈ C 0 0 (D). Observe that by (4.4) and the smoothness of Σ, we have diam(Σ k ) ≤ C 0 ω -1 n for a constant C 0 independent of k and n. Therefore, using µ(Σ k ) = 2πω -1 n we derive

-1 n = M (t k,n ) -M (t k-1,n ) = µ Σ k ≥ δH 1 Σ k ≥ δ|a n k -a n k-1 | . Now the curve Σ being smooth and |a n k -a n k-1 | small for n large, we deduce 2πω -1 n = µ Σ k ≤ f L ∞ (Σ) H 1 Σ k ≤ C f L ∞ (Σ) |a n k -a n k-1 |
D ψ dµ- D ψ dμ n = Dn k=1 Σ k ψ(x)-ψ(a n k ) dµ +o(1) ≤ Cµ(D)osc(ψ, C 0 ω -1 n )+o(1) , where osc(ψ, C 0 ω -1 n ) := sup |x-y|≤C0ω -1 n |ψ(x) -ψ(y)| -→ n→+∞ 0 ,
and the claim is proved.

Next we must regularize the measure μn . Let us define for k = 1, . . . , D n ,

f k,n (x) := 1 πε 2 n χ Bε n (a n k ) ,
where χ Bε n (a n k ) denotes the characteristic function of the ball B εn (a n k ). Set

f n (x) := 2π ω n Dn k=1 f k,n (x) and μn := f n (x)L 2 D . (4.5) Since ε n = o(ω -1 n )
, the functions f k,n have disjoint supports for n large by (4.4). As a consequence, μn (D) = μn (D) → µ(D). Since μn ⇀ µ, one may also easily check that μn ⇀ µ weakly* as measures on D.

Step 2. According to (4.1), we introduce

h n := h ωn μn = ω n h μn . Then D |∇h n | 2 dx = ω 2 n D×D G(x, y) f n (x)f n (y) dxdy (4.6) = 4π 2 Dn i,j=1 D×D G(x, y)f i,n (x)f j,n (y) dxdy . (4.7)
We need to estimate the integral term in the right handside of (4.6). We proceed as in [START_REF] Aftalion | Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate[END_REF] and we provide some details for the reader's convenience. Let N 0 ⊂⊂ D be a small tubular neighborhood of Σ. Let 0 < α < 1 be given small, and set ∆ α := {(x, y) ∈ D × D : |x -y| < α}. Since G is continuous on (N 0 × N 0 ) \ ∆ α , and the support of μn lies in N 0 for n large, by the weak* convergence of μn to µ we have

I α := lim n→+∞ (D×D)\∆α G(x, y) f n (x)f n (y)dxdy = = (N0×N0)\∆α G(x, y)dµ(x)dµ(y) ≤ D×D G(x, y)dµ(x)dµ(y) = 2I(µ) . (4.8)
Near the diagonal ∆ α we split the sum in (4.7) in two terms. Using (4.3) we estimate

II n α := 4π 2 Dn i=1 ∆α G(x, y) f i,n (x)f i,n (y)dxdy = = 4 Dn i=1 B1(0)×B1(0) G (a n i + ε n z 1 , a n i + ε n z 2 ) dz 1 dz 2 ≤ 4 Dn i=1 B1(0)×B1(0) 1 2π ln 1 ε n |z 1 -z 2 | + C dz 1 dz 2 ≤ 2πD n | ln ε n | + O(ω n ) , (4.9) 
and

III n α := 4π 2 0<|a n i -a n j |<α ∆α G(x, y) f i,n (x) f j,n (y)dxdy ≤ ≤ C 0<|a n i -a n j |<α ln |a n i -a n j | . (4.10)
By the smoothness of Σ and (4.4), there exists a constant c 0 > 0 independent of n such that for every i = j and every (x, y)

∈ Σ i × Σ j , |a n i -a n j | ≥ c 0 |x -y| . Since µ ∈ H -1 (D)
and it is supported by Σ, the map (x, y) → ln(c 0 |x -y|) belongs to L 1 (Σ × Σ, µ ⊗ µ). Therefore, by the Mean Value Theorem, for every i = j we can find a pair (

x n i , y n j ) ∈ Σ i × Σ j such that ω 2 n 4π 2 Σi×Σj ln(c 0 |x -y|) dµ(y)dµ(x) = ln(c 0 |x n i -y n j |) , noticing that 4π 2 ω -2 n = µ(Σ i )µ(Σ j ).
Applying the previous inequality to (x n i , y n j ) we deduce from (4.10) that for n large,

III n α ≤ C 0<|a n i -a n j |<α ln(c 0 |x n i -y n j |) ≤ Cω 2 n 0<|a n i -a n j |<α Σi×Σj ln(c 0 |x -y|) dµ(y)dµ(x) ≤ Cω 2 n (Σ×Σ)∩∆2α
ln(c 0 |x -y|) dµ(y)dµ(x) . Gathering (4.8), (4.9) and (4.12) yields lim sup

n→+∞ D×D G(x, y) f n (x)f n (y) dxdy -2πD n | ln ε n | ω -2 n ≤ ≤ lim sup α→0 + I α + lim sup n→+∞ (II n α -2πD n | ln ε n |)ω -2 n + ω -2 n III n α ≤ 2I(µ) ,
and in view of (4.6), we conclude that

1 2 D |∇h n | 2 dx ≤ πD n | ln ε n | + ω 2 n I(µ) + o(ω 2 n ) . (4.13)
Step 3. We shall now define a complex-valued order parameter u n associated to h n . We proceed as follows. Since

curl -∇ ⊥ h n = -∆h n = ω n f n (4.14)
is supported by ∪ k B εn (a n k ), we may locally define a phase

φ n in D \ ∪ k B εn (a n k ) by ∇φ n (x) = -∇ ⊥ h n (x) for x ∈ D \ ∪ k B εn (a n k ) .
In fact, since the balls B εn (a n k ) are pairwise disjoint (assuming n large enough) and the mass of ω n f n is quantized in each such ball, it is easy to show that φ n is single-valued modulo 2π, i.e., for any smooth Jordan curve Θ inside

D \ ∪ k B εn (a n k ), 1 2π Θ ∇φ n • τ ∈ Z ,
where τ : Θ → S 1 is any smooth vector field tangent to Θ. Hence exp(iφ n (x)) is well for every x ∈ D \ ∪ k B εn (a n k ). Then consider a smooth cut-off function ρ : R → [0, 1] such that ρ(t) ≡ 1 for t ≥ 2, and ρ(t) ≡ 0 for t ≤ 1. Define

