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GLOBAL CLASSICAL SOLUTIONS FOR

REACTION-DIFFUSION SYSTEMS WITH

NONLINEARITIES OF EXPONENTIAL GROWTH

BELGACEM REBIAI AND SAÏD BENACHOUR

Abstract. The aim of this study is to prove global existence of
classical solutions for problems of the form ∂u

∂t
− a∆u = −f(u, v),

∂v
∂t

−b∆v = g(u, v) in (0,+∞)×Ω where Ω is an open bounded do-

main of class C1 in R
n, a > 0, b > 0, a 6= b and f , g are nonnegative

continuously differentiable functions on [0,+∞)× [0,+∞) satisfy-

ing f(0, η) = 0, g(ξ, η) ≤ Cϕ(ξ)eαηβ

and g(ξ, η) ≤ ψ(η)f(ξ, η) for
some C > 0, α > 0 and β ≥ 1 where ϕ and ψ are any nonnegative
continuously differentiable functions on [0,+∞) satisfying ϕ(0) = 0
and lim

η→+∞

ηβ−1ψ(η) = 1. The asymptotic behavior of the global

solutions as t goes to +∞ is also studied. For this purpose, we use
the appropriate techniques which are based on semigroups, energy
estimates and Lyapunov functional methods.

1. Introduction

In this article, we are interested in global existence and large time
behavior of classical solutions to the following reaction-diffusion system

∂u

∂t
− a∆u = −f(u, v) in (0,+∞) × Ω,(1.1)

∂v

∂t
− b∆v = g(u, v) in (0,+∞) × Ω.(1.2)

where Ω is an open bounded domain of class C1 in R
n, a, b are positive

constants and f , g are nonnegative continuously differentiable func-
tions on [0,+∞) × [0,+∞) satisfying the following assumptions:

(A1) f(0, η) = g(0, η) = 0 and g(ξ, 0) ≥ 0,

(A2) g(ξ, η) ≤ ψ(η)f(ξ, η)
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2 BELGACEM REBIAI AND SAÏD BENACHOUR

where ψ is a nonnegative continuously differentiable function on [0,+∞)
such that there exists a constant β ≥ 1 satisfying lim

η→+∞
ηβ−1ψ(η) = 1,

(A3) g(ξ, η) ≤ Cϕ(ξ)eαηβ

for some C > 0 and α > 0 where β is the same as in (A2) and ϕ is any
nonnegative continuously differentiable function on [0,+∞) such that
ϕ(0) = 0.
We assume that the solutions of (1.1)-(1.2) also satisfy:
- the initial conditions:

(1.3) u(0, x) = u0(x), v(0, x) = v0(x) in Ω,

where u0, v0 are nonnegative and bounded functions.
- the homogeneous boundary conditions:
(1.4)

λ1u+ (1 − λ1)
∂u

∂ν
= 0, λ2v + (1 − λ2)

∂v

∂ν
= 0 on (0,+∞) × ∂Ω,

where ∂
∂ν

denotes the outward normal derivative on ∂Ω and λ1, λ2 are
functions of class C1 on ∂Ω such that: 0 ≤ λi ≤ 1, i = 1, 2.

Let us mention a typical example of the nonlinearities we are con-
sidering:

f(ξ, η) = ξ(1 + η)eη2

,

g(ξ, η) = ξeη2

,

ψ(η) =
1

1 + η
,

ϕ(ξ) = ξ.

When a = b, under the assumptions (A1) and (A2), the existence
of global classical solutions of (1.1)-(1.4) is an evident consequence of
the maximum principle.

The problem on existence and uniform bounds of solutions was ini-
tially proposed by R. H. Martin when

g(ξ, η) = f(ξ, η) = ξηβ, β ≥ 1,

with various boundary conditions and nonnegative initial data.
Firstly, N. D. Alikakos [1] obtained L∞-bounds of solutions of this
problem subject to the homogeneous Neumann boundary conditions
under the assumption 1 ≤ β < n+2

n
.
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Secondly, K. Masuda [13] solved the problem when

g(ξ, 0) = f(0, η) = 0,

g(ξ, η) ≤ ϕ(ξ)f(ξ, η),

g(ξ, η) ≤ ϕ(ξ)(η + ηβ), β > 0,

where ϕ is a monotonically increasing function on [0,+∞).
S. L. Hollis, R. H. Martin and M. Pierre [9] treated this probem and
others with triangular structure for the reactive terms and proved the
existence of global classical solutions under a polynomial growth as-
sumption on g.