ρ n (x) :=      ρ |x -a n k | ε n if x ∈ B 2εn (a n k ) for some k = 1, . . . , D n , 1 otherwise , (4.15) 
and observe that

E εn (ρ n , D) = O(ω n ) . (4.16)
Then set

u n (x) := ρ n (x)e iφn(x) for x ∈ D \ ∪ k B εn (a n k ) , 0 otherwise .
One may easily check that u n ∈ H 1 (D; C). We claim that

µ n = ω -1 n curl j(u n ) -→ n→+∞ µ strongly in (C 0,1 0 (D)) * . (4.17) 
A simple computation gives

j(u n ) = ρ 2 n ∇φ n = -ρ 2 n ∇ ⊥ h n a.e. in D . Given ϕ ∈ C 0,1
0 (D) satisfying |∇ϕ| ≤ 1, we deduce from (4.14) and the previous indentity,

µ n , ϕ = 1 ω n D ∇ϕ • ∇h n dx + 1 ω n D (ρ 2 n -1)∇ϕ • ∇h n dx = μn , ϕ + 1 ω n ∪ k B2ε n (a n k ) (ρ 2 n -1)∇ϕ • ∇h n dx . (4.18) 
In view of the compact embedding (C 0 0 (D)) * ֒→ (C 0,1 0 (D)) * , μn → µ strongly in (C 0,1 0 (D)) * . Hence we can estimate (4.13),

| µ n -µ, ϕ | ≤ μn -µ (C 0,1 0 (D)) * + ω -1 n L 2 (∪ k B 2εn (a n k )) 1/2 ∇h n L 2 (D) ≤ ≤ μn -µ (C 0,1 0 (D)) * + Cε n | ln ε n | 1/2 -→ n→+∞ 0 , (4.19) 
and (4.17) is proved. now compute the energy F εn (u n ). We infer from (4.13) and (4. [START_REF] Sandier | Vortices in the Magnetic Ginzburg-Landau Model[END_REF]) that

E εn (u n , D) = E εn (ρ n , D) + 1 2 D\∪ k Bε n (a n k ) ρ 2 n |∇φ n | 2 dx ≤ ≤ 1 2 D |∇h n | 2 + O(ω n ) ≤ πD n | ln ε n | + ω 2 n I(µ) + o(ω 2 n ) , (4.20) 
and it remains to evaluate the interaction with the rotation potential. First (4.17) yields

Ω n D ∇ ⊥ ζ • j(u n ) dx = | ln ε n | 2ζ max D ∇ ⊥ ζ • j(u n ) dx -ω 2 n µ n , ζ = = | ln ε n | 2ζ max D ∇ ⊥ ζ • j(u n ) dx -ζ max µ(D)ω 2 n + o(ω 2 n ) .
Arguing as in (4.18)-(4.19) we derive

D ∇ ⊥ ζ • j(u n ) dx = -ω n μn , ζ + O(ε n ω n | ln ε n | 1/2 ) = = -2π Dn k=1 1 πε 2 n Bε n (a n k ) ζ(x)dx + o(ε n | ln ε n | 3/2 ) = -2πD n ζ max + o(ε n | ln ε n | 3/2 ) ,
and consequently,

Ω n D ∇ ⊥ ζ • j(u n ) dx = -πD n | ln ε n | -ζ max µ(D)ω 2 n + o(ω 2 n ) . (4.21) 
elliptic estimates, ( hξnh n ) strongly converges in H 1 (D) to the harmonic function in D equal to h(xξ) on ∂D, that is hξh τ ξ µ . On the other hand, hξn → hξ strongly in H 1 (D) by strong continuity of translations in H 1 . Therefore h n → h τ ξ strongly in H 1 (D), and the proof is complete.

Theorem 4.1. Assume that (H1), (H2) and (1.2) hold. Let ε n → 0 + be an arbitrary sequence. For every nonnegative Radon measure µ ∈ H -1 (D) supported by Σ, there exists a sequence {u n } n∈N ⊂ H 1 (D; R 2 ) such that

1 ω n curl j(u n ) -→ n→+∞ µ strongly in (C 0,1 0 (D)) * ,
and

lim n→+∞ F εn (u n ) = I(µ) -ζ max µ(D) .
Proof. We shall prove that for any nonnegative Radon measure µ ∈ H -1 (D) supported by Σ, there exists a sequence of nonnegative Radon measures {µ k } k∈N of the form (4.2) such that

µ k → µ strongly in (C 0,1 0 (D)) * , µ k (D) → µ(D) and 
I(µ k ) → I(µ) as k → +∞ . (4.23) 
Assuming that such a sequence exists, Proposition 4.1 yields for each k a sequence

{v k n } n∈N ⊂ H 1 (D; R 2 ) such that ω -1 n curl j(v k n ) → µ k strongly in (C 0,1 0 (D)) * and F εn (v k n ) → I(µ k ) -ζ max µ k (D)
as n → +∞. It then suffices to apply the diagonal argument used in the proof of Proposition 4.1, Step 4, to construct the required sequence.

Step 1. We first consider the case where Σ is a segment in D. Without loss of generality we may assume that Σ = [a, b] × {0} ⊂⊂ D for some a, b ∈ R with a < b. Assume in addition that Σ ′ := supp µ ⊂⊂]a, b[×{0}. We shall regularize the measure µ using the following standard procedure. Consider a smooth function ̺ ∈ C ∞ (R) such that ̺ ≥ 0, supp ̺ ⊂ [-1, 1] and R ̺ = 1. For a positive integer k and x = (x 1 , x 2 ) ∈ R 2 , we introduce k (x) := k̺(kx 1 ), and we define

g k (x) := Σ ′ ̺ k (x -y) dµ(y) .
By construction, the function g k is nonnegative, smooth and supported by [a, b] × R for k large enough. Next we define for k large the measure

µ k := g k (x) H 1 Σ . may easily check that µ k ∈ H -1 (D), µ k (D) → µ(D)
and that µ k ⇀ µ weakly* in the sense of measures on D as k → +∞. In particular, µ k → µ strongly in (C 0,1 0 (D)) * . We claim that (4.23) holds. Indeed, using Fubini's theorem we first derive that

I(µ k ) = 1 2 Σ×Σ G(z, z ′ ) dµ k (z)dµ k (z ′ ) = = 1 2 Σ ′ ×Σ ′ (Σ∩B 1 k (x))×(Σ∩B 1 k (y)) G(z, z ′ )̺ k (z-x)̺ k (z ′ -y) dH 1 z dH 1 z ′ dµ(x)dµ(y) .
Next we observe that for k large enough, we have Σ