In [6] A. Haraux and A. Youkana have generalized the method of K.
Masuda to handle nonlinearities f(ξ, η) and g(ξ, η) satisfying

g(ξ, η) = f(ξ, η) ≤ ξeαηβ

, 0 < β < 1, α > 0.

In [3] A. Barabanova treated the case where β = 1 and obtained the
global existence of classical solutions under the condition

‖u0‖∞ <
8ab

αn(a− b)2
, a 6= b.

In the case of Ω = R
n, M. A. Herrero, A. A. Lacey and J. J. L. Ve-

lazquez [8] proved that the Cauchy problem admits a global classical
solution for any nonnegative and bounded initial data if

g(ξ, η) = f(ξ, η) ≤ Cϕ(ξ)eαη,

for some C > 0, α > 0 and any continuous and nonnegative function
ϕ on [0,+∞) such that ϕ(0) = 0.

Note that some investigations had the aim to weaken the assump-
tions on the growth of g and on initial data. For instance, in [16]
M. Pierre proved that, by using a structure similar to (A2), the exis-
tence of global weak solutions for reaction diffusion systems preserving
positivity of the solutions with some good boundary conditions and
integrable initial data. But these solutions are only integrable and one
cannot apply the L∞-approach even if the initial data are regular.

Our paper mainly complements the investigations of [6], [3], [11] and
[16]. We prove the existence of global classical solutions of (1.1)-(1.4)
when the reactive terms satisfying (A1)-(A3).
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Throughout this study, we denote by ‖ · ‖p, p ∈ [1,+∞) and ‖ · ‖∞
the usual norms in spaces Lp(Ω) and L∞(Ω), respectively, defined by

‖u‖p =

(
∫

Ω

|u(x)|pdx

)
1
p

and ‖u‖∞ = ess sup
x∈Ω

|u(x)|.

2. The main results

The aim of this study is to show that for f and g satisfying the
assumptions (A1)-(A3), classical solutions of (1.1)-(1.4) are global for
arbitrary u0 satisfying the following restriction

(2.1) ‖u0‖∞ <
8ab

αβn(a− b)2
, a 6= b.

The asymptotic behavior of the solutions as the time goes to infinity
is also studied.
To achieve the privious objectives, the techniques based on semigroup
methods and energy estimates are used. The idea for solving the global
existence of solutions for the problem (1.1)-(1.4) is a Lyapunov func-
tional. Similar functionals appeared in [6], [3] and [11] .

Theorem 2.1. Under the assumptions (A1)-(A3), the solutions of
(1.1)-(1.4) are global and uniformly bounded on [0,+∞) × Ω.

The study of local existence and uniqueness of solution (u, v) of the
problem (1.1)-(1.4) follows from the basic existence theory for abstract
parabolic semilinear equations (see, e.g., [2], [7], [9] and [15]). As a
consequence there exists a T ∗ ∈ (0,+∞] such that (1.1)-(1.4) has a
unique classical solution on [0, T ∗) × Ω. Furthermore, if T ∗ < +∞,
then

lim
t↑T ∗

(‖u(t)‖∞ + ‖v(t)‖∞) = +∞.

Therefore, if there exists a positive constant C such that

‖u‖∞ + ‖v‖∞ ≤ C

for all t in [0, T ∗), then T ∗ = +∞.
Since the initial conditions are nonnegative, then from (A1) and (A2),
we conclude that the nonnegativity of the solutions and the total mass
of the components are preserved with time.
Since f ≥ 0, u satisfies the maximum principle, i.e.,

‖u(t)‖∞ ≤ ‖u0‖∞ for all t ∈ [0, T ∗).

Based on that, the problem of global existence reduces to establish the
uniform boundedness of v in [0, T ∗). By Lp-regularity theory for para-
bolic operator (see, e.g., [12]) it follows that it is sufficient to derive a



REACTION-DIFFUSION SYSTEMS 5

uniform estimate of ‖g(u, v)‖p on [0, T ∗) for some p > n
2
.

The proof of Theorem 2.1 is based on the following key proposition.

Proposition 2.2. Suppose that the assumptions (A1)-(A3) are ful-
filled. For every classical solution (u, v) of (1.1)-(1.4) on [0, T ∗) × Ω,
let the function

L : t 7−→

∫

Ω

[

δu+ (M − u)−γeαp(v+1)β
]

(t, x)dx,

where α, β, γ, δ, p and M are positive constants such that

(2.2) β ≥ 1, ‖u0‖∞ < M <
2γ

αβn
and γ =

4ab

(a− b)2
.

Then, there exists δ > 0 and p > n
2

such that

(2.3) L is nonincreasing on [0, T ∗).

3. Proofs of the main results

Before proving the Proposition 2.2 we first need the following lemma.

Lemma 3.1. Let (u, v) be a solution of (1.1)-(1.4) on [0, T ∗)×Ω, then
under the assumptions (A1)-(A3), we have

(3.1)

∫

Ω

f(u(x, t), v(x, t))dx ≤ −
d

dt

∫

Ω

u(x, t)dx

and there exists δ1 > 0 and p > n
2

such that
(3.2)
∫

Ω

[

αpβM(v + 1)β−1g(u, v) − γf(u, v)
]

eαp(v+1)β

dx ≤ δ1

∫

Ω

f(u, v)dx,

where α, β, γ and M are positive constants satisfying (2.2).

Proof of Lemma 3.1. It suffices to integrate the both sides of (1.1)
satisfied by u on Ω, to obtain (3.1).
Now, from the conditions (2.2) we get n

2
< γ

αβM
, so we can choose p

such that n
2
< p < γ

αβM
.

According to the assumption (A2), we have
[

αpβM(v + 1)β−1g(u, v) − γf(u, v)
]

eαp(v+1)β

≤
[

αpβM(v + 1)β−1ψ(v) − γ
]

eαp(v+1)β

f(u, v).

Since αpβM < γ and (η+1)β−1ψ(η) goes to 1 as η → +∞, there exists
η0 > 0 such that for all η > η0, we obtain

[

αpβM(η + 1)β−1ψ(η) − γ
]

eαp(η+1)β

f(ξ, η) ≤ 0.
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On the other hand, if η is in the compact interval [0, η0], then the
continuous function

η 7−→
[

αpβM(η + 1)β−1ψ(η) − γ
]

eαp(η+1)β

is bounded. So that (3.2) immediately follows. �

We proceed now to the proof of Proposition 2.2.

Proof of Proposition 2.2. Differentiating L(t) with respect to t and
using the Green formula, one obtains

(3.3)
d

dt
L(t) = δ

d

dt

∫

Ω

u(x, t)dx+ I + J,

where

I =

∫

∂Ω

[

aγ
∂u

∂ν
+ bαpβ(M − u)(v + 1)β−1 ∂v

∂ν

]

(M − u)−γ−1eαp(v+1)β

ds

−

∫

Ω

[

aγ(1 + γ)|∇u|2 + αpβγ(a+ b)(M − u)(v + 1)β−1∇u∇v

+ bαpβ(M − u)2
(

β − 1 + αpβ(v + 1)β
)

(v + 1)β−2|∇v|2
]

(M − u)−γ−2eαp(v+1)β

dx,

where ds denotes the (n− 1)-dimensional surface element and

J =

∫

Ω

[

αpβ(M − u)(v + 1)β−1g(u, v) − γf(u, v)
]

(M−u)−γ−1eαp(v+1)β

dx.

We now take advantage of (1.4) and β ≥ 1, to obtain that

I ≤ −

∫

Ω

Q(∇u,∇v)(M − u)−γ−2eαp(v+1)β

dx,

where

Q(∇u,∇v) = aγ(1 + γ)|∇u|2 + αpβγ(a+ b)(M − u)(v + 1)β−1∇u∇v

+b
(

αpβ(M − u)(v + 1)β−1
)2

|∇v|2

is a quadratic form with respect to ∇u and ∇v.
The discriminant of Q is given by

D = γ
(

αpβ(M − u)(v + 1)β−1
)2 [

γ(a− b)2 − 4ab
]

.