∩ B 1 k (x) = (x 1 , 0) + J k with J k := ( -1 k , 1 k ) × {0} for every x = (x 1 , x 2 ) ∈ Σ ′ .
Changing variables in (z, z ′ ) and using Fubini's theorem again, we obtain

I(µ k ) = 1 2 Σ ′ ×Σ ′ J k ×J k G(x + ξ, y + ξ ′ )̺ k (ξ)̺ k (ξ ′ ) dH 1 ξ dH 1 ξ ′ dµ(x)dµ(y) = 1 2 J k ×J k Σ ′ ×Σ ′ G(x + ξ, y + ξ ′ ) dµ(x)dµ(y) ̺ k (ξ)̺ k (ξ ′ ) dH 1 ξ dH 1 ξ ′ = 1 2 J k ×J k D×D G(x, y) d(τ ξ µ)(x)d(τ ξ ′ µ)(y) ̺ k (ξ)̺ k (ξ ′ ) dH 1 ξ dH 1 ξ ′ .
From the Green representation of h τ ξ µ we infer that for every (ξ,

ξ ′ ) ∈ J k × J k , D×D G(x, y) d(τ ξ µ)(x)d(τ ξ ′ µ)(y) = D ∇h τ ξ µ • ∇h τ ξ ′ µ dx .
Then from Lemma 4.2 we deduce that the function

Θ : (ξ, ξ ′ ) → D ∇h τ ξ µ • ∇h τ ξ ′ µ dx continuous on B δ (0) × B δ (0) for some 0 < δ < dist (Σ, ∂D). Therefore, lim k→+∞ I(µ k ) = lim k→+∞ 1 2 J k ×J k Θ(ξ, ξ ′ )̺ k (ξ)̺ k (ξ ′ ) dH 1 ξ dH 1 ξ ′ = 1 2 Θ(0, 0) = I(µ) ,
and (4.23) is proved.

Step 2. We now consider the case where Σ is a smooth embedded arc. We further assume that there exists a C 1 -diffeomorphism Φ : D → D such that Φ(x) = x in a neighborhood of ∂D and Σ := Φ(Σ) is a segment compactly included in D. Let µ be a nonnegative Radon measure in H -1 (D) whose support is compactly included in the relative interior of Σ. Denote by μ the push-forward of µ through Φ, i.e., μ := Φ # µ. Then supp μ is included in the relative interior of Σ and μ ∈ H -1 (D). Indeed, we easily check that

I(μ) = 1 2 Σ× Σ G(x, y) dμ(x)dμ(y) = 1 2 Σ×Σ G Φ(x), Φ(y) dµ(x)dµ(y) ≤ 1 4π Σ×Σ ln Φ(x) -Φ(y) dµ(x)dµ(y) + C ≤ 1 4π Σ×Σ ln |x -y| dµ(x)dµ(y) + C < +∞ ,
where we have used (4.3) and the constant C only depends on Σ, µ(Σ) and ∇Φ L ∞ (D) . Therefore we can apply Step 1 to μ to find a sequence of measures {μ k } k∈N of the form (4.2) such that supp μk ⊂ Σ, μk (D) → μ(D), μk ⇀ μ weakly* as measures on D, and I(μ k ) → I(μ) as k → +∞. Then we set µ k := (Φ -1 ) # μk for every integer k. Observe that µ k is of the form (4.2). Indeed, writing μk = ḡk (x) H 1 Σ with ḡk ∈ C 0 ( Σ), the area formula (see e.g. [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]) yields

µ k = ḡk • Φ(x)|∇ τ Φ(x)| H 1 Σ ,
where ∇ τ Φ denotes the tangential gradient of Φ along Σ. Then one may check that µ k (D) → µ(D), µ k ⇀ µ weakly* as measures on D as k → +∞.

We claim that (4.23) holds. First write 

I(µ k ) = 1 2 Σ× Σ G Φ -1 (x), Φ -1 (y) dμ k (x)dμ k (y) = 1 2 Σ× Σ S Φ -1 (x), Φ -1 (y) dμ k (x)dμ k (y) + 1 4π Σ× Σ ln 1 |Φ -1 (x) -Φ -1 (y)| dμ k (x)dμ k (y) = : I k + II k , ( 4 
II k = 1 4π Σ× Σ χ n (x, y) ln 1 |Φ -1 (x) -Φ -1 (y)| dμ k (x)dμ k (y) + + 1 4π Σ× Σ(1 -χ n (x, y)) ln 1 |Φ -1 (x) -Φ -1 (y)| dμ k (x)dμ k (y) =: III n k + IV n k . (4.27)
By the choice of χ n and (4.25), we have for every n,

lim k→+∞ IV n k = 1 4π Σ× Σ(1 -χ n (x, y)) ln 1 |Φ -1 (x) -Φ -1 (y)| dμ(x)dμ(y) .
Next observe that

C 1 |x -y| ≤ 1 Φ -1 (x) -Φ -1 (y) ≤ C 2 |x -y| for every (x, y) ∈ D × D, x = y , (4.28) 
for some constants C 1 > 0 and C 2 > 0 independent of x and y. Since I(μ) < +∞, estimate (4.3) tells us that the function ln |x -y| belongs to L 1 (D × D, μ ⊗ μ). Therefore we may apply the dominated convergence theorem to derive Step 3. We now consider the general Σ case. If Σ is an embedded arc, we may assume without loss of generality that Σ ⊂ Σ ′ for some C 2 -Jordan curve Σ ′ compactly included in D. Hence it suffices to consider the case where Σ is a Jordan curve. We shall use the following lemma. Its proof is postponed at the end of the section.

lim n→+∞ lim k→+∞ IV n k = 1 4π Σ× Σ ln 1 |Φ -1 (x) -Φ -1 (y)| dμ(x)
Lemma 4.3. Assume that Σ is a C 2 -Jordan curve. Then there exists δ 1 > 0 such that for every x 0 ∈ Σ, there exists a C 1 -diffeomorphism Φ : D → D satisfying Φ(x) = x in a neighborhood of ∂D and such that Φ(Σ ∩ B δ1 (x 0 )) is a segment compactly included in D.

Now let γ : [0, 1] → Σ be a constant speed parametrization of Σ. Let N be a positive integer to be chosen and set t n = n/N for n = 0, . . . , N , and

Σ n := γ([t n-1 , t n ]) for n = 1, . . . , N .
We choose N in such a way that diam(Σ n ) ≤ δ 1 for each n, where the constant δ 1 is given by Lemma 4.3. Setting x n = γ((t n-1 + t n )/2) for n = 1, . . . , N , we can apply Lemma 4.3 to each x n to find a C 1 -diffeomorphism Φ n : D → D such that Φ n (Σ n ) is a segment compactly included in D, and Φ n (x) = x in a neighborhood of ∂D.