From conditions (2.2), we have Q(∇u,∇v) ≥ 0 and consequently

(3.4) I ≤ 0.

Concerning the term J , since 0 ≤ u ≤ ‖u0‖∞ < M , we observe that

J ≤ (M−‖u0‖∞)−γ−1

∫

Ω

[

αpβM(v + 1)β−1g(u, v) − γf(u, v)
]

eαp(v+1)β

dx.
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Thanks to (3.2), we get δ1 > 0 such that

J ≤ δ1(M − ‖u0‖∞)−γ−1

∫

Ω

f(u, v)dx.

Let δ = δ1(M − ‖u0‖∞)−γ−1 and using (3.1), we obtain

(3.5) J ≤ −δ
d

dt

∫

Ω

u(x, t)dx.

From (3.3)-(3.5), we conclude that

d

dt
L(t) ≤ 0.

This concludes the proof of Proposition 2.2. �

We can now proof the Theorem 2.1.

Proof of Theorem 2.1. Let p be the same as in Proposition 2.2.
Since M−γ ≤ (M − ξ)−γ for all ξ ∈ [0, ‖u0‖∞], it follows that

‖g(u, v)‖p
p =

∫

Ω

|g(u, v)|pdx ≤MγKpL(t)

where

K = max
0≤ξ≤‖u0‖∞

ϕ(ξ).

By Proposition 2.2, we deduce

‖g(u, v)‖p
p ≤ MγKpL(0)

≤ |Ω|MγKp
[

δ‖u0‖∞ + (M − ‖u0‖∞)−γeαp‖v0+1‖β
∞

]

.

Hence g(u(t, .), v(t, .)) is uniformly bounded in Lp(Ω) for all t ∈ [0, T ∗)
with p > n

2
. Using the regularity results for solutions of parabolic equa-

tions in [12], we conclude that the solutions of (1.1)-(1.4) are uniformly
bounded on [0,+∞) × Ω. �

4. Asymptotic behavior of the solutions

In this section, we are dealing with the large time behavior of non-
negative and global classical solutions of (1.1)-(1.4).
Before stating our result, let us mention some properties from the the-
ory of semigroups.
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For each p ∈ (1,+∞), we can define a closed linear operator A on
Lp(Ω) with domain D(A) by

Aw = −d∆w for w ∈ D(A),

‖w‖2,p ≤ C (‖w‖p + ‖Aw‖p) , for w ∈ D(A), and

D(A) =

{

w ∈ W 2,p(Ω) : λw + (1 − λ)
∂w

∂ν
= 0 on ∂Ω

}

,

where ‖ · ‖2,p is the norm of the usual Sobolev space W 2,p(Ω), d, C
are positive constants and λ is a function of class C1 on ∂Ω such that
0 ≤ λ ≤ 1.
It is well known that −A generates an analytic semigroup of bounded
linear operators

{

e−tA
}

t≥0
on Lp(Ω) and that

(4.1) ‖Ame−tAw‖p ≤ Cmt
−m‖w‖p, for t > 0, w ∈ Lp(Ω),

with some positive constant Cm for m = 0, 1, 2, ....
Using the interpolation theorem (see, e.g., [14]), we have
(4.2)
‖∇

(

e−tA − e−sA
)

w‖2
p ≤ C‖

(

e−tA − e−sA
)

w‖p‖A
(

e−tA − e−sA
)

w‖p,

for 0 < s ≤ t, w ∈ Lp(Ω) and some positive constant C.

Lemma 4.1. For a function h in Lq((0,+∞), Lp(Ω)) with q > 2, we
define the function w by:

(4.3) w(t) = e−tAw0 +

∫ t

0

e−(t−σ)Ah(σ)dσ

where w0 is a nonnegative function in L∞(Ω).
Then, for 0 < s ≤ t, we have
(4.4)

‖∇w(t) −∇w(s)‖p ≤ C(ts)
−1
2 (t− s)

1
2 + C(t− s)θ

(
∫ t

0

‖h(σ)‖q
pdσ

)

1
q

,

where θ = 1
2
− 1

q
.