Let µ be an arbitrary nonnegative Radon measure in H -1 (D) supported by Σ. Consider a decreasing sequence α k → 0 and define for k large enough, 

Σ k n := γ([t n-1 + α k , t n -α k ]) , µ k n := µ Σ k n for n = 1, . . . , N . Oviously µ k n ∈ H -1 (D) with supp µ k n ⊂ Σ k n .
µ k n = µ (∪ n Σ k n ) .
Then µ k m (D) → µ k (D) and µ k m ⇀ µ k weakly* as measures on D as m → +∞. In addition, from Lemma 4.1 we infer that h µ k n,m → h µ k n strongly in H 1 (D) for every integers n and k. Hence

I(µ k m ) = 1 2 N i,j=1 D×D G(x, y) dµ k i,m dµ k j,m = 1 2 N i,j=1 D ∇h µ k i,m • ∇h µ k j,m dx -→ m→+∞ 1 2 N i,j=1 D ∇h µ k i • ∇h µ k j dx = 1 2 N i,j=1 D×D G(x, y) dµ k i dµ k j = I(µ k ) .
Next recall that µ is atomless. Hence, by monotone convergence we have µ k (D) → µ(D) and I(µ k ) → I(µ) as k → +∞, as well as the weak* convergence of µ k to µ. Proof of Lemma 4.3. By assumption on Σ, there exists δ 0 > 0 such that for every x 0 ∈ Σ, Σ ∩ B 2δ0 (x 0 ) is the graph of a C 2 -function and B 2δ0 (x 0 ) ⊂ D. Now fix x 0 ∈ Σ and write every x ∈ D as x = x 0 + sτ + tτ ⊥ where τ denotes a unit tangent vector to Σ at x 0 . Then Σ ∩ B 2δ0 (x 0 ) = {x 0 + sτ + f (s)τ ⊥ , s ∈ [s min , s max ]} for some 0 > s min ≥ -2δ 0 , 0 < s max ≤ 2δ 0 , and a C 

2 -function f : [s min , s max ] → R satisfying f (0) = f ′ (0) = 0. Since Σ is C 2 ,
→ R such that 0 ≤ χ ≤ 1, χ(x) = 1 if |x| ≤ δ 1 , χ(x) = 0 if |x| ≥ 2δ 0 and |∇χ| ≤ δ -1 0 . Then we set for x ∈ D, Φ(x) := x -χ(x -x 0 )f (x -x 0 ) • τ τ ⊥ .
The reader may check that Φ maps D into D, Φ is one-to-one and defines a C

1 - diffeomorphism. Moreover Φ(Σ ∩ B δ1 (x 0 )) = {x 0 + sτ , -δ 1 ≤ s ≤ δ 1 } is a segment compactly included in D.
Proof of Corollary 1.1.

Step 1. For any nonnegative Radon measure µ supported by Σ we have

I(µ) -ζ max µ(D) ≥ I * (µ(D)) 2 -ζ max µ(D) , (4.34) 
and equality holds if and only if µ = λµ * for some constant λ ≥ 0. We recall that µ * is the unique minimizer of I among all probability measures supported by Σ and that I * := I(µ * ). The existence and uniqueness of µ * is classical, and we refer to [START_REF] Saff | Logarithmic Potentials with External Fields[END_REF] for further details. Optimizing (4.34) with respect to λ for measures of the form µ = λµ * , we derive that ζmax 2I * µ * is the unique minimizer of µ → I(µ)ζ max µ(D) over all nonnegative Radon measures supported by Σ.

Step 2. Let ε n → 0 + be an arbitrary sequence. The existence of a minimizer u n of F εn is classical and follows from standard arguments based on coercivity and lower semicontinuity properties of F εn . We first observe that F εn (u n ) ≤ F εn (1) = 0. Hence, by Theorem 1.1, there exists a subsequence {ε n k } such that

1 ω n k j(u n k ) → µ 0 strongly in (C 0,1 0 (D)) * as k → +∞,
for some nonnegative Radon measure µ 0 ∈ H -1 (D) supported by Σ. Moreover,

lim inf k→+∞ F εn k (u n k ) ≥ I(µ 0 ) -ζ max µ 0 (D) . (4.35)
the other hand, by Theorem 1.1, any nonnegative Radon measure µ ∈ H -1 (D) supported by Σ can be strongly approximated in (C 0,1 0 (D)) * by some sequence {ω -1

n k j(v k )} with {v k } ⊂ H 1 (D; C) satisfying lim k→+∞ F εn k (v k ) = I(µ) -ζ max µ(D) .
Since F εn k (u n k ) ≤ F εn k (v k ) we infer that µ 0 minimizes µ → I(µ)ζ max µ(D) over all nonnegative Radon measures supported by Σ. Consequently, µ 0 = ζmax 2I * µ * and the lim inf in (4.35) is actually a limit. Then the result along the full sequence {ε n } follows from a argument on the uniqueness of the limit.

Γ-convergence analysis for annular domains

In this section we briefly show how to extend the above techniques to the case of a multiply connected domain. The method we outline here may be applied for any finite number of holes (see [START_REF] Alama | Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains[END_REF]), but for simplicity we restrict to domains which are topological annuli. Let D denote a simply connected domain in R 2 with smooth boundary, and B ⊂⊂ D a smooth, simply connected domain compactly contained inside D. Then let

A := D \ B. For u ∈ H 1 (A; C) we define the functional J ε (u) := A 1 2 |∇u| 2 + 1 4ε 2 (|u| 2 -1) 2 -Ω ε V (x) • j(u) dx .
Here the given vector field V : R 2 → R 2 is assumed (for simplicity) to be locally Lipschitz continuous. We are interested in the asymptotic behavior of J ε as ε → 0, with an angular speed Ω ε as in (1.2).

Asymptotic vorticity of the hole

For multiply connected domains, the highest order term in an expansion of the minimal energy is partially due to the turning of the phase of a minimizer around the holes. The first step in studying vortices in the interior is to identify the asymptotic vorticity of the hole, and then split the energy into contributions from the hole and from the interior. To this purpose we first study the minimization of the functional J ε over S 1 -valued maps.

Observe that for S 1 -valued maps, the functional J ε only depends on the angular speed and not anymore on ε itself, i.e., for every u ∈ H 1 (A; S 1 ),

J ε (u) = H Ω (u) := A 1 2 |∇u| 2 -ΩV (x) • j(u) dx ,
with Ω = Ω ε . We are therefore interested in minimizing H Ω over the class H 1 (A; S 1 ), and here Ω > 0 could be any positive parameter. It is well known that maps in H 1 (A; S Proof. We follow here some of the arguments in [6, Chap. 1], and we provide some details for the reader conveniance.

Step 1. We claim that for any u ∈ H 1 (A; S 1 ) such that deg u = d, we have

H Ω (u) ≥ 1 2 A |∇Φ d | 2 -Ω 2 |V | 2 dx .
Indeed, we first observe that curl j(u) = 0 since u is S 1 -valued. On the other hand, ∇ ⊥ Φ d + ΩV is also curl-free and As in the simply connected case this Γ-convergence result could lead to the asymptotic description of the vorticity in F ε -global minimizers. Actually Theorem 5.2 combined with Proposition 5.2 also gives the asymptotic behavior of vorticity in J ε -global minimizers.

The key observation here is that minimizers for J ε yield quasi-minimizers for F ε , and conversely.

Corollary 5.1. Assume that (H1'), (H2') and (5.10) hold. Let ε n → 0 + be an arbitrary sequence. For every integer n ∈ N, let u n ∈ H 1 (A; C) be a minimizer of J εn (•). Then,

1 ω(ε n ) curl j(u n ) -→ n→+∞ ζ max 2 Ī * μ * strongly in (C 0,1 0 (A)) * ,
where μ * is the unique minimizer of Ī(•) over all probability measures supported by Σ, and Ī * := Ī(μ * ). In addition,

J εn (u n ) = - Ω 2 n 2 A |V | 2 -|∇ζ| 2 dx - ζ 2 max 4 Ī * ω 2 n + o(ω 2 n ) . (5.16) 
We conclude this subsection with an elementary example motivated by [START_REF] Aftalion | Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate[END_REF][START_REF] Alama | Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains[END_REF][START_REF] Alama | Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions[END_REF]. In particular, the set Σ is given by the concentric circle B r * (0) with

r * = R 2 -ρ 2 2 ln(R/ρ) ∈ (ρ, R) .
Here again, the uniform measure µ * = (2πr * ) -1 dH 1 Σ turns out to be the Green equilibrium measure for Σ in A, i.e., Ī(µ * ) = Ī * . Indeed, one may easily check that the function ∂h n ∂ν = -1 for every k = 1, . . . , D n .

Hence, for any smooth Jordan curve Θ inside A \ ∪ k B εn (a n k ),

1 2π Θ ∇ ⊥ hn • τ ∈ Z ,
where τ : Θ → S 1 is any smooth vector field tangent to Θ. Consequently, we may locally define a phase φ n in A \ ∪ k B εn (a n k ) by ∇φ n (x) = -∇ ⊥ hn (x) , x ∈ A \ ∪ k B εn (a n k ) , and then the map exp(iφ n (x)) is well defined for every x ∈ A \ ∪ k B εn (a n k ). Finally we consider a profile function ρ n as defined in (4.15) and we set v n (x) := ρ n (x)e iφn(x) for x ∈ A \ ∪ k B εn (a n k ) , 0 otherwise .

Since -∆ hn = ω n μn in A, using (5.37) we may proceed as in the proof of Proposition 4.1

Step 3, to prove that ω -1 n curl j(v n ) → µ strongly in (C 0,1 0 (A)) * as n → +∞ , and that (5.39)

  are smooth and diffeomorphic to ∂D for all t ∈ [0, δ 0 ]. Define the set T n ⊂ [0, δ 0 ] by

  ) and (2.18) together with Lemma 2.1. As a consequence, setting μn := ω -1 n curl j(ũ n ), we have µ nμn (C 01 0 (D)) * -→

(4. 11 )

 11 On the other hand µ ∈ H -1 (D) so it is atomless, and thus µ ⊗ µ does not charge {x = y} ∩ D × D. Consequently the integral term in the right handside of (4.11) as α → 0 + . Hence,lim α→0 + lim sup n→+∞ ω -2n III n α = 0 . (4.12)

Σ×Σ 2 Σ×ΣS

 2 .24) where S denotes the regular part of the Green function G, i.e., S(x, y) := G(x, y) + 1 2π ln |x -y| (which is a locally smooth function on D × D). Since μk converges weakly* as measures to μ, we have μk ⊗ μk ⇀ μ μ weakly* as measures on D × D , S Φ -1 (x), Φ -1 dμ(x)dμ(y) = 1 (x, y) dµ(x)dµ(y) .

( 4 .

 4 26)Next we consider a decreasing sequence α n → 0. For every integer n, we introduce a smooth cut-off functionχ n ∈ C ∞ (D × D) such that 0 ≤ χ n ≤ 1, χ n (x, y) = 0 if |Φ -1 (x) -Φ -1 (y)| ≥ α n , and χ n (x, y) = 1 if |Φ -1 (x) -Φ -1 (y)| ≤ α n+1 . Note since μ ∈ H -1 (D),the measure μ has no atoms, and hence μ ⊗ μ does not charge the diagonal {x = y} ∩ D × D. Consequently, χ n → 0 μ ⊗ μ-a.e. in D × D. Then write

  Applying Step 2 for each n and k, we find a sequence of measures {µ k n,m } m∈N of the form (4.2) such that supp µ k n,m ⊂ Σ n , µ k n,m (D) → µ k n (D), µ k n,m ⇀ µ k n weakly* as measures on D, and I(µ k n,m ) → I(µ k n ) as m → +∞. Define the measures

  )) * = 0 (here we use again the compact embedding (C 0 0 (D)) * ֒→ (C 0,1 0 (D)) * ), and the conclusion follows for a suitable diagonal sequence µ k = µ k m k .