Proof of Lemma 4.1. From (4.3), we have

∇w(t) −∇w(s) = ∇
(

e−tA − e−sA
)

w0

+

∫ s

0

∇
(

e−(t−σ)A − e−(s−σ)A
)

h(σ)dσ

+

∫ t

s

∇e−(t−σ)Ah(σ)dσ

= I1 + I2 + I3.
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To estimate I1, we use (4.2) and (4.1) with m = 0, 2,

‖I1‖p = ‖∇
(

e−tA − e−sA
)

w0‖p

≤ C‖w0‖
1
2
p ‖A

(

e−tA − e−sA
)

w0‖
1
2
p

≤ C‖w0‖
1
2
p

(
∫ t

s

‖A2e−σAw0‖pdσ

)

1
2

≤ C(ts)
−1
2 (t− s)

1
2‖w0‖p.

The term I2 is estimated by using (4.2), (4.1) with m = 0, 2 and the
Hölder inequality,

‖I2‖p ≤

∫ s

0

‖∇
(

e−(t−σ)A − e−(s−σ)A
)

h(σ)‖pdσ

≤ C

∫ s

0

‖h(σ)‖
1
2
p ‖A

(

e−(t−σ)A − e−(s−σ)A
)

h(σ)‖
1
2
p dσ

≤ C

∫ s

0

‖h(σ)‖
1
2
p

(
∫ t−σ

s−σ

‖A2e−ξAh(σ)‖pdξ

)

1
2

dσ

≤ C(t− s)
1
2

∫ s

0

(t− σ)
−1
2 (s− σ)

−1
2 ‖h(σ)‖pdσ

≤ C(t− s)
1
2

(
∫ s

0

(t− σ)
−q

2(q−1) (s− σ)
−q

2(q−1)dσ

)
q−1

q
(

∫ s

0

‖h(σ)‖q
pdσ

)
1
q

,

where

∫ s

0

(t− σ)
−q

2(q−1) (s− σ)
−q

2(q−1)dσ =

∫ s

0

(t− s+ σ)
−q

2(q−1)σ
−q

2(q−1)dσ

≤

∫ ∞

0

(t− s+ σ)
−q

2(q−1)σ
−q

2(q−1)dσ

≤ (t− s)
−q

2(q−1)

∫ t−s

0

σ
−q

2(q−1)dσ +

∫ ∞

t−s

σ
−q

q−1dσ

≤ C(t− s)
−1
q−1 .

Consequently,

‖I2‖p ≤ C(t− s)θ

(
∫ t

0

‖h(σ)‖q
pdσ

)

1
q

.
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To estimate I3, we use (4.2), (4.1) with m = 0, 1 and the Hölder in-
equality,

‖I3‖p ≤

∫ t

s

‖∇e−(t−σ)Ah(σ)‖pdσ

≤ C

∫ t

s

‖h(σ)‖
1
2
p ‖Ae

−(t−σ)Ah(σ)‖
1
2
p dσ

≤ C

∫ t

s

(t− σ)
−1
2 ‖h(σ)‖pdσ

≤ C

(
∫ t

s

(t− σ)
−q

2(q−1)dσ

)

q−1
q

(
∫ t

s

‖h(σ)‖q
pdσ

)

1
q

≤ C(t− s)θ

(
∫ t

0

‖h(σ)‖q
pdσ

)

1
q

.

Collecting the above estimates, we get (4.4). �

The result of this section regarding the asymptotic behavior can be
stated as follows.

Theorem 4.2. Let Ω be a convex open bounded domain of class C1

in R
n. Let (u, v) be any nonnegative solution of (1.1)-(1.4). Then, as

t→ +∞, we have

‖u(t) − u∗‖∞ −→ 0,

‖v(t) − v∗‖∞ −→ 0,

where u∗ and v∗ are nonnegative constants such that

f(u∗, v∗) = g(u∗, v∗) = 0

.

Proof of Theorem 4.2. Multiplying (1.1) by u, integrating over (0, t)×
Ω and applying the Green formula, then from (1.3) and (1.4), we get

‖u(t)‖2
2 + 2a

∫ t

0

‖∇u(s)‖2
2ds+ 2

∫ t

0

∫

Ω

u(s)f(u, v)(s)dxds ≤ ‖u0‖
2
2,

from which we obtain that
∫ t

0
‖∇u(s)‖2

2ds is uniformly bounded.
In the same manner, we have

‖v(t)‖2
2 + 2b

∫ t

0

‖∇v(s)‖2
2ds ≤ ‖v0‖

2
2 + 2

∫ t

0

∫

Ω

v(s)g(u, v)(s)dxds.

On one hand, taking into account (A2), the uniform boundedness of
(u, v) and (3.1), we get
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∫ t

0

∫

Ω

v(s)g(u, v)(s)dxds ≤

∫ t

0

∫

Ω

v(s)ψ(v(s))f(u, v)(s)dxds

≤ C

∫ t

0

∫

Ω

f(u, v)(s)dxds

≤ C

(
∫

Ω

u0(x)dx−

∫

Ω

u(x)dx

)

≤ 2C|Ω|‖u0‖∞.

Consequently,
∫ t

0
‖∇v(s)‖2

2ds is uniformly bounded.
On the other hand, using the Hölder inequality, the uniform bounded-
ness of (u, v) and (3.1), we obtain
∫ t

0

‖f(u, v)(s)‖3p
p ds ≤

∫ t

0

(
∫

Ω

f(u, v)(s)dx

) (
∫

Ω

f(u, v)(s)
3p−1

2 dx

)2

ds

≤ C

∫ t

0

∫

Ω

f(u, v)(s)dxds

≤ C

(
∫

Ω

u0(x)dx−

∫

Ω

u(x)dx

)

≤ 2C|Ω|‖u0‖∞,

from which we obtain, by using (A2), that
∫ t

0

‖g(u, v)(s)‖3p
p ds ≤

∫ t

0

‖ψ(v(s))f(u, v)(s)‖3p
p ds

≤ C

∫ t

0

‖f(u, v)(s)‖3p
p ds

≤ K

∫ t

0

∫

Ω

f(u, v)(s)dxds

≤ K

(
∫

Ω

u0(x)dx−

∫

Ω

u(x)dx

)

≤ 2K|Ω|‖u0‖∞.

Now, since (u, v) is a solution of (1.1)-(1.4) on (0,+∞) × Ω, then, by
using the Lemma 4.1 with q = 3p, we obtain that

t 7−→ ‖∇u(t)‖2 and t 7−→ ‖∇v(t)‖2

are uniformly continuous on [ε,+∞) for every ε > 0.
By the arguments above, we conclude that

(4.5) lim
t→+∞

‖∇u(t)‖2 = lim
t→+∞

‖∇v(t)‖2 = 0.
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From (1.1), (1.2), (1.4), (A2), the boundedness of v and (3.1), we get

d

dt
u(t) ≤ 0 and

d

dt
((1 + δ2)u(t) + v(t)) ≤ 0,

where u, v are respectively the mean values over Ω of u, v and δ2 is a
positive constant.
Consequently, we conclude that

lim
t→+∞

u(t) = u∗ and lim
t→+∞

v(t) = v∗,

where u∗ and v∗ are nonnegative constants.
Taking into account the fact that {u(t)}t≥ε and {v(t)}t≥ε are relatively

compact in C(Ω) (see, e.g., [5]), (4.5) and by using the Poincaré-
Wirtinger inequality, we obtain

lim
t→+∞

u(t) = u∗ and lim
t→+∞

v(t) = v∗, in C(Ω).

Since, by (3.1) and (A2),
∫ t

0

∫

Ω
f(u, v)dxds and

∫ t

0

∫

Ω
g(u, v)dxds are

uniformly bounded, we have

f(u∗, v∗) = g(u∗, v∗) = 0.

Thus the proof of the Theorem 4.2 is completed. �

Remark 4.3. If lim
η→+∞

ηβ−1ψ(η) = ℓ where ℓ is a nonnegative constant,

then we can replace the restriction (2.1) by

ℓ‖u0‖∞ <
8ab

αβn(a− b)2
, a 6= b,

and we observe that if ℓ = 0, then the initial data u0 ≥ 0 in L∞(Ω) is
given arbitrarily.
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