1 2 A

 12 ) are classified by their topological degree, i.e., their winding number around the hole B. Hence, minimizing first in each homotopy class and then choosing the lowest energy level, one reaches the minimum of the energy of H Ω , i.e.,min H Ω = min d∈Z g(d, Ω) ,(5.1)whereg(d, Ω) := min H Ω (u) : u ∈ H 1 (A; S 1 ) , deg u = d . (5.2)Concerning the minimization problem (5.2), we have the following result.Proposition 5.1. For every d ∈ Z, the minimization problem (5.2) admits a unique solution u d up to a (complex) multiplicative constant of modulus one. Moreover,g(d, Ω) = 1 |∇Φ d | 2 -Ω 2 |V | 2 dx ,(5.3)where Φ d is the unique solution of the linear equation               -∆Φ d = Ω curl V in A , Φ d = 0 on ∂D , Φ d = const.on ∂B ,

V 2 A 2 AF

 22 ∂B j(u) -∇ ⊥ Φ d -ΩV • τ = 2πd -• τ = 0 , so that we can find a scalar function H ∈ H 1 (A) such that j(u) = ∇H + ∇ ⊥ Φ d + ΩV . Since u is S 1 -valued, we have |∇u| 2 = |j(u)| 2 ,and thusH Ω (u) = 1 2 A |j(u) -ΩV | 2 -Ω 2 |V | 2 dx = 1 |∇Φ d | 2 -Ω 2 |V | 2 dx + 1 |∇H| 2 dx + A ∇ ⊥ Φ d • ∇H dx .(ii) for any {v n } n∈N ⊂ H 1 (D; C) such that (5.15) holds for some nonnegative Radon measure µ in H -1 (A) supported by Σ, we havelim inf n→+∞ F εn (v n ) ≥ Ī(µ)ζ max µ(A) ;(iii) for any nonnegative Radon measure µ in H -1 (A) supported by Σ, there exists a sequence {v n } n∈N ⊂ H 1 (A; C) such that (5.15) holds and lim n→+∞ εn (v n ) = Ī(µ)ζ max µ(A) .

Example 5 . 1 . 2 + R 2

 5122 Assume that D = B 1 (0), B = B ρ (0) for some 0 < ρ < R and V (x) = x ⊥ . Then the solution ζ of (5.7) is given byζ(x) = -|x| 2 ρ 2 2 ln(R/ρ) ln |x| + ρ 2 ln R -R 2 ln ρ 2 ln(R/ρ) .

  r * ) 2π(ln(R/r * ) + ln(r * /ρ))ln(|x|/ρ) if ρ ≤ |x| ≤ r * , ln(r * /ρ) 2π(ln(R/r * ) + ln(r * /ρ)) ln(R/|x|) if r * ≤ |x| ≤ R , solves -∆h * = µ * in A with h * |∂A = 0. Hence h * (x) = A Ḡ(x, y) dµ * (y), and since h * is constant on Σ the conclusion follows from Theorem II.5.12 in[START_REF] Saff | Logarithmic Potentials with External Fields[END_REF].f n as defined in (4.5) and we set μn := f n L 2 A. Then μn ⇀ µ weakly* as measures on A as n → +∞. Next we consider the solution h n of-∆h n = ω n f n in A , h n = 0 on ∂A .Arguing exactly as in Step 2 of the proof of Proposition 4.

E

  εn (v n , A) ≤ πD n | ln ε n | + ω 2 n Ī(µ) + o(ω 2 n ) . (5.38)To evaluate the rotation part of the energy, we first argue as for (4.21) to obtainΩ n A ∇ζ ⊥ • j(v n ) dx = -πD n | ln ε n |ζ max µ(A)ω 2 n + o(ω 2 n ) .

  Without loss of generality we may assume that ω n = O(D n ), otherwise there is nothing to prove. In view of claim (iv) in Proposition 2.1 and Lemma 2.1, we haveD n ≤ O(| ln ε n |).Next, combining the lower bound (2.1) with (2.3), we infer that

	(2.4)
	thanks to Lemma 2.1. Then (2.3) follows since Ω n = O(| ln ε n |) and ζ ∈ C 0,1 0 (D).
	Step 2.

  We choose a new radius s n := e -√ ωn and thus s n > r n for n large enough. We now reapply Proposition 2.1 with r = s n to obtain a new family of larger balls { Bn By claim (ii) in Proposition 2.1 and (2.15) we have D sn = D n . Using the lower bound (2.1) together with (2.3) and (2.15), we can argue as in Step 2 to derive

3. If ln | ln ε n | ≤ o(ω n ) the conclusion follows from (2.7), (2.8) and (2.9). If ω n ≤ O(ln | ln ε n |) we must refine our lower bound by growing the vortex balls. First observe that in this regime, (2.7) and (2.8) ensures that

D - n = D + n = 0 (2.15)

for n large so that each ball B n i ⊂ D εn carries a nonnegative degree and D n = D * n . j } j∈Jn , each new ball Bn j containing one or more of the smaller balls {B n i }.

  . Step 1. We first assume that {u n } n∈N ⊂ H 1 (D; C) ∩ C 1 (D). Using the notations of the previous proof, we apply Proposition 2.2 to obtain the family of vortex balls {B n i } i∈In . Define the measure Since D n ≤ O(ω n ) we have |μ n |(D) ≤ C for a constant C independent of n. Therefore, up to a subsequence, μn ⇀ µ as n → +∞ weakly* in the sense of measures on D for some finite Radon measure µ. We claim that µ is nonnegative and supported by Σ. Indeed, decompose μn in its Hahn decomposition, i.e., write μn = μ+ nμ-

	μn :=	2π ω n i∈In	d i,n δ a n i .
	n where μ+ n and -μ -n are respectively the positive and the negative parts of μn . Then we have
	μ-n (D) =	2πD -n ω n	→ 0 as n → +∞ ,

thanks to

(2.8)

, and the nonnegativity of µ follows. Now consider the sequence of sets V n := {ζ(x) ≤ ζ maxη n } where η n is given by (2.6). In view of (2.7), we have

  , and the following elementary lemma holds. Lemma 4.1. Let {µ n } n∈N be a sequence of nonnegative Radon measure in H -1 (D) with compact support in D. Assume that µ

n ⇀ µ weakly* as measures on D as n → +∞, for some µ ∈ H -1 (D) compactly supported in D. Then I(µ n ) → I(µ) if and only if h µn → h µ strongly in H 1 (D) as n → +∞.

  there exists a constant κ > 0 which only depends on Σ such that |f ′′ (s)| ≤ κ for every s ∈ [s min , s max ]. Hence we may choose δ 0 smaller if necessary (uniformly with respect to x 0 ) in such a way that |f ′ | ≤ 1. Then s min ≤ -δ 0 , s max ≥ δ 0 and Σ ∩ B δ (x 0 ) is still a connected arc for any δ ≤ 2δ 0 .Set δ 1 := δ 0 /(2 + κ). We claim that Σ ∩ B δ1 (x 0 ) satisfies the requirement. Indeed, we may construct a C 1 -diffeomorphism Φ : D → D as follows. Consider a smooth cut-off function χ : R 2

  1, we derive that1 2 A |∇h n | 2 dx ≤ πD n | ln ε n | + ω 2 n Ī(µ) + o(ω 2 n ) .

	Next we introduce							
		hn := h n +	κ n cap(B)	ξ with κ n :=	∂B	∂h n ∂ν	-2π	1 2π ∂B	∂h n ∂ν	,
	where [•] denotes the integer part. Noticing that κ n = O(1) we deduce
	1 2 A	|∇ hn | 2 dx =	1 2 A	|∇h n | 2 dx +	κ 2 n 2cap(B) 2 A ≤ πD n | ln ε n | + ω 2 |∇ξ| 2 dx n Ī(µ) + o(ω 2 n ) . (5.37)
	In view of (5.6) we have					
					1 2π ∂B	∂ hn ∂ν	=	1 2π ∂B	∂h n ∂ν	∈ Z ,
	and since ξ is harmonic in A, 1 2π ∂Bε n (a n k ) ∂ hn ∂ν =	1 2π ∂Bε n (a n k )
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Combining (4.20) with (4.21) finally leads to F εn (u n ) ≤ I(µ)ζ max µ(D) + o [START_REF] Aftalion | Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate[END_REF] .

In view of Theorem 3.1, the conclusion follows taking the lim sup as n → +∞ in the previous inequality.

Step [START_REF] Alama | Thin film limits for Ginzburg-Landau with strong applied magnetic fields[END_REF]. We now consider the case where the density f is allowed to vanish. Let {δ k } ⊂ R be a sequence decreasing to 0 as k → +∞. Then for k ∈ N, we consider the measure

By monotone convergence, one has

Obviously µ k also converges µ strongly in (C 0,1 0 (D)) * . Applying Step 1 to Step 3, we find for every k ∈ N a sequence {v k n } n∈N ⊂ H 1 (D; C) such that ω -1 n curl j(v k n ) → µ k strongly in (C 0,1 0 (D)) * and F εn (v k n ) → I(µ k )ζ max µ k (D) as n → +∞. Hence for every k ∈ N, we can find N k ∈ N such that for every n ≥ N k ,

Moreover we can assume without loss of generality that the sequence of integers {N k } k∈N is strictly increasing. Therefore given any integer n large enough, there is a unique k n ∈ N such that N kn ≤ n < N kn+1 , and k n → +∞ as n → +∞. We may then define u n := v kn n . By construction, the sequence {u n } satisfies the required properties.

To consider the case of a general measure µ in H -1 (D), we shall need the following continuity lemma. Lemma 4.2. Let µ be a nonnegative Radon measure in H -1 (D) such that supp µ ⊂⊂ D. For ξ ∈ R 2 , let τ ξ µ be the translated measure defined by τ ξ µ(B) = µ(-ξ + B) for any Borel set B ⊂ R 2 .

Then there exists 0 < δ < dist (supp µ, ∂D) such that τ ξ µ ∈ H -1 (D) for every ξ ∈ B δ (0), and the mapping ξ → h τ ξ µ ∈ H 1 (D) is strongly continuous on B δ (0).

Obviously µ ∈ H -1 ( D δ ) and we can set h ∈ H 1 ( D δ ) to be the unique solution of

By our choice of δ, the function is smooth in the δ-neighborhood of ∂D. Next, for ξ ∈ B δ (0) we denote by hξ ∈ H 1 (D) the function defined by hξ := h(xξ) for x ∈ D.

Observe that hξ ∈ H 1 (D) and

Then, using the fact that the function Φ d is constant on ∂A, an integration by parts yields A ∇ ⊥ Φ d • ∇H dx = 0 and the claim follows.

Step 2. We claim that there exists u d ∈ H 1 (A; S 1 ) such that deg u d = d and

we may locally define a scalar function ψ in A such that

Then u d := exp(iψ) is well defined and satisfies the required properties. Clearly the construction of u d is unique modulo a constant phase, and the proof is complete.

In order to solve problem (5.1), it now suffices to express (5.3) explicitely in terms the integer d. To this purpose, we first introduce the solution ξ of the linear problem

on ∂B .

(

The function ξ is smooth in A and 0 ≤ ξ ≤ 1 by the maximum principle. Moreover, the Dirichlet energy of ξ is the so-called From the Lipschitz assumption on V and standard elliptic regularity, we infer that ζ belongs to C 1,α 0 (A) for every 0 ≤ α < 1. We set

Observing that (5.7) implies

we find that for every integer d, the function Φ d determined by (5.4) is explicitly given by

(5.8) Moreover, using (5.5), (5.6) and (5.7) we readily obtain that for every d ∈ Z,

As a consequence, an integer d Ω is a minimizer in (5.1) if and only if d Ω minimizes the function d ∈ Z → |γ V Ω -2πd|.

We may now state our result concerning problem (5.1).

Theorem 5.1. Up to multiplicative constants of modulus one, the minimization problem (5.1) admits exactly two solutions (of distinct topological degree) if γ V Ω/π is an odd integer, and a unique solution otherwise. Moreover, if d Ω ∈ Z is a minimizer in (5.1),

denotes the integer part, and

as Ω → +∞ .

(5.9)

The Γ-convergence result

To state the parallel Γ-convergence result for the anular domain case we must give more specific hypotheses on the potential V and the angular speed Ω ε . In addition to the Lipschitz regularity, we assume in the sequel that V satisfies the following assumptions:

We note that in (H1'), the assumption that ζ max is achieved at positive values of ζ is not restrictive. Indeed, considering the complex conjugate of an admissible function replaces V by -V in the energy and hence ζ by -ζ.

As for the simply connected domain case, we assume that Ω ε is near the critical value for the presence of vortices which again reads

for some positive function ω satisfying ω(ε) → +∞ with ω(ε) ≤ o(| ln ε|) as ε → 0 + , exactly as in (1.2).

In the sequel, for an arbitrary sequence ε n → 0 + , we will denote by u ⋆ n a minimizer of H Ωn , i.e., a solution of (5.1), and its corresponding topological degree will be denoted by d n . For brievety we shall also write (5.8) as

We emphasize that α n = O(1) as n → +∞ thanks to Theorem 5.1.

For v ∈ H 1 (A; C), we now define

The following proposition shows that the functional F εn (ū ⋆ n u) captures the energy induced by interior vorticity of a given configuration u.

Proposition 5.2 (Energy decomposition). Assume that (5.10) holds. Let ε n → 0 + be an arbitrary sequence and

Moreover, if one of the conditions in (5.11) holds, then

as n → +∞ .

(5.12)

Proof. Straightforward computations yield

By the proof of Proposition 5.1, we have

Then we observe that

Since n = |v n |, we also have the same estimate as above with E εn (v n , A) instead of E εn (u n , A). Assuming that one of the conditions in (5.11) holds and arguing as in (2.2), we derive that either

Consequently, if one of the conditions in (5.11) is satisfied, (5.12) holds and the conclusion follows combining (5.12) with (5.9).

For a nonnegative Radon measure µ on A, we define

where the function denotes the Dirichlet Green's function of the domain A, i.e., for every y ∈ A, Ḡ(•, y) is the solution of

We may now state the Γ-convergence result for annular domains which involves the family of "reduced" functionals {F ε } ε>0 .

Theorem 5.2. Assume that (H1'), (H2') and (5.10) hold. Let ε n → 0 + be an arbitrary sequence. Then, (i) for any {v n } n∈N ⊂ H 1 (D; C) satisfying sup n F εn (v n ) < +∞, there exist a subsequence (not relabelled) and a nonnegative Radon measure µ in H -1 (A) supported by

(5.15)

Compactness of normalised weak Jacobians

In this subsection we shall be concerned with the proof of claim (i) in Theorem 5.2.

We consider an arbitrary sequence ε n → 0 + . For any {v n } n∈N ⊂ H 1 (D; C) satisfying sup n F εn (v n ) < +∞, we first derive exactly as in Lemma 2.1 the estimates

(5.17)

Hence, assuming in addition that {v n } n∈N ⊂ C 1 (A), we can apply the vortex ball construction in Proposition 2.1 with A in place of D, and

)), with associated degrees d i,n and total approximate vorticity

The first difference with the simply connected case arises in an estimate analogue to (2.3), as we must take into account an additional contribution to the potential term due to the boundary ∂B. Since one or more of the vortex balls B n i may intersect ∂A ε \ ∂D ε , we will need to perturb this boundary slightly. When calculating the boundary term it will be convenient to choose a level set of ξ . For 0 < s < t < 1, denote by σ t := {x ∈ A : ξ(x) = t}, and A s,t := {x ∈ A : s < ξ < t} .

(

As an easy consequence of the Maximum Principle and the Hopf boundary lemma, each curve σ t is smooth and the family {σ t } 0<t<1 realizes a foliation of A. Then, for every t ∈ (0, 1) the curve σ t is diffeomorphic to ∂B, and the set A t,1 is a neighborhood of ∂B in A. Now we shall choose an appropriate level set of ξ. Define

We note that the measure of the complement (0, 1) \ J n is of the same order as r n = | ln ε n | -4 . Hence we can find t n ∈ J n such that the level curve γ n := σ tn satisfies

and consequently

). This construction allows us to define to topological degree of v n around γ n since v n does not vanish on γ n , i.e.,

Then an approximate total vorticity in A of the configuration v n is given by |δ n | + D n .

We may now state the following proposition which parallels Proposition 2.2. Proof.

Step 1. Arguing exactly as in the proof of (2.3), we first derive

(5.20)

Then following essentially the proof of Lemma 3.4 in [START_REF] Alama | Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains[END_REF], we obtain

(5.21)

Here the fact that γ n is a level set of ξ is essential in obtaining the degree δ n from the boundary term when integrating by parts.

Step 2. As in the proof of Proposition 2.2, we may assume that ω n ≤ O(D n + |δ n |). From (5.17 

where we have used the fact that 0 ≤ ξ ≤ 1 and 0 < t n < 1.

Next we consider a sequence η n → 0 as in (2.6), and we group vortex balls into different classes as in the proof of Proposition 2.2 (we refer to it for the notation). Exactly as in (2.10) and (2.12), we derive that

and

(5.24)

For negative degrees, we observe that {ζ ≤ 0} ∩ Σ = ∅ since ζ max = |ζ| max > 0. Hence we can estimate as for the class

(5.25) Inserting (5.23), (5.24) and (5.25) in (5.22) yields

Using the fact that |α n | = O(1), we easily deduce the estimate

for a constant C > 0 independent of n. We claim that

(5.28) Accepting (5.28), we infer from (5.26) that

which clearly implies

(5.29)

To prove (5.28) we introduce

and

If 2|δ n | ≥ D n and n large enough, we estimate using (5.27),

(5.30)

In the opposite case 2|δ n | < D n (and n large), we have in view of (5.27),

Set ṽn := v n /|v n |. Using claim (ii) in Proposition 2.1, the Coarea Formula and Jensen Inequality, we derive from (5.30) and (5.31) that

and (5.28) is proved (here we have also used the fact that |∇ξ| does not vanish in A).

Step 

Then we can argue exactly as in (3.6) to derive that

Setting jn (x) as in (3.5) (with A εn in place of D εn ), up to a subsequence we have jn ⇀ j * weakly in L 2 (A; R 2 ) as n → +∞. By lower semicontinuity, we obtain

(5.33)

In addition, arguing as in the proof of (3.8), we deduce that

and thus µ ∈ H -1 (D) since j * ∈ L 2 (A; R 2 ).

Next we introduce h µ ∈ H 1 0 (A) to be the unique solution of

and we set

By construction, we have curl (j * + ∇ ⊥h µ ) = 0 in H -1 (A) and ∂B (j * + ∇ ⊥h µ ) • τ = 0. Hence there exists g ∈ H 1 (A) such that j * + ∇ ⊥h µ = ∇g. Arguing as in the proof of Proposition 5.1, we derive

(5.34)

Then using (5.5) and h µ |∂A = 0, we obtain A ∇h µ • ∇ξ = 0, so that

(5.35)

Finally, using the Green representation of h µ we obtain

and the conclusion follows gathering (5.33), (5.34), (5.35) and (5.36).

The upper bound inequality

Proof of Theorem 5.2, claim(iii). We present here the proof in the case where the measure µ ∈ H -1 (A) is absolutely continuous with respect to H 1 Σ, and more precisely for µ of the form (4.2) with a nonvanishing density function f . The general case follows by approximation as already pursued in Section 4.

For such a measure µ we first proceed exactly as in Step 1 of the proof of Proposition 4.1, and we refer to it for the notation. For each integer n, we consider the function In a similar way we derive that whence the convergence of ω -1 n j(v n ) along the full sequence (recall that Ī * = Ī(µ * ) and that μ * is the minimizer of Ī over all probality measures supported by Σ, see [START_REF] Saff | Logarithmic Potentials with External Fields[END_REF]). In addition, strongly in (C 0,1 0 (A)) * . Indeed, given an arbitrary function ϕ ∈ C 0,1 0 (A), we have 1

where we have used (5.13) and the fact that curl j(u ⋆ n ) = 0 in A. Arguing as in the proof of Proposition 5.2 we estimate

where the constant C only depends on ϕ, and the proof is complete.